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Abstract

Impulsive behavior is strongly implicated in drug abuse, as both a cause and a consequence of 

drug use. To understand how impulsive behaviors lead to and result from drug use, translational 

evidence from both human and non-human animal studies is needed. Here, we review recent 

(2009 or later) studies that have investigated two major components of impulsive behavior, 

inhibitory control and impulsive choice, across preclinical and clinical studies. We concentrate on 

the stop-signal task as the measure of inhibitory control and delay discounting as the measure of 

impulsive choice. Consistent with previous reports, recent studies show greater impulsive behavior 

in drug users compared with non-users. Additionally, new evidence supports the prospective role 

of impulsive behavior in drug abuse, and has begun to identify the neurobiological mechanisms 

underlying impulsive behavior. We focus on the commonalities and differences in findings 

between preclinical and clinical studies, and suggest future directions for translational research.
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Introduction

Impulsive behavior is strongly implicated in drug abuse, as both a cause and a consequence 

of drug use. The role of impulsive behavior in drug abuse has been investigated extensively, 

as described in several recent reviews [1–4]. These reviews confirm that impulsive behavior 

is multifaceted, and that specific components of impulsivity relate to distinct stages of drug 

abuse. There is now convincing evidence that impulsive behavior is both a determinant and 

consequence of drug abuse, but there is still a need to identify which factors predispose 

individuals to use, and which result from drug use, either after acute administration or after 

extended periods of use. There is also a need to investigate the underlying neurobiological 

mechanisms involved in impulsivity to develop effective prevention and treatment 

strategies.

To understand how impulsive behaviors lead to, and result from, drug use, translational 

evidence from both human and non-human animal studies is needed, and translational 

research requires valid and sensitive behavioral models of impulsivity. Here, we critically 

examine recent studies that have investigated two major components of impulsive behavior, 

inhibitory control and impulsive choice, across preclinical (i.e., studies involving 

nonhumans) and clinical studies (i.e., studies involving humans). To reduce overlap with 

previous reviews, we focus on studies published in 2009 or later, and concentrate our review 

on the stop-signal task as the measure of inhibitory control and delay discounting as the 

measure of impulsive choice. We will first review the task methodologies. We will then 

review recent studies comparing task performance in drug users and non-users, as well as 

recent preclinical and clinical studies that prospectively predict drug use from these 

impulsive behaviors. We will also present results of studies investigating the acute effects of 

drugs on these tasks, because drug consumption can produce state-level disruption of 

impulsive behavior, and may provide some indirect information regarding chronic drug 

effects. Finally, we review findings on the neurobiological mechanisms of impulsive 

behavior in both non-human animals and humans. Our focus is on the commonalities and 

differences in findings between preclinical and clinical studies, and an assessment of the 

strengths and limitations of current approaches.

Task Descriptions

Stop-Signal Task

The stop-signal task is one of the most commonly used measures of inhibitory control. This 

task measures the ability to inhibit an instigated or ‘prepotent’ response [5]. In human 

versions of this task, subjects are instructed to respond as quickly as possible to Go signals 

by making a key press, but occasionally to inhibit their response when a Stop signal occurs 

(typically an auditory tone). The Stop signal is presented shortly after the Go signal and the 

experimenter measures the time an individual needs between the Go and Stop signal to 

successfully inhibit a response. In one commonly used version of the task, the onset of the 

Stop signal is adjusted to target a 50 % successful inhibition rate. A stop signal reaction time 

(SSRT) may be calculated (i.e., the difference between mean Go reaction time and mean 

stop signal delay), providing a quantitative index of inhibitory control. Greater SSRT values 

indicate poorer response inhibition. In animal studies, the stop-signal task can be arranged in 
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a similar manner by adjusting the onset of the stop signal based on performance [6]. 

However, more commonly, the stop signal onset is varied in a pre-planned sequence across 

blocks and the percent of trials on which stopping occurs is measured. SSRT is obtained by 

interpolating the time at which 50 % stopping would occur [7].

Delay Discounting Task

Delay discounting tasks are the gold standard to measure impulsive choice. These tasks 

measure the degree to which the value of a reward decreases as a function of the delay in 

time to its delivery [8–11]. In human versions of the task, subjects make choices between 

small rewards (usually money) delivered immediately or larger rewards delivered after a 

delay. A curve is plotted based on the subject’s points of indifference between immediate 

and delayed rewards, and steeper discounting curves indicate greater delay discounting. 

These tasks can be administered as both paper and pencil or computerized versions. In 

preclinical studies, several variants are commonly used. Similar to tasks used with human 

subjects, some identify indifference points by titrating the length of the delay to the large 

reward [12] or the size of the immediate reward [13], until an indifference point is reached. 

Other procedures assess choices of the larger, later reward over a series of fixed delays 

presented during the course of a session [14] and use percent choice at the various delays as 

their measure of discounting.

Studies Comparing Drug Users and Non-Users

Studies comparing drug users and non-users provide important information about behavioral 

tendencies that make it difficult for users to resist drugs during attempts to abstain. 

However, the origin of these differences is difficult to discern because users and nonusers 

differ on many other dimensions (e.g., trait differences or differences in experience), and 

because it is not possible to determine whether differences predate, or result from, the drug 

use. Nevertheless, evidence that drug users are more impulsive on certain measures may 

guide development of treatment strategies, and guide preclinical prospective studies 

examining behavioral risk factors.

Stop-signal Task

Drug users have poorer inhibitory control as measured by the stop-signal task compared 

with non-users [1, 4]. Recent findings generally support this conclusion, although there are 

some interesting exceptions, and the findings vary across drug types. Alcohol-dependent 

individuals (inpatient and outpatient) exhibited poorer performance on the stop-signal task 

than healthy controls [15, 16], but among nondependent drinkers the findings are less clear. 

Smith and Mattick [17] found that longer SSRTs predicted binge drinking and alcohol 

problems in women, but two other studies observed no differences between binge and non-

binge drinkers [18, 19], and a third study reported that stop-signal task performance did not 

predict consumption in nontreatment-seeking problem drinkers [20]. Additional studies have 

reported longer SSRTs in cannabis users [18] and cocaine-dependent individuals [21], 

although two other studies failed to observe these group differences [22, 23]. The 

inconsistent results across studies remain to be explained, but these studies provide some 
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evidence that drug users have poor inhibitory control. The association appears to be most 

pronounced for dependent alcohol users, and less consistent for cannabis and cocaine users.

Delay Discounting

Substance users also exhibit greater delay discounting than non-users [1,4, 24, 25], and this 

conclusion is supported by findings in the last 5 years. In most studies examining delay 

discounting in relation to habitual alcohol consumption, heavier drinkers discounted more 

[20, 15, 26•, 18, 27]; although see [28]. One study found an association in African 

Americans but not European Americans [29], and another study found that discounting 

predicted drinking in females but not males [30]. In studies of cigarette smokers, discounting 

was also related to severity of nicotine dependence [31–35], but see [36], and individuals 

who were both drinkers and smokers discounted more than drinkers or smokers only [37]. 

Similarly, both cocaine- and opiate-dependent individuals discounted more than healthy 

controls [21, 38–40], although see [41], and delay discounting was greater for early or 

intermediate onset opiate dependence compared with late-onset [42]. In regard to cannabis, 

discounting predicted use in recreational users [18], but not dependent individuals [33]. 

Finally, among users of multiple substances, discounting was greater in users of cocaine, 

nicotine, or both, compared with controls [43], although no difference was observed in 

polysubstance-using rave attenders compared with controls [44]. Taken together, these 

studies add to a large body of evidence that steeper discounting is greater in substance users, 

including alcohol, nicotine, cannabis, cocaine, and opiate users, compared with non-users.

Summary

In sum, studies reviewed in this section provide further evidence that drug users exhibit both 

poor inhibitory control and steep delay discounting. The associations are observed across 

drug classes, including alcohol, stimulants, and opiates, and they tend to be more 

pronounced in individuals meeting criteria for substance dependence. The following sections 

provide updated preclinical and clinical evidence regarding the causality of this relationship 

and whether drug users are likely to be more impulsive even before drug use, or whether the 

behaviors change as a consequence of drug use, or whether other factors (e.g., smoking) 

contribute to the relationship between impulsivity and drug use.

Impulsive Behavior as a Determinant of Drug Use

Inhibitory Control: Preclinical Studies

Our literature search produced no relevant preclinical studies examining stop-signal task 

performance as a determinant of drug use. However, a number of studies have been 

conducted using the 5-choice serial reaction time task (5-CSRTT [45]), which examines 

responses occurring prematurely to a Go signal. Several studies have shown that ‘high’ 

impulsivity, based on the number of premature responses, is a predictor of drug self-

administration in laboratory animals (e.g., [46–48]).

Inhibitory Control: Clinical Studies

We found only one recent prospective study that examined stop-signal task performance as a 

predictor of drug use in humans. This study, done by Fernie et al. [49•], assessed inhibitory 
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control and delay discounting as predictors of alcohol consumption every 6 months over a 

period of 2 years, in adolescents aged 12–13 years. Prospective analyses showed that stop-

signal task performance consistently predicted alcohol consumption 6 months later across 

the 2-year period, consistent with the idea that poor inhibition may precede and perhaps play 

a causal role in increased alcohol use. This is consistent with two earlier reports showing 

that stop-signal task performance predicted future drug and alcohol use in adolescents and 

young adults [50, 51]. However, as in any prospective study of this type, it is difficult to rule 

out other individual difference factors that might covary with stop-signal task performance 

and mediate the observed relationship [4].

Delay Discounting: Preclinical Studies

Consistent with earlier studies [1, 4], recent experiments suggest a relationship between 

steeper discounting and drug self-administration in laboratory animals. Anker et al. [52] 

reported that rats selected for high levels of choice impulsivity acquired cocaine self-

administration more quickly than animals that discounted less. Compatible with these 

results, Koffarnus and Woods [53] demonstrated that rats with steeper discounting functions 

were less sensitive to increasing response costs to earn cocaine infusions (low elasticity of 

demand), but they were not less sensitive to increasing cost of nondrug, sucrose reinforcers. 

Diergaarde et al. [54•] observed the same relationship using a different stimulant, nicotine, 

but not for ethanol as the reinforcer. In a somewhat different paradigm, Yates et al. [55] 

reported that rats selected for high levels of impulsive choice developed a conditioned place 

preference for amphetamine (several doses), whereas low impulsive animals did not develop 

a conditioned place preference for amphetamine at any dose; suggesting that steeper 

discounting was predictive of amphetamine reward, as measured by the place preference 

procedure. In sum, recent preclinical studies suggest that steeper discounting is a predictor 

of indices of drug use, but this association is only robust for stimulants.

Delay Discounting: Clinical Studies

Fernie et al. [49•], mentioned earlier, found that steeper discounting prospectively predicted 

greater alcohol consumption among adolescents over the following 2-year period. This 

result differs from the Diergaarde et al. [54•] finding that discounting in rats did not predict 

alcohol consumption, but many differences between the clinical and preclinical studies 

could account for this dissimilar outcome. In another study, Brody et al. [56] examined 

delay discounting as a predictor of drug use 1 year later in 19–20-year-old African 

Americans. Although delay discounting did not predict drug use at follow-up in the sample 

as a whole, steeper discounting did predict drug use among men with high catecholamine 

levels (i.e., epinephrine and norepinephrine). To our knowledge, these are the first studies to 

prospectively assess delay discounting as a predictor of drug use in humans, and together 

they provide some preliminary evidence suggesting delay discounting may have a 

prospective role in drug abuse.

Summary of Preclinical and Clinical Studies

In sum, recent preclinical and clinical studies add to a growing literature supporting the 

prospective role of delay discounting in drug abuse. The stop-signal task has not been 

thoroughly tested as a predictor of drug reward in laboratory animals, although there is some 
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evidence that another measure of inhibitory control, the 5-CSRTT, does predict drug self-

administration. A relatively small number of prospective studies with humans suggest that 

both poor inhibitory control and delay discounting predict drug use in children and 

adolescents. However, there are substantial methodological and conceptual challenges in 

identifying common predictors of drug reward in humans and laboratory animals, and for 

now we can only speculate about the causal determinants in humans.

Impulsivity as a Consequence of Drug Use

It has been proposed that drug users become more impulsive as a result of chronic exposure 

to drugs [57]. Although the effects of chronic drug use can readily be studied in animal 

models, it is extremely difficult to demonstrate that cognitive dysfunction is a result of 

chronic drug use in humans. However, some indirect evidence may be gleaned from studies 

with acute drug administration in humans. Single doses of drugs have marked effects on 

impulsive behaviors, which provide important information about safety, and may contribute 

to risk for continued use within a drug-using occasion. The acute effects may also shed light 

on the effects of chronic exposure to the drugs.

Inhibitory Control (Acute Drug Effects): Preclinical Studies

In their previous review, Perry and Carroll [4] concluded that stimulant drugs improve stop-

signal task performance in laboratory animals, especially in animals with poor baseline 

inhibition, and that alcohol and other sedatives impair performance. Only two recent 

preclinical studies have examined the acute effects of drugs on the stop-signal task, both 

with rats (see Table 1). Pattij et al. [58] reported that neither morphine nor naloxone altered 

stop-signal task performance but, consistent with earlier reports, Eagle et al. [59] reported 

that d-amphetamine dose-relatedly decreased SSRT. Thus, similar to earlier reports, these 

preclinical studies provide further evidence that stimulants improve inhibitory control, and 

provide new evidence suggesting that opioid drugs do not affect inhibition.

Inhibitory Control (Acute Drug Effects): Clinical Studies

Consistent with preclinical studies, previous reviews concluded that stimulant drugs tend to 

improve stop-signal task performance, especially in individuals with poor baseline 

inhibition, whereas sedative drugs, including alcohol and THC, impair stop-signal task 

performance [1, 4]. Recent reports have examined the effects of alcohol, marijuana smoking, 

and oxycodone on inhibitory control in humans (Table 1). Caswell et al. [60] found that 

alcohol dose-dependently increased SSRT in young adult social drinkers. Metrik et al. [61] 

found that smoked marijuana significantly impaired performance on the stop-signal task in 

young adult marijuana users. By contrast, oxycodone did not alter stop-signal task 

performance among healthy young adults [62]. In sum, consistent with prior reports of acute 

drug effects on stop-signal task performance [4], alcohol and THC appear to impair 

inhibitory control while oxycodone does not.

Delay Discounting (Acute Drug Effects): Preclinical Studies

Although results have been mixed, prior preclinical studies indicate that acute doses of 

stimulant drugs decrease delay discounting whereas alcohol increases it [4]. Numerous 
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studies have since examined the effects of drugs of abuse on delay discounting performance 

(see Table 2 for details). The results are complex and it appears that the effects of drugs 

depend on genetic factors; for example, Wooters and Bardo [63] observed that 

methylphenidate decreased delay discounting in Wistar-Kyoto rats but not Sprague-Dawley 

or Spontaneously Hypertensive rats. Further, for some drugs, the behavioral effects are 

closely linked to dose; for example, Huskinson and Anderson [64] reported that in Fischer 

344 rats low doses of diazepam reduced delay discounting but high doses increased 

discounting, while in Lewis rats diazepam did not affect discounting at any dose. Pre-drug 

levels of discounting may also be important, as was seen in the “Impulsive behavior as a 

determinant of drug use” section, but this variable is as yet unexamined.

Delay Discounting (Acute Drug Effects): Clinical Studies

As reported in earlier studies, there are relatively few reports that acute administration of 

drugs change delay discounting in humans [1, 4]. This pattern is continued in recent studies 

with alcohol, marijuana, d-amphetamine and oxycodone (Table 2). In one exception, Reed et 

al. [65] found that alcohol increased delay discounting in both heavy and light drinking 

women tested in the follicular phase of the menstrual cycle. Bidwell et al. [66] found no 

effect of alcohol on delay discounting in social drinkers, although this study did not include 

a placebo condition. Other studies found no effects of smoked marijuana [61], d-

amphetamine [67], or oxycodone [62] on delay discounting in healthy subjects. It has been 

proposed that the delay discounting task typically used with humans is not sensitive to the 

effects of drugs [68], perhaps because of differences in time frame of the delay (i.e., seconds 

in rats and weeks or months in humans) or because of differences in the rewards (i.e., food 

vs money).

Summary of Preclinical and Clinical Studies

There are discordant findings on the acute effects of drugs on discounting in humans and 

laboratory animals. Few drugs affect discounting in humans, whereas in laboratory animals 

drugs have more consistent effects, although the findings depend on strain and dose. As 

discussed previously, it is likely that methodological differences in human and nonhuman 

discounting tasks (e.g., time of reward delivery and type of reward) influence the differences 

in findings across species.

Neurobiological Mechanisms of Impulsive Behavior and Drug Abuse

Recent advances in neurobiological research techniques have improved our understanding of 

neural mechanisms of impulsive behavior in relation to drug abuse. Preclinical studies have 

focused on identifying neuroanatomical correlates of task performance, and could provide 

important information regarding neurobiological mechanisms related to impulsive behavior 

that might serve as a predictor of drug use. By contrast, clinical studies have examined 

differences between drug users and non-users in brain activation during task performance, 

and thus provide initial information regarding correlations between drug use and brain 

function.
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Inhibitory Control: Preclinical Studies

Several strategies have been used to examine the neurobiological regions implicated in stop-

signal task performance in laboratory animals: inactivating or lesioning areas of interest, or 

recording activity in areas of interest. The neurochemical basis of inhibition has also been 

studied in laboratory animals, but because there is no comparable research method in 

humans, we do not review these studies. To validate a mouse model of the stop-signal task, 

one recent study performed excitotoxic lesions of mouse medial prefrontal cortex and 

reported impaired stopping, as has been reported in earlier research with rats [69]. Two 

others recorded activation patterns using multiunit cellular recordings to provide localization 

information. Chen et al. [70] reported activation using intracranial local field potentials in 

the supplementary motor area (SMA), and Schmidt et al. [71] used multiunit recordings 

from rats to describe a circuit in which neurons of the subthalamic nucleus respond to stop 

cues, regardless of whether stopping subsequently occurs. Only activity of cells downstream 

of the subthalamic nucleus, in the substantia nigra pars reticulate, was reliably coupled to 

successful stopping.

Inhibitory Control: Clinical Studies

In humans, imaging techniques have investigated brain activation during stop-signal task 

performance in substance users and non-users. These studies take into account differences in 

behavioral task performance, because poorer performance on the tasks may explain 

differences in brain activation. Fortunately, from the point of view of interpreting the results, 

only two of the studies reviewed below found group differences in task performance [72•, 

73]. In general, substance abusers appear to exhibit less prefrontal activation during 

response inhibition than control subjects, even in the absence of performance differences.

Brain activation during stop-signal task performance is typically studied using fMRI. Li et 

al. [74] showed that alcohol-dependent individuals had less activation in the dorsolateral 

prefrontal cortex (DLPFC) during response inhibition on the stop-signal task compared with 

controls. Similarly, among nontreatment-seeking problem drinkers, alcohol-use severity was 

associated with less functional connectivity in fronto-striatal networks during the stop-signal 

task [75]. Among smokers, heaviness of smoking was negatively correlated with PFC 

activation during response inhibition in adolescents [76], and heavy-smoking adults 

displayed decreased dorsomedial PFC activation relative to controls [77]. Stimulant-

dependent individuals displayed decreased activation in the ventrolateral PFC (VLPFC) 

during successful inhibitions relative to controls [73], as well as reduced white matter 

integrity in this region, which was inversely related to SSRT [72•]. Finally, Elton et al. [78] 

observed reduced activation during response inhibition in cocaine-dependent individuals 

relative to controls in a frontal-parietal network (including DLPFC, VLPFC and insula) and 

in a dorsomedial PFC network, as well as negative correlations between activation of these 

networks and SSRT. Thus, the findings are consistent that drug users, including problem 

drinkers, smokers, and stimulant users, exhibit less activation in dorsomedial, dorsolateral, 

and ventrolateral regions of the PFC during response inhibition on the stop-signal task.
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Delay Discounting: Preclinical Studies

Several studies have examined performance on a delay discounting task in laboratory 

animals after lesions or inactivation of specific brain areas. These studies of the 

neuroanatomical correlates of delay discounting have tended to focus on the orbitofrontal 

cortex (OFC) because of its role in executive function and possible correspondence to 

ventromedial PFC (vmPFC) in humans. However, several studies have not found any effect 

of neurotoxic lesions to or inactivation of the OFC on impulsive choice [79, 80]. This failure 

may be due to the different roles played by the medial and lateral portions of this region. 

Mar et al. [81] reported that neurotoxic lesions to OFC cortex increased discounting if 

lesions were confined to the medial area, but lateral area lesions were associated with the 

opposite effect (but see also [82] using inactivation techniques). A second region of interest 

is the nucleus accumbens due to its role in reinforcement and reward processes. However, 

here too the data are inconsistent between lesion and inactivation studies. Lesions of the 

nucleus accumbens core increase delay discounting [83, 84]; but also see [82] who 

temporarily inactivated this region. Finally, a single lesion study of the subthalamic nucleus 

did not identify a role for this structure [85], while Abela and Chudasama [79] did report 

that rats with ventral hippocampal lesions showed increased impulsive choice.

Delay Discounting: Clinical Studies

In humans, several recent studies have examined brain activation during delay discounting 

tasks in drug users compared with nonusers. These studies typically compare patterns of 

brain activation when subjects opt for the delayed reward versus decisions for the immediate 

reward. Consistent with the behavioral studies reviewed above, all but one [86] of the fMRI 

studies reviewed here found that users discounted more steeply than non-users. As noted 

above, these group differences on task performance must be taken into account when 

interpreting the findings. Among problem drinkers, individuals with more severe alcohol use 

disorders discounted more steeply and showed greater activation of several brain regions, 

including the anterior insula, inferior frontal gyrus, SMA/rostral anterior cingulate cortex 

(ACC), DLPFC, and precuneus when selecting delayed options relative to immediate 

options, suggesting functional anomalies and insufficient neural processing underlying 

impulsive choice in problem drinkers [87, 88]. In smokers, greater activation was observed 

in the medial PFC and anterior insular cortex when choosing the delayed option relative to 

the immediate option for money and cigarettes [89]. Meade et al. [86] found that among 

cocaine-using HIV patients, the increase in activity in fronto-parietal regions (including 

precentral gyrus, ACC, and right DLPFC, VLPFC, and OFC) was less than that in non-users 

when making hard decisions compared with easy decisions (although they did not differ in 

discounting rates). Finally, Camchong et al. [90•] found that cocaine-dependent individuals 

discounted more steeply and had higher resting functional connectivity within a network 

comprising the perigenual ACC and frontal and temporal regions (i.e., DLPFC, middle 

temporal gyrus, and superior frontal gyrus) compared with controls. In sum, these studies 

confirm earlier reports of greater discounting in substance abusers, and suggest that steeper 

discounting is associated with increased prefrontal activation when making decisions for 

delayed rewards.
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Summary of Preclinical and Clinical Studies

Taken together, some commonalities in neurobiological findings exist across preclinical and 

clinical studies. In both preclinical and clinical studies, stop-signal task performance is 

associated with activity in the prefrontal cortex and SMA. Studies of delay discounting have 

been less consistent, but there appears to be a role for medial regions of the prefrontal cortex 

in both humans and laboratory animals. It will be important for future preclinical studies to 

compare neurobiological correlates of task performance in drug-naïve and non-drug-naïve 

animals to more directly compare findings across species.

Conclusions and Future Directions

In sum, findings over the last 5 years provide further support for the role of impulsive 

behavior in drug abuse, both as a determinant and a consequence of use. However, the 

degree to which impulsivity functions as a predisposing factor to drug abuse and the degree 

to which it is a result of drug abuse is still not well understood. Regarding the latter, 

preclinical evidence suggests that delay discounting in drug-naïve animals predicts later 

drug administration, but longitudinal studies testing this relation in humans are limited. 

Similarly, there is a growing body of evidence from preclinical studies showing that poor 

inhibitory control, as measured by the 5-CSRTT, is associated with multiple indices of drug-

taking. However, analogs of this task are just now being developed for use in human studies 

[19, 91, 92], which will enable researchers to assess parallels between preclinical and 

clinical studies using this task. Regarding impulsive behavior as a result of drug use, there is 

some evidence that impulsive choice increases after chronic drug administration in animal 

models [93–97], but as mentioned earlier this is very difficult to study in humans. Evidence 

showing acute effects of drugs on impulsive behavior likely provides some indirect evidence 

regarding chronic effects, but it is not known whether acute effects on either impulsive 

action or impulsive choice bear any relation to changes in behavior after chronic 

administration of the drug (as in drug abusers). It seems intuitively logical that if acute 

behavioral impairments are continued over a long period of time they may lead to chronic 

changes in behavior, but again, longitudinal studies are needed to directly test this 

hypothesis. Finally, we are just beginning to understand the neurobiological mechanisms 

underlying impulsivity and drug abuse. Future translational assessments of the neural 

mechanisms underlying impulsive behavior and drug abuse will likely provide exciting new 

information and further our understanding of impulsive behavior as both a cause and 

consequence of drug abuse.
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Table 1

Acute drug effects on stop-signal task performance

Subjects (M:F) Drug (dose) Dose Effect on SSRT Reference

Preclinical studies

    Lister-hooded rats (n=24) D-amphetamine 0, 0.3, 1 mg/kg ↓ [59]

    Wistar rats (n=16/group) Morphine 0, 0.3, 1, 3 mg/kg – [58]

Naloxone 0, 0.3, 1, 3 mg/kg –

Human studies

    Healthy adults (24:24) Alcohol 0, 0.4, 0.8 g/kg ↑ (0.8 g/kg) [60]

    Healthy marijuana smokers (88:48) Marijuana cigarettes 0, 2.8 % THC ↑ [61]

    Healthy adults (n=7) Oxycodone 0, 5, 10, 20 mg – [62]

Note. All preclinical studies used males only. SSRT Stop signal reaction time, ↑ SSRT increased, ↓ SSRT decreased, – no drug effect.
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Table 2

Acute drug effects on delay discounting task performance

Subjects (M:F) Drug Dose Effects on delay 
discounting

Reference

Preclinical studies

    Wistar rats (n=30) Amphetamine 0, 0.5 mg/kg ↓ [98•]

    Lewis rats (n=8) Amphetamine 0, 0.1, 0.3, 1.0, 1.7 mg/kg ↓ (dose-related) [96]

    Fischer 344 rats (n=8) Amphetamine 0, 0.1, 0.3, 1.0, 1.7 mg/kg ↑ (1, 1.7 mg/kg) [96]

    Sprague-Dawley rats (n=24) Amphetamine 0, 0.032, 0.1, 0.32, 1.0 
mg/kg

No systematic effect [99]

    Sprague-Dawley rats (n=8) Amphetamine 0, 0.1, 0.3, 1.0, 1.8 mg/kg ↓ [100]

    Sprague-Dawley rats (n=8) Amphetamine 0, 0.32, 1.0, 1.78 mg/kg ↑ (1, 1.78 mg/kg; only 
descending delay order)

[101]

    High alcohol preferring 1 mice 
(15:15)

Amphetamine 0, 0.4, 0.8, 1.2 mg/kg ↓ (dose-related; dependent 
on length of delay)

[102]

    Sprague-Dawley rats (n=16) Amphetamine 0, 0.1, 0.3, 1.0, 1.7, 3.0 
mg/kg

↑ (1, 1.7 mg/kg) [103]

    Sprague-Dawley rats (n=12) Amphetamine 0, 0.1, 0.32, 0.56, 1.0, 1.78 
mg/kg

Dose-related; ↑ (for 
increasing delays)
↓ (for decreasing delays)

[104]

    Spontaneously hypertensive rats 
(n=8)

Amphetamine 0, 0.1, 0.3, 0.56, 1.0 mg/kg – [63]

    Wistar Kyoto rats (n=8) Amphetamine 0, 0.1, 0.3, 0.56, 1.0 mg/kg – [63]

    Sprague-Dawley rats (n=8) Amphetamine 0, 0.1, 0.3, 0.56, 1.0 mg/kg – [63]

    Spontaneously hypertensive rats 
(n=8)

Methylphenidate 0, 1, 3, 5.6, 10 mg/kg ↓ (0.3 mg/kg) [105]

    Sprague-Dawley rats (n=5) Methylphenidate 0, 1, 3, 10 mg/kg (d-, l-, dl-
isomers)

↓ (dose-related; especially 
for d- and dl-isomers)

[106]

    Sprague-Dawley rats (n=12) Methylphenidate 0, 1, 3.2, 10, 17.8 mg/kg Dose-related; ↑ (for 
increasing delays)
↓ (for decreasing delays)

[104]

    Spontaneously hypertensive rats 
(n=8)

Methylphenidate 0, 1, 3, 5.6, 10 mg/kg – [63]

    Wistar Kyoto rats (n=8) Methylphenidate 0, 1, 3, 5.6, 10 mg/kg ↓ (5.6, 10 mg/kg) [63]

    Sprague-Dawley rats (n=8) Methylphenidate 0, 1, 3, 5.6, 10 mg/kg – [63]

    Lewis rats (n=8) Nicotine 0, 0.1, 0.3, 1.0 mg/kg ↓ (0.3 mg/kg) [107]

    Fischer 344 rats (n=8) Nicotine 0, 0.1, 0.3, 1.0 mg/kg ↓ (1.0 mg/kg) [107]

    Long Evans rats (n=5) Nicotine 0, 0.8 mg/kg – [108]

    Long Evans rats (n=5) Nicotine 0, 1.2 mg/kg ↑ [108]

    Fischer 344 rats (n=8) Diazepam 0, 0.3, 0.56, 1.0, 3.0, 10 
mg/kg

↑ (10 mg/kg) [64]

    Rhesus macaque monkeys (n=2; 
female)

Diazepam 0, 0.1, 0.32, 1.0 mg/kg – [109]

    Sardinian alcohol-preferring rats 
(n=8)

Ethanol 0, 0.25, 0.5 g/kg – [110]

    Sardinian non-alcohol-preferring 
rats (n=8)

Ethanol 0, 0.25, 0.5 g/kg – [110]

    Alko alcohol-preferring rats (n=8) Ethanol 0, 0.25, 0.5 g/kg – [110]

    Alko non-alcohol-preferring rats 
(n=8)

Ethanol 0, 0.25, 0.5 g/kg – [110]
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Subjects (M:F) Drug Dose Effects on delay 
discounting

Reference

    Rhesus macaque monkeys (n=2; 
female)

Ketamine 0, 0.1, 0.32 mg/kg ↑ (similarly for both doses) [109]

    Sprague-Dawley rats (n=5) Pentobarbital 0, 1, 3, 10 mg/kg –

    Sprague-Dawley rats (n=10) THC 0, 0.32, 1.0, 3.2, 5.6 mg/kg ↑ (dose-related) [104]

    Rhesus-macaque monkeys (n=2, 
female)

Morphine 0, 0.1, 0.32 mg/kg ↑ (0.32 mg/kg dose) [109]

    Wistar rats (n=16) Morphine 0, 0.3, 1, 3, 6 mg/kg ↑ (dose-related; especially at 
6 mg/kg;
    negated by 1.0 mg/kg 
naloxone)

[58]

    Sprague-Dawley rats (n=5) Morphine 0, 0.3, 1, 3, 10 mg/kg No systematic effect [106]

    Sprague-Dawley rats (n=10) Morphine 0, 1, 3.2, 5.6, 10 mg/kg ↑ (dose-related) [104]

    High Alcohol Preferring 2 mice 
(20:20)

Naltrexone 0, 3, 10 mg/kg – [102]

Human studies

    Healthy adults (5:1) Amphetamine 
(intranasal and oral)

0, 16, 24, 32 mg – [67]

    Healthy women (n=46) Alcohol 0, 0.5, 0.75 g/kg ↑ [65]

    Healthy adults (13:14) Alcohol 40 mg/dl, 80 mg/dl – [66]

    Healthy marijuana smokers (88:48) Marijuana cigarettes 0, 2.8 % – [61]

    Healthy adults (6:6) Oxycodone 0, 5, 10, 20 mg – [62]

Note. Preclinical studies used males only unless otherwise noted. ↑ delay discounting increased, ↓ delay discounting decreased, – no drug effect.
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