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Abstract

Bacterial phosphorothioate (PT) DNA modifications are incorporated by Dnd proteins A-E and 

often function with DndF-H as a restriction-modification (R-M) system, as in Escherichia coli 

B7A. However, bacteria such as Vibrio cyclitrophicus FF75 lack dndF-H, which points to other 

PT functions. To better understand PT biology, we report two novel, orthogonal technologies to 

map PTs across the genomes of B7A and FF75 with >90% agreement: real-time (SMRT) 

sequencing and deep sequencing of iodine-induced cleavage at PT (ICDS). In B7A, we detect PT 

on both strands of GpsAAC/GpsTTC motifs, but with only 18% of 40,701 possible sites modified. 

In contrast, PT in FF75 occurs as a single-strand modification at CpsCA, again with only 14% of 
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160,541 sites modified. Single-molecule analysis indicates that modification could be partial at 

any particular genomic site even with active restriction by DndF-H, with direct interaction of 

modification proteins with GAAC/GTTC sites demonstrated with oligonucleotides. These results 

point to highly unusual target selection by PT modification proteins and rule out known R-M 

mechanisms.

INTRODUCTION

Secondary modifications of DNA and RNA play critical roles in cell physiology, including 

restriction-modification (R-M) systems in prokaryotes, and in epigenetic control of DNA 

replication, transcription and translation in all organisms1. While the incorporation of sulfur 

(S) into nucleobases is well established in secondary modifications of tRNA and rRNA2, the 

replacement of a non-bridging phosphate oxygen with sulfur as a phosphorothioate (PT) was 

originally developed as an artificial means to stabilize oligodeoxynucleotides against 

nuclease degradation3. We recently discovered that the dnd gene products incorporate sulfur 

into the DNA backbone as a PT in a sequence- and stereo-specific manner4,5. Beginning 

with the original observation in Streptomyces lividans that the five-gene dnd cluster (dndA-

E) caused DNA degradation during electrophoresis6–8, the presence of dnd genes and PT 

modifications has been established in >200 different bacteria and archaea, including many 

human pathogens6,9–15. However, the functional landscape of PT modifications has not been 

firmly established.

At the biochemical level, an emerging picture of Dnd protein function reveals that DndA 

acts as a cysteine desulfurase similar to Escherichia coli LscS and assembles DndC as a 

4Fe-4S cluster protein16. More than half of dnd gene clusters lack dndA and contain only 

dndB-E, with DndA cysteine desulfurase activity functionally replaced by a host gene linked 

to the dndB-E cluster (e.g., E. coli IscS)17. DndC possesses ATP pyrophosphatase activity 

and is predicted to have PAPS reductase activity, while DndB is predicted to have a domain 

for binding Fe-S cluster proteins, as well as homology with a DNA repair ATPase and with 

transcription regulators6,9. A DndD homolog in P. fluorescens, SpfD, has ATPase activity 

possibly related to DNA structure alteration or nicking during PT incorporation18. Finally, 

the DndE structure reveals a tetramer conformer and a possible nicked double strand DNA 

binding protein19.

In terms of higher function of the dnd genes and PT modifications, there is evidence that in 

some bacteria, PT modifications are part of a novel R-M system with similarities to 

methylation-based R-M systems20,21, such as sequence specificity and discrete levels 

associated with 4–6 nucleotide consensus sequences4,5. We recently identified a restriction 

system comprised of a 3-gene family, dndFGH, the products of which cleave DNA lacking 

sequence-specific PT modifications22,23. By BLAST searching, ~86 bacterial strains have 

been found with both dndA-E and dndF-H co-localized on the same mobile genetic element. 

However, there are ~125 bacterial strains lacking the dndF-H restriction system in spite of 

possessing dndA-E and PT. The fact that many strains of bacteria lack the restriction enzyme 

component of a typical R-M system is consistent with the idea that PT modifications and 

dndA-E genes provide functions other than R-M, such as control of gene expression.
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To better understand PT biology, we place the modifications in the context of the genomic 

landscape by developing two highly novel, orthogonal technologies to quantitatively map 

PT locations in bacterial genomes: single molecule, real-time (SMRT) sequencing24–28 and 

deep-sequencing of iodine-induced cleavage at PT (ICDS) (Figure 1). These methods are 

then applied to two bacterial strains known to possess PT modifications with different 

features. With regard to PT function in an R-M system, E. coli B7A possesses both the 

modification genes (dndB-E) and the restriction genes (dndF-H), with PT modifications 

occurring in GpsA and GpsT contexts at 370 ± 11 and 398 ± 17 PT per 106 nucleotides, 

respectively5. This is consistent with an R-M consensus sequence of GpsAAC/GpsTTC, as 

observed in the related Salmonella enterica22. However, the frequency of PT modifications 

in this genome (~1 per 2500 nt) is too low to account for a four-nucleotide consensus 

sequence expected to occur once in every ~300 nt by chance alone. In terms of PT functions 

other than R-M, many bacteria, such as Vibrio cyclitrophicus FF75, lack the restriction 

genes dndF-H, which points to other roles such as epigenetic control of gene expression. PT 

modifications in FF75 occur in CpsC contexts at a frequency of 2600 ± 22 per 106 nt, or 

once in every 380 nt5. We provide a genomic context for these fragmentary observations by 

developing and applying the SMRT and ICDS technologies to obtain the first high-

resolution genomic maps of PT modifications, with the discovery of highly unusual and 

unexpected features of this DNA modification.

RESULTS

Genome sequencing of E. coli B7A and V. cyclitrophicus FF75

The first step in mapping PT modifications was to define the complete genome sequences 

for B7A and FF75. The V. cyclitrophicus FF75 genome was originally sequenced using the 

Illumina platform, yielding 77 contigs (GenBank number AIDE00000000)29. To complete 

the sequencing, we made a large randomly-fragmented SMRTbell library with an average 

insert size of ~10 kb and sequenced the library by SMRT using the XL long-readlength 

polymerase. The assembly was completed using a recently developed algorithm, HGAP30, 

which yielded 5 large contigs for a total of 5.1 Mb. Based on the assembly and sequenicng 

coverage analysis, there appear to be two circular chromosomes, which is similar to other 

Vibrio species31. One of the two Vibrio chromosomes assembled to completion, the other 

was broken into 4 contigs by several large repeats that were too large to be spanned by long 

reads. The contigs were annotated by RAST, submitted to NCBI and assigned to Genbank 

ID ATLT00000000.

The B7A genome was similarly sequenced using the SMRT platform and the annotated 

genome is presented in Supplementary Data 1. A ~10 kb fragment library, 8 SMRT Cells 

and HGAP de novo assembly were used to complete the whole genome sequence as a single, 

circular chromosome of 4,944,397 bases, 5,031 orfs, 22 rRNAs, and 86 tRNAs. There were 

also four circular plasmids: pEB1 - 89,507 bases, 107 orfs; pEB2 - 52,028 bases, 67 orfs; 

pEB3 - 66,341 bases, 85 orfs; pEB4 - 78,167 bases, 94 orfs. The GenBank accession 

numbers for the chromosome and plasmids are CP005998, CP005999, CP006000, 

CP006001 and CP006002, respectively.
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Adaptation of SMRT sequencing to map PT modifications

The SMRT DNA sequencing platform uniquely detects DNA modifications by virtue of 

variations in the interpulse duration (IPD) of the DNA polymerase kinetics26, with initial 

applications related to nucleobase methylation26, 5-hydroxymethylcytosine28, and damaged 

nucleobases25. To test the feasibility of SMRT sequencing for the detection of PT 

modifications in DNA, we designed synthetic 20-mer oligodeoxynucleotides containing 

sequence-specific PT in the Rp or Sp configuration and compared the IPD to unmodified 

templates. As shown in Figure 2A, the presence of a PT resulted in a readily detectable 

kinetic signal at the modification site, but interestingly only for the naturally occurring Rp 

configuration.

At the next level of complexity, the SMRT IPD signature for PT was assessed in plasmid 

Bluescript SK+ extracted from wild-type S. enterica containing dndB-H and a mutant strain 

lacking dnd genes. Analysis of the plasmid revealed the expected presence of three common 

methylated nucleobases: N6-methyladenine (m6A) in the 5′-Gm6ATC-3′ sequence context, 

5-methylcytosine (m5C) in 5′-Cm5CWGG-3′, and m6A in 5′-CAGm6AG-3′ (underlined 

bases indicate methylation on the complementary DNA strand). In addition, extended 

signatures were detected in the 5′-GAAC-3′/3′-CTTG-5′ sequence context on both DNA 

strands in the plasmid isolated from wild-type S. enterica, but not in a PT-free plasmid 

isolated from the Δdnd mutant strain, demonstrating that PT modifications were the source 

of these additional signals (Fig. 2B, Supplementary Table 1). Compared to the PT-induced 

kinetic signature from oligodeoxynucleotides (Fig. 2A), the magnitude of the PT signal in 

the plasmid was weaker, which was consistent with either sequence-context effects on the 

SMRT IPD or partial modification of each site in the population of plasmid molecules. To 

test the latter hypothesis, PT modifications in the plasmid were quantified as PT-linked 

dinucleotides by liquid chromatography-coupled triple quadrupole mass spectrometry (LC-

MS/MS) following nuclease P1 digestion and phosphatase treatment of the plasmid DNA5. 

The presence of 17 ± 0.04 pmol of (GpsT) and 16 ± 0.06 pmol (GpsA) in 18 pmol of plasmid 

DNA suggested that each plasmid was modified only once on average, implying many 5′-

GAAC-3′/3′-CTTG-5′ sites in a given plasmid molecule lacking PT.

SMRT sequencing of PT modifications in bacterial genomes

Given the ability to detect PT modifications in oligos and plasmid DNA, the SMRT 

technology was applied to genomic DNA isolated from E. coli B7A and V. cyclitrophicus 

FF75. As shown in Figure 3A for B7A, kinetic signatures were detected for the expected 

m6A modifications, as well as signals occurring consistently in the GpsAAC/GpsTTC 

context. That these new signals were derived from PT modifications is supported (1) by the 

fact that the observed sequence context is identical to that observed in the plasmid DNA 

studies from an organism (S. enterica) with a nearly identical dnd gene cluster23 (Fig. 2B), 

(2) by our previous observation of GpsA and GpsT dinucleotide motifs for PT modifications 

in B7A5, and (3) by the identical conclusion reached with the different ICDS approach to 

PT mapping (Fig. 1), discussed below.

To analyze the distribution of PT modifications across the B7A genome, we mapped the 

modifications using the published B7A genome sequence (Genbank ID: AAJT02; 
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annotation in Supplementary Data 1) as a reference. Seemingly of importance for an 

organism in which the PT modification system (dndB-E) is accompanied by a restriction 

system (dndF-H), the PT modifications in B7A were highly biased towards signals on both 

strands of any given GpsAAC/GpsTTC motif (Fig. 3B). Applying a threshold for detection 

calling from the distribution (Fig. 3B, dotted line), only ~12% (4855) out of 40,701 GAAC/

GTTC sites were detected as modified. The PT modifications were distributed relatively 

evenly across the B7A chromosome, with an average spacing of ~0.1–10 kb (Fig. 3C; 

Supplementary Data 1). We observed a relative underrepresentation of T residues preceding 

and A and C residues following the GpsAAC/GpsTTC motif, respectively (Table 1A). 

Genome annotation showed that 4499 of 5384 total open reading frames (ORFs), 3 of 86 

tRNA genes and 22 of 25 rRNA genes contained at least one PT. The percentage of PT-

modified GAAC/GTTC sites in these different regions of the genome varied from 2 to 12%, 

with 4499 of 36607 sites (12.3%) modified with PT in ORFs, 3 of 118 (2.54%) in tRNAs, 25 

of 274 (9.12%) in the rRNAs and 333 of 3702 (9.00%) in the non-coding regions 

(Supplementary Data 1). Similar frequencies were calculated from the ICDS mapping data 

(vide infra, Supplementary Data 2), with statistical analyses (Supplementary Table 2) 

revealing significant under-modification of GAAC/GTTC sites in tRNA genes compared to 

ORFs and intergenic regions (P <0.03). This bias against modification in tRNA genes stands 

in contrast to the observation that the proportion of PT-modified sites varies inversely with 

the gene length in the B7A genome and that most genes have <4 PT-modified GAAC/GTTC 

sites (Supplementary Fig. 1).

For the wild-type FF75 genome, PT was found to occur in the sequence context 5′-

CpsCA-3′, while kinetic IPD signatures were absent in the FF75-derived XXL-1 mutant 

lacking dnd genes (Fig. 4A,B; Supplementary Data 3). The CCA motif is again consistent 

with the presence of CpsC dinucleotide observed in FF75 by LC-MS/MS analysis, which 

occurred at a frequency of 2.6 per 103 nt or 3.4-fold higher than the PT modifications in 

B7A5. Interestingly, SMRT sequencing revealed that FF75 possessed PT modifications only 

on the CpsCA strand, but not on the complementary consensus sequence on the other strand 

(Fig. 4). This is consistent with the absence of apparent restriction genes in FF75 (by 

homology searching of the FF75 genome; vide supra) and with a function for PT 

modification in FF75 other than a R-M system. Based on the level of SMRT signal noise in 

the FF75 dnd knockout mutant, we could define the threshold for the IPD kinetic score at a 

1% false positive detection level, translating to 21,778 CCA sites in the wild-type detected 

above this threshold, out of a total of 160,541 CCA sites across the FF75 genome 

(Supplementary Data 3). Mapping the detected modification sites on the genome assembly 

described above showed that PT-modified CCA was distributed sporadically throughout the 

genome, with 19,005 located in ORFs, 151 in tRNAs, 761 in rRNA and 1,861 in noncoding 

regions. There was a preference for A and G following the CCA motif (Table 1B)

While the observed signals for m6A were consistent in magnitude from previously studied 

bacteria27, the kinetic signals for PT modifications in both B7A and FF75 were more 

variable, and smaller than what had been determined on the 100% modified oligos (Figs. 2–

4). The GpsA and GpsT signals in B7A were more pronounced on average than those for 

CpsC in FF75. There are several potential causes for the lower magnitude in kinetic signals 
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in these bacteria, including partial modification and sequence context effects on the 

polymerase IPD kinetic signature. To investigate the former, we analyzed the kinetic signals 

for several genomic positions on a subset of shorter DNA molecules, which allowed the 

determination of single-molecule PT modification detection via circular consensus 

sequencing32,33. As shown in Figure 5 for B7A, the analysis shows that underlying the IPD 

ratio plots averaging over all molecules (Fig. 5A, left panels) is a heterogeneous 

composition of DNA molecules that do or do not harbor PT at their respective DNA strand 

positions (Fig. 5A, right panels). Conversely, we found genomic locations for which the 

averaged kinetic signal had not crossed the threshold required for a PT detection assignment, 

but the single-molecule analysis showed the presence of some DNA molecules harboring the 

modification (Fig. 5B). This was also observed for FF75 (Supplementary Fig. 2), indicating 

that the genome-wide PT distribution is partial over these genomes, with varying degrees of 

PT modifications at the recognition sequence motifs.

Development of the iodine-cleavage method for genomic mapping of PT

As a complement to the SMRT sequencing approach, we developed a method for 

quantitative localization of PT modifications that exploits the selective reactivity of PT to 

induce DNA cleavage at the modified phosphodiester linkage34. The general concept of the 

method, which is illustrated in Figure 1 and in more detail in Supplementary Figure 3, 

involves cleavage of the DNA strand at the site of a PT modification by reaction with iodine 

in ethanol and subsequent ligation of PCR linkers to the double-strand breaks that result 

when PT modifications are closely spaced on opposite strands. The iodine cleavage reaction 

was validated in two ways. First, MALDI-TOF analysis of the cleavage reaction with 48-

mer oligodeoxynucleotides revealed that the strand breaks occurred with high efficiency at 

locations of the PT modification (Supplementary Fig. 4A), which is consistent with previous 

cleavage studies34. A second set of control studies entailed treatment of plasmid and 

genomic DNA possessing and lacking PT modifications, with iodine-cleavage producing 

strand breaks only in the PT-containing DNA (Supplementary Fig. 4B,C). Validation of the 

method in its entirety was achieved by applying it to genomic DNA isolated from B7A and 

FF75, as discussed next, with individual DNA manipulation, ligation and amplification steps 

verified by Fragment Analyzer analysis of DNA fragment sizes.

Distribution of PT modifications in E. coli B7A by ICDS

Application of the ICDS method to analysis of PT modifications in the B7A genome 

(Supplementary Data 2) revealed locations that were 90% consistent with the SMRT 

approach, with mapping data for two independent runs along with a comparison to SMRT 

data presented in Supplementary Figure 5. Sequence motif enrichment analysis was 

performed on 100 bp regions centered around sites with divergent read pileups using the 

MEME-ChIP algorithmic suite35, on sites jointly identified by ICDS and SMRT (4519 

sites), and ICDS only (2976), respectively. Both datasets displayed a highly significant 

enrichment for GAAC/GTTC motifs, as expected from the PT-enrichment and library 

construction procedure. The next two motifs (CTGG and G[A/G]TA[A/T]) were also shared 

by both methods. Analyzing the spatial distribution of these motifs revealed that GAAC/

GTTC motifs were sharply centered on the middle of the intervals under consideration. 

While most other motifs did not display any particular localization within the intervals (in 
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spite of being enriched over background), G[A/G]TA[A/T] motifs were significantly under-

represented in the middle of the interval. As evidence of the specificity of ICDS for 

bistranded PT modifications, application of the method to FF75 produced no detectable PT 

modification consensus at CCA, in contrast to the observations with SMRT (Fig. 4) and LC-

MS/MS analysis5, and despite evidence that iodine cleaves PT in FF75 (Supplementary Fig. 

4C).

Evidence for restriction of plasmid DNA in E. coli B7A

We previously demonstrated that a PT modification-dependent restriction-modification 

system was present in Salmonella, in which a four-gene cluster (dptB-E) was required for PT 

modification while three additional genes (dptF-H) were responsible for restriction22. 

Genome analysis showed that E. coli B7A possessed gene clusters homologous to both the 

PT modification and restriction gene clusters (Supplementary Data 1, Fig. 6A,B). Given the 

evidence for partial modification of the GAAC/GTTC consensus in E. coli B7A, we 

analyzed the restriction phenotype using wild-type (WT) B7A and a strain lacking the dnd 

(dpt-like) gene cluster (Supplementary Fig. 6A,B). Equal amounts of pBluscript SK+ 

isolated from E. coli B7A WT (PT-containing DNA) or E. coli B7A Δ dndB-H mutant 

(DNA lacking PT) were used to test the restriction phenotype of E. coli B7A WT and E. coli 

B7A Δ dndF-H during transformation. The results of transformation into E. coli B7A WT 

showed that the plasmid lacking PT had a significantly lower transformation efficiency than 

PT-containing plasmid (Supplementary Fig. 6C,D). However, lack of dndF-H resulted in a 

similar transformation efficiency for both modified and unmodified plasmids 

(Supplementary Fig. 6E,F). These results suggest that PT modifications in E. coli B7A 

participate in a restriction-modification system despite the phenomenon of partial 

modification of the GAAC/GTTC consensus sequence.

In vitro PT modification of duplex oligodeoxynucleotides by cell-free extracts

To determine if Dnd proteins could interact directly with a modification consensus 

sequence, without long-range influences from genomic DNA, we performed an in vitro 

reaction of a cell-free extract from Salmonella enterica serovar Cerro 87, which has Dnd 

proteins highly homologous to those in E. coli B7A and a GAAC/GTTC consensus 

sequence, with a 31-mer duplex oligodeoxynucleotide containing a known GAAC/GTTC-

containing PT modification site from S. enterica22 (Supplementary Table 3) Following 

annealing and immobilization of the biotinylated duplex oligo on streptavidin-agarose beads, 

cell-free extracts were added along with cofactors ATP, L-cysteine, and pyridoxal phosphate 

for a 1-hr reaction, followed by enzymatic release and LC-MS/MS analysis of PT-containing 

dinucleotides. As shown in Supplementary Figure 7C,D, assays performed in the absence of 

oligodeoxynucleotides or cell-free extract did not reveal detectable d(GPSA) or d(GPST), 

which rules out contamination from genomic DNA in the cell-free extract. Both d(GPSA) 

and d(GPST) were detected in reactions of cell-free extract with a GAAC/GTTC-containing 

oligodeoxynucleotide (Supplementary Fig. 7B), which agrees with the positive control of an 

oligodeoxynucleotide containing GPSAAC/GPSTTC (Supplementary Fig. 7A). These results 

establish that Dnd proteins directly bind to and react with GAAC/GTTC consensus 

sequences, which rules out modification systems in which the modification proteins 

recognize a DNA sequence at a distance from the modification site.
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DISCUSSION

Toward the goal of better understanding the biology of PT in bacteria, we surveyed the 

genomic landscape of PT modifications in two distinct bacteria: E. coli B7A, which 

possesses an active dndF-H restriction system, and V. cyclitrophicus FF75, which lacks 

dndF-H. Such an analysis required the development of novel convergent technologies to 

localize PT modifications in DNA, along with complete genomic sequencing for the two 

bacteria and application of bioinformatic and statistical tools to quantity and localize the PT 

modifications across the bacterial genomes. To this end, we developed and applied two 

complementary PT mapping methods: SMRT sequencing technology and ICDS chemical 

cleavage-based sequencing. As illustrated in Figure 1, the SMRT technology involves 

detection of kinetic signatures when a replicating DNA polymerase encounters modified 

nucleotides in DNA and has been used to map methylation-based modifications across 

eukaryotic and prokaryotic genomes24–28. The oligonucleotide studies revealed a fortuitous 

bias by the polymerase toward PT modifications in the naturally occurring Rp configuration 

on the template, while the plasmid studies not only demonstrated detectability of the GAAC/

GTTC motif that would be observed in B7A but also suggested a phenomenon of partial 

modification of any specific GAAC/GTTC site in the plasmid. While neither the SMRT nor 

the ICDS method can rule out PT modification at a site, two facts prove that the Dnd 

proteins do not incorporate PT at every available site in every plasmid: (1) LC-MS/MS 

analysis revealed that PT modifications occurred once per plasmid molecule on average; and 

(2) PT signals were only clearly detected at ~15 of 25 GAAC/GTTC sites (Supplementary 

Table 1) in a population of plasmid molecules. Hence, the definition of a partial 

modification phenomenon, which appears to be the case in bacterial genomes as discussed 

shortly.

As a complement to SMRT sequencing, the ICDS method is based upon creating a double-

strand break at sites containing PT modifications in close proximity on opposite DNA 

strands, and is thus limited to genomic mapping of bistranded PT modifications as in B7A 

but not the single-stranded modifications in FF75. The iodine-based chemical cleavage of 

PT-containing DNA nonetheless serves as a rapid assay for the presence of PT 

modifications, analogous to the cleavage phenomenon that occurs during agarose gel 

electorphoresis23. The feasibility of the ICDS method was demonstrated in not only 

oligodeoxynucleotides but also plasmid and genomic DNA (Supplementary Fig. 4), and its 

specificity for bistranded PT modifications evident in the lack of detectable signal with FF75 

DNA compared to the clear GAAC/GTTC consensus observed in B7A.

Unlike the consistency and magnitude of the IPD ratio for m6A27, the kinetic signals for PT 

modifications in both B7A and FF75 were variable and smaller than m6A signals (Figs. 3, 

4), with the GpsA and GpsT signals in B7A larger on average than those for CpsC in FF75. 

There are several explanations for this variation in IPD kinetic signals. First, it is possible 

that the flanking regions of a PT modification site could affect the polymerase and alter the 

IPD, with some IPD signals falling below the detection limit of the system. Alternatively, 

PT modification does not occur consistently at a given site in a genome in a population of 

bacteria – the phenomenon of partial modification. It is also possible that hemi-modification 

of the GAAC/GTTC motif occurs, as suggested by the lack of PT signal on one strand of 
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some modification sites in B7A (Fig. 5; Supplementary Data 1), though this appears to be a 

low frequency phenomenon given the quantitative concordance of the SMRT and ICDS data 

(Supplementary Fig. 5). In the case of partial modification, the aggregate kinetic data would 

represent ensembles of signatures for both modified and unmodified cases. The fact that LC-

MS/MS analysis revealed fewer PT modifications than modification sites in the plasmid 

studies (Fig. 2) suggests that partial modification is operant in B7A, which poses a problem 

given the presence of a restriction system in B7A (Supplementary Fig. 6, see below).

The PT mapping methods were next applied to the genomes of B7A and FF75. PT 

modification in B7A was determined by both SMRT and ICDS to occur in the GpsAAC and 

GpsTTC sequence context, which is consistent with the previous observation of equimolar 

quantities of d(GpsA) and d(GpsT) detected in the genome by LC-MS/MS 5. Both the 

complementarity of the d(GpsA) and d(GpsT) dinucleotides in the context of a GAAC/GTTC 

motif and the clear observation of PT modifications on both strands at a GAAC/GTTC 

sequence prove that PT occurs predominantly as a bistranded DNA modification in B7A 

(Fig. 3). Although the frequency of PT modifications in GAAC/GTTC motifs (~1 per 3000 

nt) suggested a ~6 nt consensus sequence5, as might be expected for a classical Type II R-M 

system, analysis of the flanking sequences out to 100 nt on either side of all PT modification 

sites revealed by both SMRT and ICDS revealed no apparent strict consensus beyond 

GAAC/GTTC. Indeed, only 18% of 40,701 possible GAAC/GTTC sites were modified in 

B7A, which is similar to the observation of 14% PT modification of 160,541 possible CCA 

sites in FF75, yet there are no clear sequence determinants for PT modification at these sites.

The results raise questions about how Dnd modification proteins (DndA-E) select their DNA 

targets. While it is not known which Dnd protein selects the DNA binding site, emerging 

evidence suggests that DndD is a DNA nicking enzyme and that DndE binds selectively to 

nicked DNA, with both activities critical to incorporation of PT into the DNA backbone.19 

That the Dnd proteins directly bind to and modify a GAAC/GTTC-containing sequence is 

established in our in vitro oligodeoxynucleotides PT modification studies using cell-free 

extracts (Supplementary Fig. 7) and suggests that one or more of the Dnd proteins possess a 

GAAC/GTTC recognition element. However, it is still unclear why only 18% of all GAAC/

GTTC sites are modified, except to say that there must be other features of local DNA 

structure that are not amenable to a discrete consensus sequence but are targeted by Dnd 

proteins. Alternatively, the physiology of the dnd-based R-M system may balance less-than-

saturating modification densities across the genome with a restriction system that does not 

depend upon saturation with PT modifications, as discussed shortly.

Another mechanism for exclusion of some GAAC/GTTC targets for modification in B7A 

involves the observation that PT modifications rarely occur at TGAACA motifs (61 out of 

7519 sites; Table 1). It is possible that this particular sequence has a function that obviates 

modification by PT in B7A. One such function may involve binding of regulatory proteins. 

The strongest evidence for this model arises from the binding sites for torR30 and rpoE 

(sigmaE factor)36. TorR is the response regulator (OmpR/ PhoB family) of the torCAD 

operon that encodes the trimethylamine N-oxide (TMAO) alternative respiratory system and 

its DNA binding consensus (CTGTTCATAT) contains the low-modified TGTTCA motif30 

(Table 1). Similarly, RpoE/sigmaE factor controls transcription of stress response genes 
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such as heat shock proteins and has a binding consensus of GAACTT followed by A and 

TCTRA 12 and 18 nt downstream36. The presence of these rare GAAC/GTTC motifs in the 

binding sites of important regulatory proteins is consistent with a model in which the PT 

modification system avoids incorporating PT at the binding consensus site. It is also possible 

that the presence of the regulatory protein bound at the non-modified consensus could 

protect the unmodified site from cleavage by the PT-dependent restriction system. 

Furthermore, an analysis at the online database, REBASE, for restriction recognition 

sequences that include GAAC/GTTC revealed eighteen total, but only two known enzymes, 

UbaPI (CGAACG) and DrdII (GAACCA), overlap significantly with PT modification sites 

identified in B7A, and yet both lack known cleavage sites, still allowing for a possible 

concurrence of recognition. This suggests that the PT modification system does not compete 

or interfere with other known restriction modification systems.

Another intriguing feature of PT modification biology that arises from our studies is the 

apparent conundrum of partial modification of specific GAAC/GTTC sites in the presence 

of a PT restriction system. The presence of dndF-H in B7A and our evidence for restriction 

activity (Supplementary Fig. 6) prove that PT modifications in B7A are part of an R-M 

system. However, it is clearly not a Type II R-M system with a clearly defined consensus 

sequence. Further, the evidence from SMRT single-molecule analysis for less than full 

penetration of PT modification at a specific genomic site in all bacteria in a population 

suggests that the simple lack of a PT modification at a potential modification site does not 

make the sequence susceptible to cleavage by the restriction protein(s). This partial 

modification phenomenon is consistent with our previous observation over-expression of 

DndA-E proteins increases the level of PT modifications in dose-dependent fashion, with 

retention of the same dinucleotide sequence contexts.5 This is consistent with both an 

increase in the efficiency of modification of any particular site or the modification of new 

sites containing the core consensus sequence. These results point to a novel R-M system 

involving site-specific PT modifications without a predictable consensus beyond four 

nucleotides and with partial modification of sites in the presence of a restriction activity.

One of many possible explanations for this partial modification phenomenon involves a 

similar behavior in certain Type III methyltransferase systems, in which cell populations can 

be a mixture between states in which the methyltransferase is active or inactive. In some 

cases, ~1% of the cells have the methyltransferase turned on (i.e., SMRT sequencing would 

detect the methylation) while 99% of the cells have the methyltransferase turned off37. A 

similar phenomenon could explain the appearance of sites only partially modified with PT in 

the bacterial population when the ensemble is analyzed by SMRT and ICDS sequencing.

The mapping of PT modifications across the FF75 genome also revealed novel features of 

PT biology. In sharp contrast to B7A, PT modification in FF75 occurred as a single-stranded 

modification (Fig. 4) at CCA motifs, which is again consistent with LC-MS/MS evidence of 

only a d(CpsC) dinucleotide motif in FF755. The previous quantitation of d(CpsC) at 1 

modification per ~380 bp suggested a 4 nt consensus sequence. Alignment of 40 nt of 

surrounding sequences revealed no strict further sequence context constraint beyond the 3-nt 

CpsCA context, although the fourth base showed a strong bias against T, and a moderate 

preference towards A or G (Table 1B). In addition, no dndFGH homolog was found in 
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FF75. Single-molecule analysis revealed that CCA sequences in genomes are also 

dynamically PT modified (Supplementary Fig. 2). Based on the features of single strand 

modification and absence of dndFGH restriction genes, we conclude that the PT 

modifications in FF75 play a biological role other than R-M.

Using two novel genome sequencing methods, PT modifications were mapped across the 

genomes of two bacteria, which revealed the identification of bistranded PT modifications at 

GAAC/GCCT sites in B7A and single-strand modifications at CCA in FF75, with no wider 

consensus sequence apparent, only 14–18% of all GAAC/GCCT sites modified, and less 

than full modification of any particular site across all bacteria in a population.. Such 

consistency for two bacteria in which PT has very different functions points to a conserved 

mechanism of DNA target selection by the DNA-modifying DndA-E proteins, a mechanism 

that we have shown likely involves direct interaction of the modifying proteins with the 

consensus sequence. PT modifications in B7A are clearly not part of a Type II R-M system, 

but also lack the predictive modification consensus sequences and the completely saturated 

modification sites associated with Type I, III and IV R-M systems. Furthermore, the results 

with FF75 point to PT functions other than R-M. For example, one alternative function 

might involve epigenetic control of gene expression, as illustrated by non-R-M methylation-

based DNA modifications in many bacteria.

METHODS

Materials and bacterial strains

Enantiomerically pure d(GpsA) and d(GpsT) in Rp and Sp configuration were obtained from 

IBA Bio-Tagnology (Germany). Oligodeoxynucleotides containing phosphorothioates were 

synthesized by Sangon Biotech Co. Ltd. (Shanghai). The plasmid pBluescript SK+ was 

obtained from Life Technologies (Grand Island, NY). Salmonella enterica serovar Cerro 87 

was supplied by Prof. Toshiyuki Murase (Tottori University, Japan), Escherichia coli strain 

B7A was obtained from Dr. Jaquelyn Fleckenstein (Departments of Medicine and Molecular 

Sciences, University of Tennessee Health Science Center)4,5, Vibrio cyclitrophicus FF75 

was obtained from Prof. Martin Polz (Massachusetts Institute of Technology, Cambridge, 

MA, USA)5. The following kits were purchased from Qiagen (Hilden, Germany): QIAGEN 

Genomic-tip 500/G, DNA Maxi Kit (Blood & Cell Culture) and QIAquick PCR Purification 

Kit. The following kits and reagents were purchased from New England BioLabs (Ipswich, 

MA): Antarctic Phosphatase, Quick Blunting Kit, Quick Ligation Kit, Klenow Fragment 

(3′→5′ exo-), dATP solution and HindIII. Custom oligodeoxynucleotides were ordered from 

Integrated DNA Technologies (Coralville, IA) and Sangon Biotech Co. Ltd. (Shanghai) 

(sequences shown in Supplementary Table 3). Centrifugal filters (10k MWCO) were from 

VWR International (Radnor, PA) and MicroSpin G-25 columns were from GE Healthcare 

(Buckinghamshire, UK). Iodine and 3-hydroxypicolinic acid (MALDI matrix) were from 

Sigma-Aldrich (St. Louis, MO). PCR tubes were from Molecular BioProducts (San Diego, 

CA). All water was deionized and filtered using a MilliQ water purification system (EMD 

Millipore, Billerica, MA).
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Isolation of plasmids and genomic DNA

The plasmid pBluescript SK+ for SMRT sequencing was extracted from wild-type 

Salmonella enterica serovar Cerro 87 and from its mutant lacking the dnd gene cluster22, 

both grown in Luria-Bertani (LB) medium in 16 h cultures using the Genomic-tip 500/G kit. 

Overnight cultures of E. coli B7A in LB were diluted and regrown to an O.D. (600 nm) of 

~2 to achieve a logarithmic phase of growth. Genomic DNA was isolated using three 500/G 

columns as outlined in the Qiagen DNA Maxi Kit. Vibrio strains were grown at 28 °C in 

tryptic soy broth medium supplemented with 2% NaCl and DNA isolated by standard 

protocols.

Preparation of E. coli B7A ΔdndFGH

The mutant B7A ΔdndFGH was constructed by homologous recombination using thermo- 

and sucrose-sensitive plasmid pKOV-Kan. Total DNA from E. coli B7A was used as a 

template to amplify the left and right arms of the dnd cluster (dndB-H), introducing BamHI 

and SalI restriction sites flanking dndF-H. Primers for the 611-bp left arm were B7A-FLL 

(sequence in Supplementary Table 3) and B7A-FLR; for the 643-bp right arm were B7A-

HRL and B7A-HRR (SalI site underlined in Supplementary Table 3). The left and right arms 

were amplified together, overlapping by 40 bp. Primers B7A-FLL and B7A-HRR were used 

for the 1254-bp recombinant fragment with introduced BamHI and SalI sites. The entire 

homologous recombination region was cloned into the plasmid pKOV-Kan, cleaved with 

BamHI and SalI to release dndFGH and religated to generate pJTU6601. The pJTU6601 

was introduced by transformation into E. coli DH10b harbouring a plasmid containing 

dndB-E (pJTU1238) to allow phosphorothioation of the pJTU6601 plasmid DNA. The 

phosphorothioated pJTU6601 was then introduced into E. coli B7A at 30 °C. The single 

crossover intermediate (ZXQ-1) was obtained at 43 °C and the double crossover (B7A 

ΔdndFGH) was obtained on a plate containing 15% sucrose at 43 °C. Primers B7A-FLL-L 

and B7A-HRR-R were used for screening the single crossover, and B7A-T1 and B7A-T2 

(primer sequences in Supplementary Table 3) were used for screening the double crossover 

(Supplementary Fig. 3).

Characterization of the restriction activity in E. coli B7A

PT-modified and PT-free plasmids (pBluescript SK+) were isolated from wild-type E. coli 

B7A and its ΔdndB-H mutant strain, respectively, and were purified using the GenElute 

plasmid miniprep kit (Sigma) and quantified by absorbance at 260 nm. Electrocompetent E. 

coli B7A cells were prepared using a standard protocol with a 10% glycerol wash and 

electroporation was performed with a Micropulser (Bio-Rad) according to manufacturer’s 

instructions using 10 ng of plasmid DNA and 40 μl of cells. Electroporated cells were 

incubated in 1 ml of SOC medium at 37 °C for 1 h and then plated onto LB agar medium 

containing antibiotic to select for transformed colonies.

Preparation of PT-containing oligonucleotides

An oligonucleotide (Supplementary Table 3; PT-S4) containing a PT modified GpsAAC 

motif was chemically synthesized and Rp and Sp PT configurations of this oligo were 

fractionated by reversed-phased HPLC on an Agilent 1210 series system with an Agilent 
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TC-C18 column (4.6 x 250 mm, 5 μm particle size) at a flow rate of 1 ml/min with the 

following parameters: column temperature: 45 °C; solvent A: 0.1 M NH4OAc; solvent B: 

20mM NH4OAc in 80% acetonitrile; gradient: 3% B for 10 min, 3% B to 15% B over 40 

min; 95% B for 10 min; detection by UV absorbance at 260 nm.

Quantification of PT modifications in DNA

PT modifications in plasmid pBluescript SK+ isolated from E. coli B7A were quantified by 

liquid chromatography-coupled, time-of-flight mass spectrometry (LC-QTOF) as the 

dinucleotides d(GpsA) and d(GpsT), essentially as described elsewhere5. Plasmid DNA was 

hydrolyzed with nuclease P1 (Sigma; 2 U) in 30 mM sodium acetate, pH 5.3, 0.5 mM ZnCl2 

in a 100 μL volume at 50 °C for 2 h. Subsequent dephosphorylation was carried out by 

addition of 10 μL of 1 M Tris-Cl, pH 8.0, and 5 U of alkaline phosphatase (Fermentas, 

FASTAP) at 37 °C for another 2 h. The enzymes were subsequently removed by 

ultrafiltration (AMICON ULTRA 0.5 mL Ultracel 3 kD) followed by addition of 100 pmol 

of d(GpsA) Sp as an internal standard. The digested DNA sample was dried and re-

suspended in 20 μL of deionized water for quantification by LC-QTOF analysis against 

external calibration curves for d(GpsA) Sp, d(GpsT) Rp, and d(GPSA) Rp. The digestion 

mixture containing PT dinucleotides was resolved on an Agilent SB-C18 column (150 × 2.1 

mm, 3.5 μm particle size) with a flow rate of 0.3 mL/min and the following parameters: 

column temperature: 35 °C; solvent A: 0.1% acetic acid; solvent B: 0.1% acetic acid in 

acetonitrile; gradient: 3% B for 5 min, 3% to 15% B over 20 min, and 15% to 100% B over 

1 min. The HPLC column was coupled to an Agilent 6410 QTOF mass spectrometer with an 

electrospray ionization source in positive mode with the following parameters: gas flow, 10 

L/min; nebulizer pressure, 30 psi; drying gas temperature, 325 °C; and capillary voltage, 

3,100 V. Multiple reaction monitoring mode was used for detection of product ions derived 

from the precursor ions, with all instrument parameters optimized for maximal sensitivity 

(retention time in min, precursor ion m/z, product ion m/z, fragmentor voltage, collision 

energy): d(GpsA), 20.5, 597, 136, 120 V, 40 V; d(GpsT), 26.5, 588, 152, 110 V, 17 V.

Library preparation and SMRT sequencing

SMRTbell sequencing templates were prepared as described previously38. B7A and FF75 

gDNA was fragmented to either 500–800 bp using adaptive focused acoustics (Covaris; 

Woburn, MA, USA) or an average size of approximately 10 kb using gTUBES (Covaris). 

Fragmented DNA was end-repaired, ligated to hairpin adapters and incompletely formed 

SMRTbell templates were digested with a combination of Exonuclease III (New England 

Biolabs; Ipswich, MA, USA) and Exonuclease VII (Affymetrix; Cleveland, OH, USA). 

SMRT sequencing was carried out on the PacBio RS (Pacific Biosciences, Menlo Park, CA, 

USA) using C2 chemistry with 2 x 45 min movies for the small insert libraries or XL/C2 

chemistry with one 90 min movie for the large insert libraries.

Genome assembly

B7A and FF75 genomes were assembled using HGAP30 with default parameters in the 

SMRT Analysis Suite version 1.3 (Pacific Biosciences, Menlo Park, CA, USA). Additional 
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manual assembly of contigs was carried out in cases of unique overlapping sequence. 

Consensus sequence polishing was done with Quiver version 1.3.

Detection of PT modifications in SMRT sequencing data

Base modification analysis was performed using the base modification detection workflow 

of SMRT Analysis version 1.3. The single-molecule base modification analysis used to 

query the underlying heterogeneity of modifications across individual molecules is 

analogous to the standard base modification analysis supported in SMRT Analysis. In the 

standard method, the IPD ratio per given position is calculated by averaging the IPD values 

across all the subreads from multiple molecules before comparing to the in silico control 

IPD. In the single-molecule method, only the subreads from an individual molecule are used 

for the IPD ratio calculations for the given molecule (reads were filtered for having 5 or 

more subreads, and required 3 or more IPDs with the preceding and following base correct 

for computation of the single-molecule IPD ratio).

Iodine cleavage deep sequencing of PT modifications

As illustrated in Figure 1 and Supplementary Figure 3, closely opposed, bistranded PT 

modifications were mapped in DNA by exploiting iodine-induced DNA strand cleavage at 

sites containing by PT34,39,40 and then performing double-stranded ligation of a sequencing 

linker followed by Illumina sequencing.

The first step of the ICDS method involves iodine cleavage at genomic PT sites. 

Immediately before iodine treatment, 21 μg of gDNA was diluted to 500 μl with water and 

re-concentrated (repeated 5x) using a 10k MWCO centrifugal filter to remove any 

contaminating Tris buffer. A 30 mM iodine solution in ethanol was freshly prepared and 

reactions (60 μl) were then setup in PCR tubes as follows: gDNA (10.5 μg), 50 mM 

Na2HPO4, pH 9.0, 3 mM I2 or 10% ethanol (carrier control)39,40. Using a thermal cycler 

(MJ Research PTC-200), reactions were heated to 65 °C for 5 min and then slow-cooled (0.1 

°C/s) to 4 °C and then placed on ice. Residual iodine (or ethanol) and salts were then 

removed using MicroSpin G-25 columns. To confirm the specificity of iodine cleavage, 

three separate experiments were performed using site-specific PT modifications in 

oligodeoxynucleotides, PT in plasmids, and PT in gDNA. First, complementary 48-mer 

oligodeoxynucleotides, each containing a single PT modification (Supplementary Table 3), 

were subjected to an iodine cleavage reaction and products were characterized by matrix-

assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) 

(Supplementary Fig. 4A). In a second study, plasmids with (pBluescript SK+ harvested from 

wild-type E. coli B7A) and without (pBluescript SK+ from E. coli B7A ΔdndB-H) PT 

modifications5 were subjected to iodine cleavage and a portion of each sample was 

subsequently treated with HindIII to linearize the plasmids, and samples run on a 1% 

agarose gel with 1x TBE (Supplementary Fig. 4B). Finally, in a third experiment, gDNA 

from FF75 with (wild-type) and without (xxl-1-1) PT modifications and gDNA from B7A 

with (wild-type) and without (ΔdndB-H) PT modifications were subjected to iodine cleavage 

and samples were run on a 0.7% agarose gel with 1x TBE (Supplementary Fig. 4C).
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Following iodine cleavage, the DNA was subjected to end-processing and tag ligation at 

double-strand break sites. Cleaved gDNA samples (including an ethanol control) were 

processed as follows, according to instructions provided with the NEBNext DNA Library 

Prep Reagent Set for Illumina (New England BioLabs, Beverly, MA). Terminal phosphates 

were removed with Antarctic Phosphatase (10 units) at 37 °C for 60 min. To inactivate the 

enzyme, a thermal cycler (MJ Research PTC-200) heated the samples to 65 °C for 10 min 

and then slow-cooled them (0.1 °C/s) to 4 °C to assure proper complementary re-annealing. 

Break sites were blunt-ended using the Quick Blunting Kit at 22 °C for 30 min. The thermal 

cycler heated samples to 75 °C for 12 min to inactivate the enzymes and then slow-cooled as 

before. Samples were cleaned-up using QIAquick columns and eluted with 32 μl elution 

buffer and 10 μl water. Next, blunt-ends were 3′-deoxyadenylated (i.e., A-tailing) in 

reactions (63 μl) containing 1x NEBuffer #2, 20mM dATP, and Klenow (3′→5′exo-)(15 

units) at 37 °C for 30 min. The thermal cycler heated samples to 70 °C for 20 min and then 

slow-cooled. Samples were cleaned-up using QIAquick columns and eluted with 32 μl 

elution buffer and 10 μl water. Finally, a custom 20-mer duplex tag-sequence 

(Supplementary Table 3; 5′-FWD tag / 3′-REV tag) (3 μM) was ligated to 3′-

deoxyadenylated ends using the Quick Ligation Kit at 22 °C for 10 min. The thermal cycler 

heated samples to 75 °C for 12 min and then slow-cooled. Samples were cleaned-up using 

QIAquick columns and eluted with 100 μl water.

The gDNA was then sonicated with a Branson Sonifier (S-250A) equipped with a Big Horn 

amplifier and a ⅛” tapered micro-tip probe to fragment the gDNA to achieve an optimal 

range (150–350 bp) for subsequent Illumina sequencing. Samples were diluted to 800 μl 

with water and subjected to energy pulses (50% duty cycle) for 12 min total (2 min ON, 1 

min OFF) x 6, while on ice to avoid excessive heat. An output setting of 1.3 yielded a 

reading of ~20 on the meter. After sonication, samples were concentrated on a SpeedVac 

system to ~50 μl and submitted for further processing and Illumina sequencing.

The fragmented DNA was finally subjected to Illumina sequencing, with 1.1 ng of iodine 

fragmented gDNA and 38.3 ng of mock (EtOH) fragmented DNA ligated to standard 

Illumina paired-end adaptors using the SPRIworks Fragment Library System (Beckman 

Coulter Genomics) and size selected for inserts between 150 and 350 nt. Ligated products 

were amplified 15 cycles (iodine treated) and 19 cycles (control) using Paired-End PCR 

Primer 1.0 and 15-TACCGC PCR Primer 2.0 or 16-ATGATA PCR Primer 2.0, respectively 

(Supplementary Table 3), in order to introduce custom second read sequencing primers and 

molecular barcodes (TACCGC for iodine-treated and ATGATA for ethanol control). 

Completed libraries were quantified using qPCR compared to known standards and 

Fragment Analyzer analysis (Advanced Analytical). Quantified libraries were multiplexed 

and loaded on an Illumina GAIIx sequencer at 5 pM. The Illumina libraries were run 

alongside a PhiX control lane on a two-lane partial flowcell run (42) with 25 nt read on the 

first read, 6 nt read in the barcode and 45 nt read on the reverse read after paired-end 

turnaround and priming with the Custom Paired-End Read 2 reverse primer on the sample 

lane. Cluster identification and base calling was performed using the Illumina RTA package 

(1.13.48) using the PhiX lane as a control for base intensity.
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Sequencing reads were mapped against the Pacific Bioscience-based E. coli B7A genome 

assembly using Bowtie2.0 version 2.1.0 in paired-end mode (options –p 2 -D 15 -R 2 -N 0 -

L 22 -i S,1,1.15)41. Mapping statistics are summarized in Supplementary Table 4. Sorted 

bam files were generated with samtools v 0.1.16 (r963:234) and indexed42. Alignments were 

visualized using the Integrative Genome Viewer (IGV), version 2.3.843.

To assess genome coverage and read pileup overlaps, sequencing depths were computed for 

each sample at each position across the B7A genome using bedtools (v2.16.1) coverage –d 

for each strand separately44. Resulting coverage maps were post-processed to extract regions 

with coverage deeper than set thresholds (typically 100,150 and 200 reads/position), and 

overlaps of such regions were identified using bedtools intersect. Divergent read pileups 

were identified by extending the region 50 bp upstream of the 5′ most boundary of the read 

pileup on the corresponding strand. The detailed strategy to fine-map PT modifications is 

summarized in Supplementary Figure 5. All individual read start positions were recorded for 

both strands, and starting positions shared by 50 or more reads were retained for analysis. 

Regions where starting positions mapped within 8 bp on opposite strands were verified not 

to be enriched in the control sample (as defined by no positions with 50 or more reads 

starting within the 8 bp window in the ethanol-treated control sample). Finally, read starting 

sites mapping within less than 3 bps were collapsed into the centermost 8 bp region, which 

were used for the final call of PT sites. Overlaps with SMRT-defined sites and known 

locations of GAAC/GTTC sites in the B7A genome were also computed with bedtools.

Genomic regions falling under read pileups of interest were queried using bedtools 

bedToFasta. An online implementation of the Motif Elicitation by Expectation 

Maximisation (MEME) tailored to large-scale genomic data (MEME-ChIP 4.9.0, http://

meme.nbcr.net/meme/cgi-bin/meme-chip.cgi; ref. 35) data was used for motif identification 

under read pileups, using parameters -time 120 -db db/dpinteract.meme -meme-mod anr -

meme-minw 4 -meme-maxw 30 -meme-nmotifs 10 -dreme-e 0.05 -centrimo-score 5 -

centrimo-ethresh 10. Motifs were queried using the DREME component of the suite45, and 

their spatial localization was assessed using CENTRIMO, allowing for the identification of 

motifs peaking away from the center of the interval. In addition, the same sequences were 

subjected to motif enrichment analysis based on a first order Markov Model (1MM), 

adapted from ref. 46. Sequences were divided into equally sized bins according to their G 

and C nucleotide composition (%GC). Using the same sequences, background mono—and 

di-nucleotide frequencies were computed to build a first-order Markov model (1MM) of the 

sequences in each bin. Background probability of a hexamer was calculated per bin and 

averaged to get the overall background probability. The actual frequency of a hexamer was 

obtained by counting its occurrences in all sequences extracted from read pileups.

Statistical analysis of SMRT and ICDS PT mapping data

Candidate PT-modified sites called from both methods were mapped with respect to 

genomic annotations reported in Supplementary Data 1 using bedtools. Pairwise 

comparisons between the number of sites mapping to genomic features were performed 

using a chi-square test for each method/run individually, and p-values were adjusted for 

multiple testing using the Benjamin-Hochberg procedure. A Haenzsel-Mantel test was 
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performed to interrogate biases in number of PT-modified sites between genomic features 

across all three methods/runs, and pooled odds ratios were calculated using the 

mantelhaen.test in the R 2.11.1 stats package. In addition, Student’s t-tests were used to 

compare average numbers of PT-modified sites between genomic features across all 

methods/runs.

Reaction of oligonucleotides with cell-free extract and analysis of PT

A cell-free extract was prepared from Salmonella enterica serovar Cerro 87 by growing cells 

in 200 mL of LB medium at 37 °C to an A600 of 1.5, followed by harvesting the bacteria 

(centrifugation 5000 g, 10 min, 4 °C), washing the cells three times with PBS (4 °C), and 

resuspending the pellet in 20 mL of lysis buffer (20 mM Tris-HCl, pH 8.0, 60 mM KCl, 10 

mM Mg2Cl, 1 mM EDTA, 2 mM DTT, 1 mM PMSF and 25% glycol). Resuspended 

bacteria were subjected to three complete cycles of freeze-thawing and disruption by 

sonication, with the soluble protein from the cell lysate collected in the supernatant after 

centrifugation (15000 g, 20 min, 4 °C). Duplex biotinylated oligodeoxynucleotides 

substrates (Supplementary Table 3) were prepared by annealing complementary strands (100 

pmol/μL in 200 μL of water) at 95 °C for 5 min followed by cooling to ambient temperature. 

The duplex oligodeoxynucleotides (10 μl of 10 pmol/μl) were then incubated with 100 μl of 

streptavidin agarose beads (Sigma Chemical; washed three times with 1 ml PBS) for 2 h at 

25 °C to allow the biotin-streptavidin reaction to occur, followed by washing the bound 

beads three times with PBS (centrifugation 800 g, 4 °C, 1 min). The bead-bound 

oligodeoxynucleotides were then used in phosphorothioation reactions with cell-free extract. 

The standard reaction consisted of 100 pmol equivalents of biotinylated oligonucleotides 

bound to agarose beads, 2.5 mM ATP, 1mM L-cystiene, 0.1mM pyridoxal phosphate and 1 

mL cell extract and was incubated at 25 °C for 2–3 h. The bead-bound 

oligodeoxynucleotides were then washed three times in 1 mL of PBS (centrifugation 800 g, 

1 min, 25 °C) and the oligodeoxynucleotides (100 pmol in 100 μL) digested 4 U of nuclease 

P1 in 30 mM sodium acetate, pH 5.2, 0.5 mM ZnCl2 in 200 μL total volume at 37 °C for 2 h. 

The resulting 2-deoxynucleotides and PT-linked dinucleotides were dephosphorylated by 

addition of 17 U of alkaline phosphatase and 20 μL of 1 M Tris-Cl, pH 8.0, and incubation 

at 37 °C for 2 h. The enzymes were subsequently removed by ultrafiltration (YM-10 

column; Microcon). d(GPSA) and d(GPST) dinucleotides were then quantified by HPLC-

coupled tandem mass spectrometry (LC-MS/MS). Chromatographic separation was 

achieved using a Agilient ZORBAX SB-C18 column (150x2.1 mm, 3.5 μm particle size) 

with elution at 35 °C and a flow rate of 0.3 mL/min using a gradient of 97% buffer A (0.1% 

acetic acid in water) and 3% buffer B (0.1% acetic acid in acetonitrile) for 5 min, followed 

by 3% to 15% buffer B over 20 min and 15% to 100% buffer B over 1 min. The HPLC 

column was coupled to an Agilent 6410 mass spectrometer with an electrospray ionization 

source in positive mode with the following parameters: gas flow, 10 L/min; nebulizer 

pressure, 30 psi; drying gas temperature, 325 °C; and capillary voltage, 3,100 V. Multiple 

reaction monitoring mode was used for detection of product ions derived from the precursor 

ions, with all instrument parameters optimized for maximal sensitivity (retention time in 

min, precursor ion m/z, product ion m/z, fragmentor voltage, collision energy): d(GPSA), 

20.5, 597, 136, 120 V, 40 V; d(GPST), 26.5, 588, 152, 110 V, 17 V.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic illustrations of the two approaches to sequence mapping of PT modifications. An 

example of a PT modification structure is shown in the inset. (A) Single-molecule real-time 

(SMRT) sequencing and (B) iodine cleavage and deep sequencing (ICDS) methods. IPD, 

interpulse duration.
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Figure 2. 
Validation of the single-molecule real-time (SMRT) method for mapping PT modifications 

in genomes. To validate the SMRT method, experiments were performed using (A) 

oligodeoxynucleotides containing Sp and Rp configuration PT modifications and (B) a 

pBluescript SK+ plasmid grown in Salmonella enterica serovar Cerro 87 and a dndD 

knockout strain as a control. (A) Upper and lower panels show the kinetic signals for SMRT 

sequencing of oligodeoxynucleotides containing PT in the Rp and Sp configurations, 

respectively. (B) Circos plot of kinetic signals of pBluescript plasmids grown in Salmonella 

enterica serovar Cerro 87 (±DndD). The inner and outer circles denote IPD ratios for the 

forward and reverse DNA strands, respectively. Tick marks denote all occurrences of the 5′-

GAAC-3′/3′-CTTG-5′ sequence across the plasmid (for IPD ratios at these locations see 
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Supplementary Table 1). The lower panel shows examples for kinetic signals at two 

locations on the plasmid.
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Figure 3. 
Detection of PT by SMRT sequencing across the genome of E. coli B7A. (A) Example IPD 

ratio plot showing one instance of PT in a 5′-GAAC-3′/3′-CTTG-5′ sequence context. A 

nearby adenine methylation signal at 5′-Gm6ATC-3′/3′-CTm6AG-5′ is also shown for 

comparison. (B) Correlation of opposite DNA strand kinetic signals at 5′-GAAC-3′/3′-

CTTG-5′ sites across the B7A genome. The dashed line indicates the threshold for calling 

sites modified. (C) PT annotation across the B7A chromosome. From outer to inner circles: 

1 and 2 (forward, reverse strands): PT sites in ORFs (gray), in non-coding RNA (blue) and 

non-coding regions (red); 3 and 4: predicted protein-coding sequences colored according to 

COG function categories; 5: tRNA/rRNA operons; 6: GC content; 7: GC skew.
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Figure 4. 
Detection of PT by SMRT sequencing across V. cyclitrohicus FF75. (A) Example IPD ratio 

plot showing one instance of PT in a 5′-CCA-3′ sequence context. A nearby adenine 

methylation signal at 5′-Gm6ATC-3′/3′-CTm6AG-5′ is also shown for comparison. The 

absence of the PT signal, but not the methylation signal, in the XXL mutant is shown in the 

lower panel. (B) Kinetic score distributions for the wild-type and XXL mutant across the 

FF75 genome. The dashed line indicates the threshold for calling sites modified. (C) PT 

annotation across the FF75 genome. From outer to inner circles: 1 and 2 (forward, reverse 

strands): PT sites in ORFs (gray), non-coding RNA (blue) and non-encoding regions (red); 3 

and 4: predicted protein-coding sequences colored according to COG function categories; 5: 

tRNA/rRNA operons; 6: GC content; 7: GC skew.
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Figure 5. 
Single-molecule analysis suggests partial or incomplete modification of specific sites with 

PT in E. coli B7A. (A) The kinetic signal average over all molecules at a selected genomic 

position showing a strong PT kinetic signal is shown on the left for E. coli B7A, with IPD 

ratio plot examples from single molecules underlying this average, which show between 

none and full PT modification signals, are shown on the right. (B) The kinetic signal average 

over all molecules at a selected genomic position for which there was no detectable PT 

kinetic signal is shown on the left for E. coli B7A, with IPD ratio plot examples from single 
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molecules underlying this average, which show the presence of some molecules with a PT 

modification, are shown on the right.
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