
An Encouraging Progress Report on the Treatment of Progeria 
and Its Implications for Atherogenesis

Junko Oshima, MD, PhD, Fuki M. Hisama, MD, and George M. Martin, MD
Department of Pathology (J.O., G.M.M.) and the Division of Medical Genetics (F.M.H.), University 
of Washington, Seattle, WA; and Molecular Biology Institute, University of California at Los 
Angeles, Los Angeles, CA (G.M.M.)

Keywords

Editorials; atherosclerosis; clinical trial; farnesyltransferase; genetics; humans; progeria

There are no known human genetic syndromes that faithfully accelerate all of the common 

phenotypes associated with aging, but there are several striking disorders with multiple 

features (segmental progeroid syndromes). The suffix-oid is conceptually important, because 

it leaves open the possibility that the underlying mechanisms may differ to some extent from 

what is considered the usual pathogenesis. Two canonical examples are the Werner 

syndrome and the Hutchinson-Gilford Progeria Syndrome (HGPS). In both disorders, 

atherosclerosis is a particularly striking feature, causing the majority of deaths, usually via a 

myocardial infarction (although cancer is also a common cause of death in Werner 

syndrome, a later-onset disorder). Werner syndrome is an autosomal recessive disorder due 

to null mutations at a member of the RecQ family of DNA helicases and is associated with 

accelerated clonal senescence of somatic cells and genomic instability.1 HGPS is caused by 

a specific class of autosomal dominant mutations in lamin A, a component of the nuclear 

membrane. The causative mutations result in the synthesis of large amounts of an 

alternatively spliced toxic isoform known as progerin2–4; it is thus a gain-of-function 

mutation.

During the maturation of prelamin A, a farnesyl group is added to a cysteine residue at the C 

terminus and subsequently removed by a proteolytic enzyme, Zmpste24, to produce mature 

lamin A. In progerin, the proteolytic site for Zmpste24 is deleted because of a cryptic splice 

site generated by the mutation.2,3 A mouse model expressing the nonfarnesylated progerin 

exhibited near-normal phenotypes, supporting the interpretation that progerin toxicity is 

mediated by the farnesyl moiety.5 The severities of the disease correlate with the amount of 

progerin, a function of the activity of the cryptic splice site.6 The size of the deletion also 
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contributes to the severity of the phenotype. The majority of classical early-onset forms of 

HGPS result from a 50-amino-acid deletion. Attenuated forms of the disease have been 

associated with alternative deletions that lead to lesser amounts of the progerin isoform.7,8

Of major biomedical interest have been reports that small amounts of progerin can be 

detected in human tissues, including human arteries, and that these amounts increase with 

age.9,10 These observations now raise the important question of the extent to which progerin 

contributes to human atherogenesis.

In this issue of Circulation, Gordon et al11 describe small but robust increases in the survival 

of HGPS patients following treatments that interfere with the posttranslational farnesylation 

of lamin A proteins. Remarkably, given the extreme rarity of this disorder,12 this team, 

assisted by the efforts of a highly successful Progeria Research Foundation (http://

www.progeriaresearch.org/), managed to assemble a cohort of 161 untreated control HGPS 

patients and 43 HGPS patients who were treated with either a single farnesyltransferase 

inhibitor, lonafarnib, or 2 additional agents that also inhibited farnesylation: a 

bisphosphonate (zoledronate), which inhibits the synthesis of farnesyl-pyrophosphate, and a 

statin (pravastatin), which inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase (see 

Figure 111).

Recruitment of control disease subjects did not require genotyping, although some are listed 

in Table III in the online-only Data Supplement.11 In contrast to the experience of our 

International Registry of Werner Syndrome, however, in which we could only provide a 

molecular diagnosis of ≈80% of clinical diagnoses, molecular confirmations of clinically 

diagnosed HGPS are much more robust, probably well in excess of 95%. Moreover, all 

treated subjects were in fact genotyped, some of whom had LMNA mutations that resulted in 

lower levels of progerin (see Table V in the online-only Data Supplement11).

It is important to note that the treated group included patients with any duration of treatment, 

either during a previous 2-year trial of farnesyltransferase inhibitor monotherapy or during 

an ongoing 3.5-year trial of combination treatment. Given that feature of the study, the 

Kaplan-Meier curves of Figure 2B11 are even more impressive − 21/43 deaths in the 

untreated group versus 5/42 deaths in the treated group during the approximately 5-year 

period of this study.

The authors suggest that the increased longevity of the treated HGPS patients was due to a 

reduction of cardiovascular pathology, a very plausible hypothesis. Investigators engaged in 

survival studies must always keep in mind, however, the possibility that any intervention 

with the potential to induce dietary restriction might have a more general effect on the 

pathophysiology of aging.13 This is extraordinarily unlikely in the present case, however, 

given the precise target of the interventional agents and the fact that there was no evidence 

of weight loss in a previous preliminary trial of monotherapy.14

The authors point out that the present data now provide the best available baseline data of 

HGPS survival for use by interventional trials with other agents. Among these future 

potential interventions is research that uses a mouse model of HGPS to evaluate phenotypic 

improvements via the targeting of an enzyme, isoprenylcysteine carboxyl methyltransferase, 
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which is responsible for the methylation of isoprenylcysteine.15 After farnesylation of 

prelamin A and progerin, farnesylcysteine is methylated by isoprenylcysteine carboxyl 

methyltransferase before cleavage by Zmpste24. Zmpste24-deficient mice expressing 

hypomorphic isoprenylcysteine carboxyl methyltransferase showed striking ameliorations of 

HGPS-like phenotypes and upregulation of mammalian target of rapamycin (mTOR) 

signaling.15 In contrast to those mTOR results, however, Cao et al16 showed that long-term 

treatment of HGPS cells with the mTOR inhibitor, rapamycin, facilitated the autophagic 

clearance of progerin and reversed cellular HPGS phenotypes. Therefore, mTOR inhibitors 

could prove to be useful in the treatment of age-related disorders, including the treatment of 

Werner syndrome.17 Since the advent of drug-eluting coronary stents that deliver sirolimus 

or everolimus to prevent restenosis, the use of systemic mTOR inhibitors has been approved 

by the Food and Drug Administration for the treatment of renal and brain manifestations of 

the genetic condition, tuberous sclerosis, and for the treatment of HER2-negative breast 

cancer, pancreatic neuroendocrine tumors, and advanced renal cell carcinoma, as well. There 

is also much current interest in the use of rapalogs, chemical agents that may have fewer 

side effects, for example, on immune suppression.18 Finally, there are reports of the use of 

RNAi against progerin mRNA that showed improvements of cellular HGPS 

phenotypes.19,20 Such gene therapy, however, may not be practical at this point because of 

the limitations of delivery systems.

Returning to the consideration of the most biomedically significant HGPS phenotype, 

atherosclerosis, 2 issues remain to be resolved. The first is the histopathologic observations 

of apparent phenotypic discordances with atherosclerosis as it usually occurs. Of particular 

interest are the unusually extensive periarterial adventitial fibrosis and the involvement of 

vascular smooth muscle alterations.9 The latter issue has been addressed in part by in vitro 

studies indicating that aging normal vascular smooth muscle cells reiterate the aging 

phenotype of HGPS fibroblasts in culture and that this process of cell senescence is 

accelerated by the accumulation of prelamin A.21 The former observation will require more 

research, however.

The second issue is the need for more robust animal models of HGPS that include 

atherosclerosis. To the best of our knowledge, atherosclerosis has yet to be demonstrated in 

any of the several published mouse models of HGPS. The use of alternative animal models, 

such as the miniature pig, would be highly desirable.22
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