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Abstract

Despite the early promising results with the anti-angiogenic agent, bevacizumab, to prolong time 

to progression in patients with brain tumors, the optimal dose and drug combinations have not yet 

been defined. The purpose of this study was to characterize the bevacizumab dose–response 

relationship for brain tumors by measuring the contrast-agent enhanced tumor volumes and 

relative cerebral blood volume (rCBV) using dynamic susceptibility contrast (DSC) imaging. The 

studies, performed in the U87 brain tumor model using doses of bevacizumab ranging from 0 to 

10 mg/kg, demonstrate that tumor growth and vascularity are inhibited at all doses used, compared 

to untreated controls. However, only the maximum dose showed a statistically significant 
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difference in growth rate. Conversely tumor vascularity, as measured with rCBV, was inhibited 

equally well for all doses used with no clear indication that higher doses are more effective.
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Introduction

Glioblastoma multiforme is one of the most aggressive cancers and is associated with high 

levels of angiogenesis. Despite the increase in therapies available, the median survival of 

patients with glioblastoma multiforme (GBM) remains less than 15 months [1]. Cancer 

therapies have been studied in several rodent models including the intracerebral human 

xenograft. Observations made in this model have led to clinical trials [2–4].

Promising results have been obtained with the anti-angiogenic agent, bevacizumab, for the 

treatment of brain tumor patients [5]. Recent successes of the combination of antiangiogenic 

therapies with radiation or chemotherapy have been shown in clinical and animal studies [5–

8].

Despite these early promising results to prolong the time to progression, the optimal dose 

and drug combinations have not yet been defined [9]. Traditionally optimal dose has been 

based on maximal tumor-cell kill, which for chemotherapeutic agents, is set by using the 

maximum tolerated dose (MTD) [10]. However, the relationship between MTD and the 

optimal biologically active dose (OBD) for anti-angiogenic agents is unclear. Treatment 

efficacy varies with the tumor type studied and is not necessarily achieved at the maximum 

dose [10]. Consequently, the goal of this study was to use MRI to characterize the 

bevacizumab dose–response relationship for brain tumors by measuring the contrast-agent 

enhanced tumor volumes and relative cerebral blood volume (rCBV) using dynamic 

susceptibility contrast (DSC) imaging in a U87 glioblastoma tumor model, for a range of 

bevacizumab doses over an 8-day period.

Materials and methods

Cell culture

The U87MG (adult glioblastoma) cell line was purchased from American Type Culture 

Collection (Manassas, Virginia) and maintained in MEM with Earle’s salts, 10% fetal 

bovine serum (FBS), 0.1% penicillin/streptomycin, and 0.02% Fungizone. The cells were 

maintained in a humidified atmosphere containing 5% CO2 at 37°C.

Animals

Care of the animals before and during the experimental procedures was conducted in 

accordance with the policies of the National Institutes of Health Guide for the Care and Use 

of Laboratory Animals. All protocols were approved by the Institutional Animal Care and 
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Use Committee at the Medical College of Wisconsin and Zablocki Veterans Affairs Medical 

Center Veterinary Medical Unit.

Male RNU/RNUrats weighing approximately 250 g were obtained from Charles River 

Laboratories (Wilmington, Massachusetts) and housed in pairs in individually ventilated 

cages. Animals were fed autoclaved laboratory diet; food and RO hyperchlorinated water 

were available ad libitum.

Intracranial xenograft transplantation

Rats were anesthetized with ketamine (60 mg/kg), acepromazine (0.9 mg/kg) and xylazine 

(6 mg/kg) IP. Heads were immobilized and using an aseptic technique a 0.9 mm burr hole 

was drilled in the skull 1 mm anterior and 2 mm lateral to bregma on the right side. A 10 μl 

gas-tight syringe (Hamilton Company, Reno, Nevada) was used to inject 2 × 105 U87 cells 

into the right frontal lobe at a depth of 3 mm relative to the dural surface. The injection time 

was 5 min, after which the needle was in place for 5 min and retracted slowly for an 

additional 5 min. The skin was closed with cyanoacrylate.

Anti-angiogenic therapies

At 16 days post tumor cell inoculation the animals underwent baseline MRI scanning. 

Following baseline scanning, animals were treated with 2.5 (n = 7), 5 (n = 8), or 10 (n = 10) 

mg/kg of bevacizumab (Avastin, Genetech, South San Francisco, California) iv or saline 

vehicle (n = 9).

MRI studies

At 16, 18, 21, and 24 days after tumor cell inoculation, MRI studies were performed on a 

9.4T Bruker AVANCE Scanner fitted with a linear transmit coil and a surface receive coil of 

2 cm2 area. The rats were anesthetized with 1.5% isoflurane and immobilized with a 

fiberglass bite-bar. Temperature was monitored and maintained at 37 ± 1.5°C throughout the 

experiment. A RARE (rapid acquisition rapid echo) imaging sequence (TE/TR = 4 ms/8 ms; 

matrix = 256 × 256; FOV = 3.5 cm, slice = 17.5 mm) was used to acquire sagittal scout 

images. A T1-weighted spin-echo image was acquired (TE/TR = 11 ms/500 ms; matrix = 

256 × 256; FOV = 3.5 cm; slice 2 mm). Five axial (rat coronal) imaging slices were chosen 

based on the RARE images and the tumor inoculation site. A loading dose of Gadodiamide 

(0.1 mmol/kg) was administered 10 min before the DSC (dynamic susceptibility contrast) 

scan, in order to diminish confound effects on the rCBV images due to contrast agent 

leakage [11–13]. A GRE-EPI (gradient-echo echo planar imaging) sequence (TE = 18.8 ms, 

TR = 500 ms, 5 NEX, α = 38.9°) was used to acquire the DSC data. Specifically, GRE-EPI 

images were collected continuously for a total of 2 min, for 1 min before, and then during 

and after a bolus injection of a 0.1 mmole/kg Gd contrast agent. Finally, a T1-weighted spin-

echo image was acquired (TE/TR = 11 ms/500 ms; matrix = 256 × 256; FOV = 3.5 cm; slice 

2 mm) to delineate enhancing tumor.

Leakage-corrected rCBV (relative cerebral blood volume) parameters were as previously 

described [14–16]. The tumor region of interest (ROI) was determined from the contrast 

enhancing region on the post-contrast T1 weighted image. Subsequently, the rCBV maps 
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were standardized using a two-step piecewise linear transformation method as previously 

described [17]. Enhancing tumor volumes (reported in mm3) were determined from the post-

contrast T1w images, in all slices showing enhancing tumor. At each imaging time point the 

mean percent change from baseline (day 16) are determined for tumor volume and rCBV for 

the standardized tumor ROI.

Statistical analysis

Data are presented as means ± SE. Generalized estimating equations (GEEs) were used to 

test the effects of dose, time and their interaction. GEEs are an alternative to repeated 

measures ANOVA when either the data is non-normal, some observations are missing, or 

the correlation structure over time needs to be accounted for (here the rats were observed on 

4 days). The GEE analysis used the percent change from baseline as the outcome. A 

Spearman rank correlation was used to evaluate the data in Fig. 4. The 95% confidence 

interval was considered significant.

Results

Figure 1 shows representative post-contrast T1 weighted images and the rCBV maps 

obtained in one rat treated with vehicle (a) and another treated with 5 mg/kg bevacizumab 

(b). In the post-contrast T1 weighted images, the tumor volumes increase in both treated and 

untreated animals, but to a greater extent in the untreated rat (Fig. 1a). The blood volume 

increases more rapidly in the untreated animal, as apparent on the rCBV maps.

Figure 2 illustrates the percent change in tumor volumes as a function of bevacizumab dose 

for the three different post-treatment days. On day 2 post-treatment, enhancing tumor 

volume increased 30% in vehicle treated rats, which was not significantly different from the 

6 to 24% changes in tumor volume for the treated groups. On day 5, on average the tumor 

growth for all treated groups was less than the untreated group; however, only the highest 

dose (10 mg/kg) significantly inhibited tumor volume. On post-treatment day 8, only the 

highest dose (10 mg/kg) demonstrated a significant inhibition of tumor volume compared to 

the untreated tumor volumes on that same day post-treatment. Overall the percent increases 

in tumor volumes were 500% for the untreated group, and 410, 296 and 234% for the 2.5, 5 

and 10 mg/kg bevacizumab treatment groups. The GEE analysis showed a significant time 

effect (P < 0.01), a marginal average dose effect (P < 0.06) and a significant dose by time 

interaction (P < 0.042). This indicates that the dose effect increased significantly with time 

(days post-inoculation). Therefore, the tumor volumes did continue to increase over time 

even with treatment, but the growth rates were inhibited.

Figure 3 shows the percent change of the rCBV values for all rats as a function of 

bevacizumab dose for the three different treatment days. In untreated animals, rCBV is 

increased compared to baseline values at each time point, but not significantly. For rats 

treated with bevacizumab the rCBV decreased, relative to the baseline rCBV, on all days 

and doses. Similar to the increases in tumor volume over time (Fig. 2) the rCBV also 

increased over time but remained less than the untreated rCBV values. There was no 

significant terms in the overall GEE analysis: average time effect (P = 0.23), average dose 

effect (P = 0.19) and dose by time interaction (P = 0.24).
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Although the mean rCBV values are consistently less for the treated rats compared to the 

untreated rats, only for the 10 mg/kg dose is the average rCBV significantly different (P < 

0.03), than that for the untreated rats. This lack of statistically significant differences is 

likely due to the large variability in initial tumor sizes (1.2–93.7 mm3), despite well-

controlled tumor cell inoculation procedures and use of animal models that are genetically 

equivalent. This may be explained in part by the result that treated animals with the largest 

decrease in median rCBV at day 2 also had the highest initial rCBV (Fig. 4). Therefore, the 

degree of rCBV changes will depend somewhat on the initial rCBV values. This relationship 

is significant for all doses combined (P = 0.001).

Discussion

The present studies characterize the bevacizumab dose–response relationship for the U87 

brain tumor model by measuring the contrast-agent enhanced tumor volumes and relative 

cerebral blood volume (rCBV) using dynamic susceptibility contrast (DSC) imaging. The 

results demonstrate that: (1) Bevacizumab inhibits tumor growth and vascularity as indicated 

by both enhancing tumor volume and rCBV. (2) The inhibition of tumor volume with 

treatment is delayed in time relative to the inhibition in tumor rCBV, which occurred at the 

earliest measurement time point. (3) The optimal effective dose of anti-angiogenic therapy 

for malignant gliomas is not clearly indicated by either the tumor volume or rCBV 

measurements. While a bevacizumab dose of 10 mg/kg had the most inhibition of tumor 

volume at day 5 and 8, rCBV suggests that this dose was most effective in reducing rCBV at 

the day 5 and 8 post-treatment time point. Given these results, there is no clear indication 

that 10 mg/kg is the optimal dose. A lower dose, which is as equally effective as the higher 

dose, but will have fewer associated side-effects may be more optimal [18].

The lack of complete inhibition of tumor growth and vascularity with bevacizumab may be 

explained by the presence of host vascular endothelial growth factor (VEGF). Rodent cells 

recruited to the tumor can produce VEGF which is not bound by bevacizumab [19–23]. 

Liang and colleagues have created anti-VEGF antibodies that bind to murine and rat VEGF 

allowing a more complete inhibition of VEGF [19]. Though this may explain the lack of 

total inhibition in part, it does not fully explain the results. In fact these results are consistent 

with the clinical situation where bevacizumab has been shown to delay time to progression, 

but no improvement of overall survival in patients with glioblastoma [24–26]. The same 

mechanism of action explaining this clinical situation may also apply to these studies. 

Therefore, additional studies evaluating the time course of changes in the angiogenic and 

invasive phenotype of tumors are needed.

The fact that the inhibition in tumor volume is delayed relative to the inhibition of tumor 

rCBV is further evidence for the important role that rCBV measurements can play in the 

evaluation and optimization of treatment strategies. Specifically, while the standard criteria 

used to monitor therapy has been tumor size, with anti-angiogenic agents, this endpoint may 

be inappropriate since studies have shown an inhibition of angiogenesis that was detectable 

before measurable effects on tumor volume or in spite of increases in tumor volume [27, 

28]. Therefore, an antiangiogenic therapy may not necessarily result in tumor shrinkage, but 

stabilize the tumor or return it to a dormant state. Measurements of tumor vascularity, as 
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obtained with rCBV, can assist with the further elucidation of this issue as demonstrated 

here.

Furthermore, while in this study enhancing tumor volume proved to be a good (albeit 

delayed) indicator of treatment response, it is not consistently so in the clinical population 

[29, 30]. This discrepancy may be due to the effect of steroid administration which may 

decrease or even preclude contrast agent enhancement. In addition, anti-angiogenic therapies 

have direct effects on vascular permeability, inhibiting the efflux of contrast agent from the 

leaky tumor vasculature into the tumor tissue and eliminating contrast enhancement. 

Standard post contrast enhancing imaging would indicate a radiographic response; however, 

the response of the tumor is masked by the decrease in permeability. DSC-MRI is capable of 

tracking the tumor despite the decrease in contrast enhancement and provides valuable 

clinical information not obtainable with conventional gadolinium enhanced T1-weighted 

MRI [11, 31–33].

Additional studies are necessary to both fully evaluate and determine the optimal dose of 

bevacizumab, maximizing tumor effect while minimizing potential toxic side effects. This 

study represents a first step in that regard, using dosages that have been used and 

recommended in previous studies described in the literature [18, 34–37]. For example, Phase 

II clinical trials of several tumor types have used dosages ranging 3–20 mg/kg bevacizumab 

every 2 or 3 weeks. Many studies have shown lower doses to be more effective in treatment 

and reduced risk for renal adverse events. Clinical studies in colorectal cancer patients 

showed 5 mg/kg bevacizumab to decrease tumor perfusion, vascular volume, microvascular 

density, and interstitial fluid pressure [18]. Recent review of clinical studies has correlated 

an increased risk of proteinuria with 5 mg/kg bevacizumab in combination with 

chemotherapy compared to 2.5 mg/kg [38]. Successful combination studies of bevacizumab 

(10 mg/kg) and irinotecan showed increased progression free survival at 6 months and 63% 

radiographic response in recurrent glioblastoma patients. While in this study 10 mg/kg dose 

proved best in terms of maximal long-term tumor shrinkage and inhibiting vascularity at one 

time point, the inhibition of vascularity seemed to respond equally well at all doses at most 

post-treatment time points. Consequently, the higher dose used is not clearly superior to the 

lower doses used, and thus a dose of 5 mg/kg may prove optimal giving the best benefit to 

risk ratio. This topic requires further studies, which may include monitoring progression free 

survival (time from stopping treatment until tumor regrowth), overall survival, and the 

timing of therapy. In addition, tissue markers of response will likewise be measured in 

concert with imaging markers.

In summary, data from this study support the clinical research showing decreases in tumor 

volume and vascularity in a U87 glioblastoma model with bevacizumab therapy. The rCBV 

estimates of tumor perfusion provide useful information, different from that provided by 

tumor enhancement, which could aid in the full characterization and optimization of anti-

angiogenic treatments. Furthermore, since most clinical studies incorporate bevacizumab in 

combination with chemotherapy, combination therapies will be studied in subsequent rCBV 

studies using our xenograft model.
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Fig. 1. 
a Representative images of post contrast T1 weighted image and rCBV maps from an 

untreated animal shown longitudinally (top to bottom). b Representative images of post 

contrast T1 weighted images and rCBV maps from an animal treated with 5 mg/kg 

bevacizumab shown at days 0, 2, 5, and 8 post-treatment
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Fig. 2. 
Bevacizumab inhibits the growth of the contrast-agent enhancing tumor volume. Animals 

were imaged at days 2, 5, and 8 post-treatment. Data are presented mean ± SE. * P < 0.05 

vehicle versus treated
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Fig. 3. 
Effect of bevacizumab on relative cerebral blood volume. rCBV is calculated as the area 

under the ΔR2*(t) curves and then corrected for leakage. Animals were imaged at days 2, 5, 

and 8 post-treatment. Data are presented mean ± SE. * P < 0.05 vehicle versus treated
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Fig. 4. 
Initial decrease in relative cerebral blood volume following bevacizumab treatment 

dependent on initial blood volume. Data are presented median. P < 0.05 vehicle versus 

treated by Spearman rank correlation
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