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Abstract

This study examined total mercury (Hg) concentrations in cartilaginous fishes from Southern New 

England coastal waters, including smooth dogfish (Mustelus canis), spiny dogfish (Squalus 

acanthias), little skate (Leucoraja erinacea), and winter skate (L. ocellata). Total Hg in dogfish 

and skates were positively related to their respective body size and age, indicating Hg 

bioaccumulation in muscle tissue. There were also significant inter-species differences in Hg 

levels (mean ± 1 SD, mg Hg/kg dry weight, ppm): smooth dogfish (3.3 ± 2.1 ppm; n = 54) > spiny 

dogfish (1.1 ± 0.7 ppm; n = 124) > little skate (0.4 ± 0.3 ppm; n = 173) ~ winter skate (0.3 ± 0.2 

ppm; n = 148). The increased Hg content of smooth dogfish was attributed to its upper trophic 

level status, determined by stable nitrogen (δ15N) isotope analysis (mean δ15N = 13.2 ± 0.7‰), 

and the consumption of high Hg prey, most notably cancer crabs (0.10 ppm). Spiny dogfish had 

depleted δ15N signatures (11.6 ± 0.8‰), yet demonstrated a moderate level of contamination by 

foraging on pelagic prey with a range of Hg concentrations, e.g., in order of dietary importance, 

butterfish (Hg = 0.06 ppm), longfin squid (0.17 ppm), and scup (0.11 ppm). Skates were low 

trophic level consumers (δ15N = 11.9-12.0‰) and fed mainly on amphipods, small decapods, and 

polychaetes with low Hg concentrations (0.05-0.09 ppm). Intra-specific Hg concentrations were 

directly related to δ15N and carbon (δ13C) isotope signatures, suggesting that Hg biomagnifies 

across successive trophic levels and foraging in the benthic trophic pathway increases Hg 

exposure. From a human health perspective, 87% of smooth dogfish, 32% of spiny dogfish, and < 

2% of skates had Hg concentrations exceeding the US Environmental Protection Agency threshold 

level (0.3 ppm wet weight). These results indicate that frequent consumption of smooth dogfish 

and spiny dogfish may adversely affect human health, whereas skates present minimal risk.
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1. Introduction

Mercury (Hg) is a pervasive toxicant that is introduced into the environment mainly through 

anthropogenic activities (US EPA, 1997). In the northeastern US, for example, Hg levels are 

elevated in marine coastal environments due to local point sources and distant non-point 

sources of contamination. The latter is dominated by the long-range transport of emissions 

from fossil-fuel combustion, after which the Hg by-product enters a water body through 

direct atmospheric deposition and watershed transport (Clarkson, 1992). Estuarine and 

coastal sediments are repositories for Hg (Balcom et al., 2004), and are the principal location 

for methylation, a bacterial-mediated process that converts inorganic Hg to its more toxic 

organic form, methylmercury (MeHg) (Gilmour et al., 1992; Benoit et al., 2003). MeHg 

derived from surface sediments may then be mobilized to the water column and transferred 

to biota through several physical and biological processes (Chen et al., 2008), including the 

bio-concentration of the contaminant in phytoplankton. This functional group, in turn, 

effectively transfers MeHg to both pelagic and benthic food webs (Mason et al., 1996; Moye 

et al., 2002), after which MeHg biomagnifies across successive trophic levels, concentrating 

in the tissues of top-level predators, including fish and other consumers (Wiener et al., 

2003).

Fish are exposed to MeHg mainly through diet (Hall et al., 1997), and MeHg exposure 

causes numerous health deficits in fish. The severity of these adverse effects depends on the 

interplay between intra-species life history traits and the concentration and duration of 

MeHg exposure. Fish MeHg concentrations, for example, are positively related to body size 

and age when dietary intake exceeds depuration rates of the contaminant (Trudel and 

Rasmussen, 1997). Prey preferences and foraging ecology also impact MeHg dynamics, 

such that toxicant concentrations are elevated in fish feeding at higher trophic levels (Piraino 

and Taylor, 2009; Payne and Taylor, 2010; Szczebak and Taylor, 2011). Accordingly, fish 

MeHg bioaccumulation rates need to be examined concurrently with species-specific 

characteristics, such as body size, age, and ontogenetic shifts in diet and habitat use. Acute 

MeHg toxicity in fish (tissue MeHg = 6.0 mg/kg wet weight) may lead to neurological 

disease, including reduced swimming activity and loss of equilibrium, and possibly death 

(Armstrong, 1979; Wiener and Spry, 1996; Smith and Weis 1997). Chronic, low-dose MeHg 

exposure in fish may also cause more subtle end points of toxicity (tissue MeHg = 0.1 mg/kg 

wet weight), with possible deleterious effects to both the individual (e.g., compromised 

metabolism, osmoregulation, oxygen exchange, reproduction, and growth) and population 

(e.g., reduced survival and recruitment success) (Candelmo et al., 2010).

The majority of Hg-related research in marine ecosystems has focused on bony fishes 

(Division Teleostei) because of their importance as a human food resource (US EPA, 1997). 

Comparatively, there is a paucity of information on Hg burdens in cartilaginous fishes 

(Subclass Elasmobranchii), although a number of these species support important 
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commercial and recreational fisheries. Previous investigations on this topic have almost 

exclusively targeted sharks and have been limited geographically to coastal Pacific regions 

(Endo et al., 2009), tropical and sub-tropical waters (Heuter et al., 1995; de Pinho et al., 

2002; Garcia-Hernandez et al., 2007; Maz-Courrau et al., 2012), and the pelagic-oceanic 

realm (Estrada et al., 2003; Branco et al., 2007; Suk et al., 2009). These prior studies 

revealed that many sharks experience contaminant concentrations above which adverse 

effects are realized, and further, may constitute a potential health risk for human consumers. 

There remains a lack of Hg research on a broad range of cartilaginous fishes from coastal 

regions of the Northwest Atlantic (e.g., sharks and skates), despite the ecological importance 

of these species in near-shore environments (Collette and Klein-MacPhee, 2002). Moreover, 

the broad distribution, high abundance, and upper trophic level status of cartilaginous fishes 

suggest that they strongly influence the fate of Hg in coastal habitats.

The primary objective of this study was to examine Hg bioaccumulation rates in 

cartilaginous fishes from Southern New England coastal waters, including the smooth 

dogfish, (Mustelus canis), spiny dogfish, (Squalus acanthias), little skate, (Leucoraja 

erinacea), and winter skate, (L. ocellata). Total Hg concentrations were measured in these 

target species and results were analyzed relative to intra-specific life history traits, including 

body size, age, sex, habitat use, and feeding habits. For the latter, conventional stomach 

content analysis was coupled with stable isotope (nitrogen and carbon) measurements to 

assess the effect of diet history and trophic processes on Hg contamination (Shiffman et al., 

2012). Representative prey of each target fish were also analyzed for Hg content to 

determine their effect on Hg exposure. Lastly, given the potential value of each target 

species as a human dietary resource (NEFSC, 1999; 2006; NMFS, 2010), Hg results were 

evaluated relative to the US Environmental Protection Agency (US EPA) and US Food and 

Drug Administration (US FDA) criteria for the safe consumption of fishery products.

2. Methods

2.1. Target fishes

Smooth dogfish (Family Triakidae) and spiny dogfish (Family Squalidae) are the most 

numerically dominant shark species in the coastal western Atlantic (Collette and Klein-

MacPhee, 2002). Smooth dogfish are a demersal species that occupy shallow near-shore 

waters (< 18 m to 200 m) from the Bay of Fundy to Florida, with maximal abundances in the 

Mid-Atlantic region (Cape Hatteras, North Carolina to New Jersey). Similarly, spiny dogfish 

are principally located from Nova Scotia southward to Cape Hatteras, but this species 

occupies a broader range of continental shelf waters (shallows to 900 m) and utilizes both 

epibenthic and pelagic habitats (Stehlik, 2007). Both smooth and spiny dogfish undergo 

pronounced latitudinal migrations in response to seasonal temperature changes, as well as 

onshore-offshore movements that are governed by prey availability and the onset of 

reproductive events, e.g., inshore pupping (Collette and Klein-MacPhee, 2002). Smooth and 

spiny dogfish also have varying life history strategies. Smooth dogfish are moderately sized 

[maximum size ~ 150 cm total length (TL)] and have relatively fast growth rates (15-20 cm 

TL/year) and short life spans (10-15 years). Conversely, spiny dogfish are characterized by a 

smaller maximum body size (~ 100 and 125 cm TL for males and females, respectively), 
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slower growth rate (1.5-3.5 cm TL/year), and extended longevity (35-40 to perhaps 100 

years) (Collette and Klein-MacPhee, 2002; Stehlik, 2007). Finally, smooth dogfish are 

mainly benthic foragers with decapod crustaceans (crabs) representing the dominant prey, 

whereas the use of pelagic waters by spiny dogfish is reflected in their diet, such that fish, 

squid, and ctenophores are the most important food resources (Smith and Link, 2010).

Little skates and winter skates are sympatric species (Family Rajidae) with contrasting life 

history characteristics. Little skates are relatively small-bodied [maximum size ~ 30 cm disk 

width (DW)] and short-lived (~ 12 years), whereas winter skates have a longer life span (~ 

20 years) and achieve an appreciable larger body size (maximum size ~ 60 cm DW) (Packer, 

2003a, 2003b). The diet of both skates consist primarily of macro-invertebrates (e.g., 

amphipods, polychaetes, and decapod crustaceans), with fish becoming an increasingly 

important prey item for larger individuals (Smith and Link, 2010). Little skates and, to a 

lesser extent, winter skates often numerically dominant the demersal fish community in the 

Northwest Atlantic (Collette and Klein-MacPhee, 2002). Their specific geographic ranges 

are comparable and encompass coastal waters from southeastern Newfoundland to Cape 

Hatteras.

2.2. Sample collection and preparation

Dogfish, skates, and their prey were collected from Rhode Island/Block Island Sound and 

Narragansett Bay from May to October (2009-2012) using bottom trawls and hook & line 

(Fig. 1), and specimens were identified by their time (year and day of collection) and 

location (latitude-longitude) of capture. Prey were selected for analysis based on their 

recognized dietary contribution to dogfish and skates (Smith and Link, 2010), and included 

scup (Stenotomus chrysops), butterfish (Peprilus triacanthus), longfin inshore squid 

(Doryteuthis pealeii), and cancer crabs (Cancer irroratus and C. borealis). Dogfish, skates, 

and prey collected in the field were either processed immediately after capture or put on ice 

for transportation and frozen at −20°C in the laboratory for subsequent analysis.

The processing of dogfish, skates, and prey in the field and laboratory included assessing the 

sex of each shark and skate (presence/absence of claspers), measuring individual body size, 

excising muscle tissue samples, and extracting stomachs (trawl-collected dogfish and skates 

only). Size was measured as whole-body wet weight (g) and length or width (mm): dogfish, 

scup, and butterfish = TL; skate = DW; squid = mantle length (ML); and crab = carapace 

width (CW). The age (years) of each dogfish and skate was also estimated from sex-specific 

age-length relationships reported in the literature (Soldat, 1982; Collette and Klein-

MacPhee, 2002; Conrath et al., 2002; Sulikowski et al., 2003; Cicia et al., 2009). Muscle 

tissue samples (2-5 g wet weight with skin removed) were excised from the dorsal axial 

musculature of dogfish and scup, pectoral wings of skates, and mantle dorsal body wall of 

squid using stainless-steel surgical blades, whereas crabs were processed as whole bodies. 

All muscle-tissue and whole-body samples were freeze-dried for 48 h (Labconco FreeZone 

4.5-L Benchtop Freeze-Dry System), homogenized with clean stainless-steel spatulas, and 

stored at room temperature in borosilicate vials. The stomachs of dogfish and skates (~ 5 

individuals/size class/species/trawl tow; assumed to have contents) were extracted 
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immediately after capture and preserved in Normalin® following the procedures of Smith 

and Link (2010).

2.3. Mercury analysis

Total Hg concentrations in mg/kg dry weight (ppm) was measured in homogenized muscle-

tissue and whole-body samples of dogfish, skates, and prey (~ 0.03 g dry weight) using 

automated combustion atomic absorption spectrometry (AC-AAS) (DMA-80 Direct Hg 

Analyzer, Milestone, Inc., Shelton, Connecticut, USA), with a detection limit of 0.01 ng Hg 

(US EPA, 1998). The Hg analyzer was calibrated using certified reference materials (CRMs) 

of known Hg concentrations, and included solid standards (TORT-1: lobster hepatopancreas; 

DORM-2: dogfish muscle) and aqueous standards prepared by the National Research 

Council Canada, Institute of Environmental Chemistry (Ottawa, Canada) and the National 

Institute of Standards and Technology (Gaithersburg, Maryland, USA), respectively. 

Calibration curves were highly linear (mean R2 = 1.00; range R2 = 0.99-1.00; p < 0.0001), 

and the recovery of independently analyzed samples of TORT-1, DORM-2, and PACS-2 

(marine sediment) CRMs ranged from 91.9% to 107.5% (mean = 96.2%). All samples were 

analyzed as duplicates, and an acceptance criterion of 10% was implemented. Duplicate 

samples with < 10% error were averaged for subsequent analysis (mean absolute difference 

between duplicates = 3.8%). Samples with > 10% error were reanalyzed to achieve the 

acceptance criterion or were eliminated from further analysis. For additional quality control, 

blanks were analyzed every 10 samples to assess instrument accuracy and potential drift. 

Further, two previous studies determined that AC-AAS used in this study produced 

statistically equivalent results to isotope dilution gas chromatography-inductively coupled 

plasma mass spectrometry, with R2 values ranging from 0.902 and 0.946 between the two 

methods (Piraino and Taylor, 2009; Payne and Taylor, 2010).

2.4. Diet and trophic ecology analysis

The contents of preserved dogfish and skate stomachs were extracted in the laboratory and 

the total weight of these contents was measured with analytical balances (mg wet weight). 

All recovered prey items were identified to the lowest practical taxon with the aid of 

stereomicroscopes, and when possible, the length or width of individual prey was measured 

as defined above. The contribution of each prey taxon to the overall diet of dogfish and 

skates was expressed as the frequency of occurrence (%F) and percent weight (%W). 

Frequency of occurrence was calculated as the number of stomachs containing a specific 

prey taxon divided by the total number of stomachs with prey contents, whereas percent 

weight was calculated as the weight of a specific prey taxon divided by the total weight of 

all prey types. The relative importance of each prey taxon to the diet of dogfish and skates 

was also assessed using a modified alimentary index (%IA):

(1)

where, IA is calculated for each prey taxon i as the product of %Fi and %Wi, and n is the 

total number of prey taxa identified in the stomach contents of dogfish and skates.
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Stable isotope analysis was used to complement stomach content data and assess the effect 

of trophic processes on dogfish and skate Hg concentrations (Shiffman et al., 2012). 

Specifically, stable nitrogen (15N/14N) isotope signatures were used to estimate time-

integrated feeding history (Michener and Kaufman, 2007), whereas carbon (13C/12C) 

isotopes were used as indicators of the initial carbon source to the marine food web, thus 

allowing for the differentiation between pelagic and benthic trophic pathways (Fry, 2006). A 

sub-sample of dogfish and skates previously selected for stomach content analysis were used 

for stable isotope measurements (smooth dogfish: n = 41; spiny dogfish: n = 107; little 

skate: n = 90; winter skate: n = 82). Isotope measurements of a sub-sample of muscle tissue 

(~ 1 mg dry weight) were performed by the Boston University Stable Isotope Laboratory 

(Boston, Massachusetts) using automated continuous-flow isotope ratio mass spectrometry 

(CF-IRMS). Previous studies on the stable isotope signatures of cartilaginous fishes 

indicated that their muscle tissue has isotopic turnover rates of 11-14 months (MacNeil et 

al., 2006; Logan and Lutcavage, 2010), and in this study, muscle samples were not pre-

treated for lipid extraction owing to the relatively low lipid content of this tissue (Hussey et 

al., 2010; Kim et al., 2011). Ratios of 15N/14N and 13C/12C are described using the standard 

delta notation (δ), expressed as the relative per mil (‰) difference between the samples and 

international standards (atmospheric nitrogen, 15Nair, and Vienna Pee Dee 

Belemnite, 13CV-PDB, respectively), and calculated using the following equation:

(2)

where, X is 15N or 13C and R is 15N/14N or 13C/12C. The recovery of internal reference 

materials (peptone and glycine) for the CF-IRMS method was 99.6% and 99.7% for nitrogen 

and carbon, respectively. The mean sample precision determined from duplicate analyses 

was 98.6% (range = 90.2-100.0%) and 99.5% (range = 93.1-100.0%) for nitrogen and 

carbon, respectively.

2.5. Data analysis

Inter-species differences in mean total Hg concentrations and isotopic signatures (δ15N and 

δ13C) among dogfish and skates were analyzed with two-way analysis of variance 

(ANOVA) models using species and sex as fixed factors, whereas differences in prey Hg 

content across taxa were examined with a one-way ANOVA model. The post hoc separation 

of mean differences in Hg and isotope values across 4 levels of target species and 4 levels of 

prey species (Hg only) were contrasted with independent Ryan-Einot-Gabriel-Welsch 

(Ryan's Q) multiple comparison tests. Prior to these analyses, data were log10-transformed to 

meet assumptions of normality and homogeneity of variance. The effects of body size, age, 

and isotopic values on the Hg concentration of dogfish, skates, and prey (size only) were 

analyzed with least-squares exponential regressions (size and age) and linear regressions 

(δ15N and δ13C). Also for dogfish and skates, analysis of covariance (ANCOVA) models 

were used to assess the effect of sex and species on Hg bioaccumulation rates, with age as 

the covariate and sex or species as the discrete explanatory variable. Lastly, multiple linear 

regression analysis was used to assess the effects of several biotic and abiotic variables on 

Hg concentrations and isotopic signatures of dogfish and skates. Five regression models 

were employed that either examined: (1) the independent effects of body size, location of 
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catch (latitude and longitude; decimal degrees), and time of catch (year and day of 

collection) on the response variables, or (2) the cumulative effects of all predictor variables, 

as determined from global and stepwise linear regression models. Small-sample, bias-

corrected Akaike's Information Criterion (AICc) and Akaike's weights (wi) were used to 

evaluate and select the optimal regression model (Burnham and Anderson, 2002):

(3)

(4)

where,  is the likelihood function of the model parameters, n is the sample size, K is the 

number of regression parameters, and Δi is equal to AICc,i – AICc,min. The model with the 

smallest AICc value (AICc,min) had the most support, and the wi value quantified the 

probability that model i was the best among the candidate models.

3. Results and Discussion

3.1. Mercury concentrations and bioaccumulation in cartilaginous fishes

Mean total Hg concentrations varied significantly among dogfish and skate species, but not 

as a function of their sex (Tables 1 and 2). Smooth dogfish had the highest mean Hg 

concentration (mean ± 1 SD = 3.3 ± 2.1 ppm), followed by spiny dogfish (1.1 ± 0.7 ppm) 

and skates (little: 0.4 ± 0.3 ppm; winter: 0.3 ± 0.2 ppm) (Fig. 2A). The Hg concentrations 

reported in this study are consistent with literature values for conspecifics and congeners 

from other geographic areas, including those collected from European and Asian waters 

(Table 3). Conversely, there is also evidence of spatial and temporal variations in target fish 

Hg content. In US coastal environments, for example, spiny dogfish collected from the 

Pacific during the early to mid-1970s had markedly higher Hg concentrations relative to 

Atlantic conspecifics (Table 3). In the northwestern Atlantic, the mean Hg content of spiny 

dogfish has ostensibly declined ~ 35% over the last several decades. Winter skate Hg 

concentrations in this study were also ~ 50% greater than levels measured in equally-sized 

conspecifics from New York commercial markets, where skates were collected from a 

relatively broad geographic area (mid- to north Atlantic; U.S. EPA, 2013). The observed 

spatio-temporal differences in fish Hg burdens are attributed to geographic variability and 

historical changes in contaminant inputs to coastal habitats (Benoit et al., 2003); the latter 

includes biota directly responding to recent reductions in point sources of Hg in the 

northeastern US (Sunderland et al., 2012). Moreover, geochemical, physicochemical, and 

ecological processes in marine coastal habitats vary over relatively small spatial and 

temporal scales, thus affecting Hg mobilization and its eventual incorporation and transfer 

through trophic pathways (Chen et al., 2008).

Total Hg concentrations in dogfish and skates were directly related to their body size and 

age (Table 4; Figs. 3 and 4), confirming the accumulation of Hg in muscle tissue. 

Multivariate regression analysis and estimates of the AICc and wi further revealed that body 
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size was the most significant factor affecting the Hg content of all species (Table 5), 

although the level of influence varied between dogfish (R2 = 0.27-0.29) and skates (R2 = 

0.08-0.10). There were also significant seasonal and annual variations in spiny dogfish and 

winter skate Hg concentrations (Table 5), but these factors contributed minimally to the 

cumulative R2-values for each model (day and year partial R2-values = 0.03-0.04). Previous 

studies purported Hg bioaccumulation in dogfish (Forrester et al., 1972; Hall et al., 1977; de 

Pinho et al., 2002; Endo et al., 2009; 2013), which is attributed to the disproportionate 

uptake of Hg relative to its low depuration rate (Maz-Courrau et al., 2012). In contrast, 

Storelli et al. (1998) found no correlation between the Hg content of three skate species 

(Raja spp.) and their respective body weight.

Total Hg concentrations varied significantly by sex in little skates when age was included as 

a covariate, such that females had increased contaminant levels at a given age relative to 

males (Table 6). Conversely, Hg concentrations did not differ between sexes in dogfish and 

winter skates (Table 6). The absence of gender-specific Hg burdens in dogfish is 

inconsistent with prior studies, and to the knowledge of the authors, has not been examined 

in skates. Endo et al. (2009; 2013) observed that male spiny dogfish (16-41 years) and star-

spotted dogfish (Mustelus manazo) (4-8 years) had higher Hg concentrations relative to 

females (S. acanthias: 18-61 years; M. manazo: 2-14 years), which is caused by the 

cessation of somatic growth in mature male dogfish. In this study, the lack of gender effects 

on dogfish Hg concentrations were likely due to the comparatively narrow age ranges 

examined in target fishes (Table 1); noting that Endo et al. (2009; 2013) reported negligible 

differences in sex-specific Hg concentrations at younger age classes.

Hg bioaccumulation rates did not differ between smooth and spiny dogfish, and similarly, 

between little and winter skates (ANCOVA: Age × Species, p = 0.06-0.16; Table 6). At a 

defined age, however, smooth dogfish and little skates had higher Hg concentrations than 

spiny dogfish and winter skates, respectively (Table 6; Fig. 4). It is well documented that 

rapid somatic growth in bony fishes reduces overall Hg burdens through growth dilution; a 

response caused by the disproportionate increase in fish size relative to Hg dietary intake 

(Wang, 2012 and references therein). Results from this study contradict growth dilution 

because of the increased Hg content of faster growing species (Collette and Klein-MacPhee, 

2002; Frisk et al., 2006). Endo et al. (2013) also obtained results that refuted Hg biodilution 

in cartilaginous fishes, such that the star-spotted dogfish had higher Hg concentrations 

compared to slower growing spiny dogfish. Differences in the growth rates between 

mustelid and squalid dogfish (M. canis: 15-20 cm TL/year; S. acanthias: 1.5-3.5 cm TL/

year; Collette and Klein-MacPhee, 2002; Stehlik, 2007) are also reflected in their metabolic 

expenditures (Mustelus norrisi: 161 mg O2/kg/hr at 26°C; S. acanthias: 92 mg O2/kg/hr at 

22°C; Brett and Blackburn, 1978; Bushnell et al., 1989; Carlson and Parsons, 2001). To 

sustain their comparatively high bioenergetic demands (i.e., growth and metabolism), 

mustelid dogfish have elevated feeding rates, expressed as % body weight consumed per day 

(Mustelus californicus: 1.3-1.6%; S. acanthias = 0.4-1.3%; Holden, 1966; Jones and Green, 

1977; San Filippo, 1996), thus concurrently increasing their dietary uptake and exposure to 

Hg. Further, differences in the food habits and Hg content of preferred prey, as discussed in 
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subsequent sections, likely obscure the Hg growth dilution response in dogfish and skates 

(Stafford and Haines, 2001).

3.2. Diet and trophic ecology of cartilaginous fishes

Direct visual analysis of smooth dogfish (n = 34), spiny dogfish (n = 57), little skate (n = 

125), and winter skate (n = 92) stomach contents revealed inter-species differences in 

feeding habits (Tables 7 and 8), and the results herein are consistent with previous diet 

analyses of the target fishes (Smith and Link, 2010). The mean standardized weight of 

stomach contents was greater in dogfish than skates (stomach content weight/whole-body 

wet weight ~ 2-3% and 0.3-0.4%, respectively), whereas skates generally had more distinct 

prey taxa in a single stomach compared to dogfish (4.2-4.5 and 2.0-3.5 unique prey/stomach, 

respectively). The results also suggest that spiny dogfish have a more restricted overall diet 

relative to smooth dogfish and skates (Tables 7 and 8); spiny dogfish consumed a total of 13 

different prey taxa, whereas 18-21 novel prey taxa were identified in the stomachs of smooth 

dogfish and skates (excluding “unidentified” categories).

Spiny dogfish mostly consumed pelagic prey (bony fish and squid), whereas smooth dogfish 

fed almost exclusively on benthic invertebrates (crustaceans and polychaetes) (Table 7). The 

dominant prey of spiny dogfish, with respect to frequency of occurrence, were butterfish, 

scup, unidentified fish, longfin squid, and cancer crabs. Butterfish also accounted for the 

largest percentage by weight of spiny dogfish stomach contents, followed by longfin squid, 

unidentified fish, scup, and silver hake. The order of importance of prey to the diet of spiny 

dogfish, as expressed by the alimentary index (%IA), were butterfish, longfin squid, and 

unidentified fish, while the remaining prey groups had %IA less than 3%. Cancer crabs, 

polychaetes, and unidentified animal tissue (including fish and crabs) were the most 

frequency encountered prey in smooth dogfish stomachs, followed by algae/detritus, and 

other decapod crustaceans. According to other measures of dietary importance, cancer crabs 

and unidentified fish were the most utilized prey resource by smooth dogfish, while all 

remaining prey were of lesser importance (%IA < 1%).

Little skates and winter skates mostly consumed benthic prey (Table 8). Amphipods were 

the most frequently observed prey in skate stomachs, followed by polychaetes and other 

crustaceans, including sand shrimp, cancer crabs, and isopods. Amphipods and polychaetes 

also accounted for a high percentage of the stomach weight in both skate species, while fish 

also contributed considerably to the stomach weight of larger winter skates (> 350 mm DW), 

including sand lance and scup. The order of prey dietary importance for skates, expressed as 

%IA, were amphipods, polychaetes, sand shrimp, and cancer crabs, while the remaining 

identifiable prey taxa had %IA less than 3%.

Stable nitrogen (δ15N) isotope signatures were used to approximate the trophic status of 

dogfish and skates (Michener and Kaufman, 2007), and mean δ15N values varied 

significantly among target fish (Table 2). Smooth dogfish had a significantly enriched δ15N 

signature relative to spiny dogfish (13.2 ± 0.7 and 11.6 ± 0.8‰, respectively), which 

corresponds to smooth dogfish occupying a higher trophic position (Fig. 2B). The depleted 

δ15N signature of spiny dogfish is attributed to the dietary contribution of low trophic level 

prey, including planktivorous forage fish (e.g., butterfish; %IA = 48.4%; Table 7) and 
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possibly ctenophores (Smith and Link, 2010), although ctenophores were not detected in 

dogfish stomachs due to their fragile tissues. Moreover, female spiny dogfish (11.7 ± 0.7‰) 

had a significantly higher δ15N value relative to male conspecifics (10.8 ± 0.4‰), thus 

explaining the species-sex interaction effect in the twoway ANOVA model (Table 2). Little 

and winter skates had significantly lower δ15N signatures than smooth dogfish, but the mean 

δ15N values between skate species did not differ (little: 12.0 ± 0.7‰; winter: 11.9 ± 1.0‰; 

Fig. 2B), suggesting that these species occupy the same, relatively low, trophic level.

Stable carbon (δ13C) isotope signatures were used to differentiate among varying sources of 

primary production to the coastal food web, and thus, distinguish between benthic and 

pelagic trophic linkages (Peterson and Howarth, 1987; France, 1995). Mean δ13C values 

ranged from -22.0 to -16.5‰ and varied significantly among dogfish and skates, but not as a 

function of their sex (Table 2; Fig. 2C). Moreover, two distinct isotopic groups were evident 

that further corroborated this study's stomach content analysis. The depleted δ13C value of 

spiny dogfish (~ -22‰) indicated a phytoplankton-based (pelagic) food web, which is 

consistent with their preferred consumption of butterfish and squid. Conversely, the more 

enriched δ13C signatures (~ -17‰) of smooth dogfish and skates suggest benthic sources of 

primary production, which is presumably derived from their consumption of epibenthic 

crustaceans and infaunal polychaetes.

Body size, location of catch (latitude and longitude), and time of catch (day of year and 

year) were the most significant factors affecting dogfish and skate isotopic signatures (Table 

5). The estimated slope coefficients for the size-δ15N relationship were positive for spiny 

dogfish and skates, indicating that older individuals forage at higher trophic levels. There 

was also an inverse relationship between body size and δ13C values in winter skates, which 

is attributed to larger skates (> 350 mm DW) consuming pelagic prey, including butterfish, 

sand lance, and squid (Table 8). Dogfish and skate isotopic signatures also exhibited 

significant spatio-temporal variations (Table 5). Specifically, δ15N and δ13C values 

increased in a northeasterly direction, in closer proximity to the mainland (“+” and “–” 

coefficient for latitude and longitude, respectively) (Fig. 1), as well as becoming more 

enriched as the sampling season progressed (“+” coefficient for day of year and year). It is 

unlikely that differences in dogfish and skate foraging ecology accounted for the observed 

spatio-temporal variations in isotopic values. It is more probable that these differences are 

the result of species-specific seasonal and annual migrations, and thus, spatio-temporal 

variability in habitat use. This is especially relevant to dogfish because of their expansive 

coastal migrations (Collette and Klein-MacPhee, 2002). Moreover, the added effect of site-

specific environmental conditions (e.g., spatially-explicit salinity profiles, terrestrially-

derived and increased nutrient loading along the immediate coastline) can have pronounced 

effects on the isotopic signatures of the target fishes (Pruell et al., 2006; Michener and 

Kaufman, 2007).

3.3. Trophic effects on cartilaginous fish mercury concentrations

Representative prey of dogfish and skates were measured for total Hg content to assess their 

potential effect on target fish Hg levels (Table 1). Mean prey Hg concentrations varied 

significantly across taxa (Table 2; Fig. 2D), such that scup had the highest Hg content (0.29 
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± 0.18 ppm), followed by crabs (0.16 ± 0.11 ppm), squid (0.11 ± 0.04 ppm), and butterfish 

(0.07 ± 0.4 ppm). Prey Hg concentrations were also positively related to body size (Table 4; 

Fig. 5), again indicating the bioaccumulation of the contaminant. Inter-species differences in 

dogfish and skate Hg concentrations are adequately explained by the Hg content of their 

preferred prey. In this study, smooth dogfish had the highest Hg concentration among target 

fishes, and this species preferentially consumed cancer crabs with a mean body size of 55 

mm CW, i.e., the mean size of crabs recovered from smooth dogfish stomachs (Table 7). 

Crabs of this relatively large size have an estimated Hg content of 0.10 ppm, as determined 

from the Hg-size regression model (Table 4). It is important to reiterate that crabs in this 

study were processed as whole bodies, whereas the Hg content of other prey was measured 

in excised muscle tissue. This discrepancy in tissue-type likely underestimates the Hg 

concentration of cancer crabs. For example, the Hg content of blue crab (Callinectes 

sapidus) muscle tissue is ~ 30% greater than the Hg burden of whole-body samples (Adams 

and Engel, 2014). Spiny dogfish had a moderate level of Hg contamination, and this species 

relied on prey that had both low and high Hg concentrations; in order of dietary importance, 

butterfish (Hg = 0.06 ppm for 108 mm TL fish), longfin squid (Hg = 0.17 ppm for 168 mm 

ML squid), and scup (Hg = 0.11 ppm for 94 mm TL fish) (Tables 4 and 7). Finally, little and 

winter skates had the lowest Hg concentrations observed in this study, and these species fed 

upon amphipods, polychaetes, and small cancer crabs (< 20 mm CW). Payne and Taylor 

(2010) measured the Hg content of amphipods and polychaetes collected from the 

Narragansett Bay estuary (Fig. 1), each with a mean Hg concentration of 0.09 ppm 

(converted from wet weight). It is important to note that such prey species would likely have 

reduced Hg burdens in Rhode Island/Block Island Sound, as the environment is further 

removed from anthropogenic influences (Taylor et al., 2012). Moreover, the estimated Hg 

content of cancer crabs consumed by skates was 0.05 ppm (8-18 mm CW) (Tables 4 and 8). 

These collective results indicate that dogfish and skates are highly responsive to the Hg 

content of their preferred prey.

Stable isotope (δ15N and δ13C) analysis was coupled with total Hg data to provide insight 

into the effects of trophic processes on Hg contamination in dogfish and skates. There were 

significant positive relationships between Hg and δ15N values measured for spiny dogfish 

and skates (Table 4; Fig. 3); hence verifying an increase in intra-specific Hg concentrations 

at higher trophic levels. These results are consistent with previous analyses of the trophic 

effects on marine fish Hg concentrations, including several species of coastal and oceanic 

sharks (Adams et al., 2003; Cai et al., 2007; Suk et al., 2009; Maz-Courrau et al., 2012). 

Significant positive relationships were also observed between Hg and δ13C values measured 

for dogfish and little skates (Table 4; Fig. 3). This result suggests that benthic associations 

may increase biotic Hg concentrations via dietary intake or proximate contact with Hg-

contaminated sediments, as reported elsewhere (Storelli et al., 1998; Hosseini et al., 2013). 

Other studies, however, indicate that pelagic-feeding organisms (depleted δ13C signatures) 

have increased Hg exposure (Chen et al., 2009; Kim et al., 2012). Ultimately, the fate of Hg 

through feeding pathways depends on the number of trophic steps and consumer's utilization 

of different prey assemblages (Kim et al., 2012), which likely vary across discrete aquatic 

ecosystems.
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3.4. Cartilaginous fish mercury contamination from a human health perspective

The Hg concentrations in some fish may be sufficiently high to adversely affect human 

health (McMichael and Butler, 2005; Willett, 2005), and human exposure to Hg occurs 

mainly through dietary intake of contaminated fish (Hightower and Moore, 2003). Public 

health officials affiliated with federal and state agencies respond to the threat of fish Hg 

contamination by reporting criteria for the safe consumption of fishery products, including 

the US FDA and US EPA threshold levels of 1.0 and 0.3 ppm Hg wet weight, respectively. 

Cartilaginous fishes are becoming increasingly utilized as a human food source given the 

precipitous declines in traditional fisheries (NEFSC, 1999; 2006; NMFS, 2010), thus 

underscoring the importance of research focused on Hg contamination in these species. For 

the purposes of comparing the results of this study to the US FDA and US EPA action 

levels, Hg data originally expressed as dry weight were converted to wet weight assuming 

75% water content of the muscle tissue (Bosch et al., 2013). Accordingly, 24.1% of smooth 

dogfish, 1.6% of spiny dogfish, and 0.0% of skates exceeded the US FDA criterion of 1.0 

ppm Hg wet weight. For the more conservative US EPA threshold (0.3 ppm Hg), 87.0% of 

smooth dogfish, 32.0% of spiny dogfish, and < 2% of skates were above this value. The Hg-

length exponential regression models also estimated that smooth and spiny dogfish obtain 

Hg concentrations of 0.3 ppm at relatively small body sizes (57.3 and 70.9 cm TL, 

respectively), whereas skates do not approach this threshold level even at their maximum 

body sizes (39.0 and 133.9 cm DW, respectively) (Table 4).

4. Conclusions

In this study, total Hg concentrations were measured in dogfish and skates, and results were 

evaluated relative to species-specific life history traits. The total Hg content of dogfish and 

skate muscle tissue was positively related to body size and age, indicating the 

bioaccumulation of the contaminant. Moreover, Hg concentrations were significantly 

elevated in smooth dogfish, followed by spiny dogfish and skates. The increased Hg content 

of smooth dogfish was attributed to its upper trophic level status, consumption of Hg-

enriched prey (e.g., large cancer crabs), and relatively high bioenergetic requirements. 

Comparatively, spiny dogfish had a reduced trophic status owing to the dietary contribution 

of butterfish, yet demonstrated a moderate level of Hg contamination because this species 

also consumed high Hg prey (e.g., squid and scup). Little and winter skates were basal 

consumers and had the lowest Hg concentrations because they fed exclusively on Hg-

depleted prey (e.g., amphipods, small decapods, and polychaetes). The collective results 

from the analysis of stable isotopes further indicated that Hg biomagnifies across successive 

trophic levels and foraging in the benthic trophic pathway may increase Hg exposure. From 

a human health perspective, the consumption of smooth dogfish and, to a lesser extent, spiny 

dogfish pose a human health risk, and therefore, justifies stringent consumption advisories 

for these species. Conversely, the consumption of skates does not present a significant risk 

to human health. It is the recommendation of the authors that this information be effectively 

communicated to the general public so that citizens can make informed decisions regarding 

the safe consumption of fishery resources.
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Research highlights

► Mercury bioaccumulates in the cartilaginous fishes examined in this study.

► Mercury content was higher in smooth dogfish, followed by spiny dogfish and 

skates.

► Trophic structure and diet preferences affect dogfish and skate mercury content.

► Eating dogfish may adversely affect human health, whereas skates present low 

risk.

Taylor et al. Page 18

Mar Environ Res. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig 1. 
Map of Rhode Island Sound, Block Island Sound, and Narragansett Bay (Rhode Island, 

USA) with points denoting collection sites of target fish (smooth dogfish, spiny dogfish, 

little skate, and winter skate) and prey (scup, butterfish, longfin squid, and cancer crabs).
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Fig. 2. 
Total mercury (Hg) concentrations (ppm dry weight) of target fish (A) and prey (D), and 

stable nitrogen (B) and carbon (C) isotope signatures (δ15N and δ13C; ‰) of target fish. Box 

plots illustrate the median, 1st and 3rd quartiles, and maximum and minimum values. Open 

squares and circles represent means for female and male target fish, respectively, and solid 

triangles represent means for prey. Target fish include smooth dogfish, spiny dogfish, little 

skate, and winter skate, and prey include scup, cancer crabs, longfin squid, and butterfish.
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Fig. 3. 
Total mercury (Hg) concentrations (ppm dry weight) of target fish as a function of body size 

(total length or disk width; mm), and stable nitrogen and carbon isotope signatures (δ15N 

and δ13C; ‰). Target fish include smooth dogfish (A-C), spiny dogfish (D-F), little skates 

(G-I), and winter skates (J-L). For significant relationships, exponential and linear 

regression models were fit to size and isotope data, respectively.
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Fig. 4. 
Total mercury (Hg) concentrations (ppm dry weight) of dogfish (A) and skates (B) as a 

function of age. Smooth dogfish and little skates are denoted by solid circles, whereas spiny 

dogfish and winter skates are represented by open circles. Exponential regression models 

were fit to species-specific data.
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Fig. 5. 
Total mercury (Hg) concentrations (ppm dry weight) of scup (A), butterfish (B), longfin 

squid (C), and cancer crabs (D) as a function of body size (total length, mantle length, or 

carapace width; mm). Exponential regression models were fit to the data.
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Table 4

Summary statistics for univariate (non-linear) exponential and linear regression models used to examine the 

effect of body size [mm; total length (TL), disk width (DW), mantle length (ML), and carapace width (CW)], 

age (years), and stable nitrogen (δ15N) and carbon (δ13C) isotope signatures on biota total mercury (Hg) 

concentrations (ppm dry weight).

Species/Relationship Regression model F (df) p R2

Smooth dogfish

    Hg–TL log(Hg) = 1.47E−3 × TL – 0.763 19.56 (1, 53) < 0.0001 0.273

    Hg–Age log(Hg) = 0.115 × Age + 0.200 17.74 (1, 53) < 0.0001 0.252

    Hg–δ15N Hg = 0.516 × δ15N – 3.841 2.53 (1, 40) 0.120 0.061

    Hg–δ13C Hg = 1.205 × δ13C + 23.32 4.10 (1, 40) < 0.05 0.095

Spiny dogfish

    Hg–TL log(Hg) = 1.99E−3 × TL – 1.332 49.14 (1, 123) < 0.0001 0.287

    Hg–Age log(Hg) = 0.081 × Age – 0.696 56.70 (1, 123) < 0.0001 0.317

    Hg–δ15N Hg = 0.555 × δ15N – 5.276 72.16 (1, 105) < 0.0001 0.410

    Hg–δ13C Hg = 0.342 × δ13C + 8.654 21.82 (1, 105) < 0.0001 0.173

Little skate

    Hg–DW log(Hg) = 4.56E3 × DW – 1.698 18.51 (1, 172) < 0.0001 0.098

    Hg–Age log(Hg) = 0.050 × Age – 0.792 9.66 (1, 172) < 0.005 0.054

    Hg–δ15N Hg = 0.153 × δ15N – 1.439 15.01 (1, 87) < 0.0005 0.149

    Hg–δ13C Hg = 0.231 × δ13C + 4.203 8.93 (1, 87) < 0.005 0.094

Winter skate

    Hg–DW log(Hg) = 6.93E−4 × DW – 0.849 13.24 (1, 147) < 0.0005 0.083

    Hg–Age log(Hg) = 0.020 × Age – 0.750 11.95 (1, 147) < 0.001 0.076

    Hg–δ15N Hg = 0.044 × δ15N – 0.238 4.41 (1, 79) < 0.05 0.054

    Hg–δ13C Hg = 3.48E−2 × δ13C + 0.893 0.58 (1, 79) 0.450 0.007

Scup

    Hg–TL log(Hg) = 3.29E−3 × TL – 1.283 338.6 (1, 125) < 0.0001 0.732

Butterfish

    Hg–TL log(Hg) = 3.63E−3 × TL – 1.636 58.38 (1, 86) < 0.0001 0.407

Squid

    Hg–ML log(Hg) = 2.86E−3 × ML – 1.246 57.18 (1, 83) < 0.0001 0.411

Cancer crab

    Hg–CW log(Hg) = 7.36E−3 × CW – 1.399 86.35 (1, 40) < 0.0001 0.689
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Table 6

Summary statistics for analysis of covariance (ANCOVA) models used to examine the effect of sex and 

species on intra- and inter-specific total mercury bioaccumulation rates (ppm dry weight as function of age).

Factor Age × Sex Age Sex

F (df) p F (df) p F (df) p

Smooth dogfish 1.63 (1) 0.208 17.25 (1) < 0.0001 0.08 (1) 0.778

Spiny dogfish 1.17 (1) 0.282 53.44 (1) < 0.0001 1.65 (1) 0.202

Little skate 0.38 (1) 0.539 17.75 (1) < 0.0001 7.82 (1) < 0.01

Winter skate 0.59 (1) 0.443 10.43 (1) < 0.005 0.52 (1) 0.473

Factor Age × Species Age Species

F (df) p F (df) p F (df) p

Dogfishes 2.01 (1) 0.158 67.68 (1) < 0.0001 168.02 (1) < 0.0001

Skates 3.53 (1) 0.061 17.09 (1) < 0.0001 35.55 (1) < 0.0001
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