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Abstract

Genetically attenuated microorganisms, pathogens, and some commensal bacteria can be engineered

to deliver recombinant heterologous antigens to stimulate the host immune system, while still offer-

ing good levels of safety. A key feature of these live vectors is their capacity to stimulate mucosal as

well as humoral and/or cellular systemic immunity. This enables the use of different forms of vacci-

nation to prevent pathogen colonization of mucosal tissues, the front door for many infectious agents.

Furthermore, delivery of DNA vaccines and immune system stimulatory molecules, such as cyto-

kines, can be achieved using these special carriers, whose adjuvant properties and, sometimes, inva-

sive capacities enhance the immune response. More recently, the unique features and versatility of

these vectors have also been exploited to develop anti-cancer vaccines, where tumor-associated anti-

gens, cytokines, and DNA or RNA molecules are delivered. Different strategies and genetic tools are

constantly being developed, increasing the antigenic potential of agents delivered by these systems,

opening fresh perspectives for the deployment of vehicles for new purposes. Here we summarize the

main characteristics of the different types of live bacterial vectors and discuss new applications of

these delivery systems in the field of vaccinology.

Key words: bacterial vector, vaccine delivery system, DNA vaccine, cancer vaccine, antigen presen-

tation.

Introduction

The strategy of using live bacterial cells as vehicles to

deliver recombinant antigens has emerged over the past

two decades as an interesting alternative for the develop-

ment of new vaccines. The evolution of genetic engineering

techniques has enabled the construction of recombinant mi-

croorganisms capable of expressing heterologous proteins

in different cellular compartments, improving their anti-

genic potential for the production of vaccines against vi-

ruses, bacteria, and parasites.

Intrinsic characteristics of these microorganisms,

such as the lipopolysaccharides in Gram-negative bacteria,

or lipoteichoic acid in Gram-positive bacteria, along with

other pathogen-associated molecular patterns (PAMPs),

are recognized by pattern recognition receptors (PRRs),

which mediate different signaling pathways, resulting in

the production of inflammatory cytokines and expression

of other antimicrobial genes (Janeway and Medzhitov,

2002). This innate immune response to bacterial pathogens

and its influence on the adaptive immune system makes at-

tenuated live microorganisms extremely efficient vehicles

for stimulation of specific and long-term immune re-

sponses against carried antigens. Hence, besides produc-

tion and delivery of the antigens, the innate features of these

vectors can enable them to act as useful immunostimulating

adjuvants.

The goal of this review is to bring together the main

features and the multiple different applications of LBVs as

a highly versatile delivery system.
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Basic Features of LBVs

Microorganisms used as LBVs

Genetic engineering techniques have made it possible

to identify and delete important virulence genes, enabling

the attenuation of pathogenic bacteria and creating vectors

unable to revert to their virulent forms. Several mutations

have been described for different serotypes of Salmonella

enterica (serovars Typhi and Typhimurium, hereafter re-

ferred to as S. typhi and S. typhimurium, respectively), with

the most frequently used being the aroA mutation (as well

as aroC and aroD), which blocks the ability of the microor-

ganism to synthesize aromatic compounds. This renders the

bacteria unable to reproduce in the host, while retaining the

capacity to invade the small intestine and to persist in in-

fecting long enough to produce the antigen and elicit an ef-

fective immune response (Cárdenas and Clements, 1992).

Other useful mutations that can attenuate pathogenicity af-

fect biosynthesis of the nucleotides adenine (pur) and gua-

nine (guaBA), and outer membrane proteins C and F

(ompC, ompF), as well as expression of the cAMP receptor

(cya/crp), the conversion of UDP-galactose to

UDP-glucose (galE), DNA recombination and repair

(recA, recBC), and regulation of virulence genes (phoP,

phoQ) (Mastroeni et al., 2001).

Listeria monocytogenes infection (listeriosis) is a rare

and preventable foodborne illness that can cause

bacteremia, meningitis, fetal loss, and death, with the risk

being greatest for older adults, pregnant women, and per-

sons with immunocompromising conditions. Attenuation

of Listeria monocytogenes for vaccine purposes has been

achieved using auxotrophic mutants (Zhao et al., 2005) or

deletion of virulence factors such as the genes actA and

internalin B (inlB) (Brockstedt et al., 2004).

Lactic acid bacteria (LAB) such as Lactococcus lactis

and some strains of Lactobacillus are attractive candidates

for the delivery of heterologous antigens, not least due to

their GRAS (Generally Regarded As Safe) status, as well as

their ability to stimulate mucosal and systemic immune re-

sponses against recombinant epitopes associated with them

(Wells and Mercenier, 2008). Moreover, studies have indi-

cated that certain species of Lactobacillus show a non-

specific immune system adjuvant effect that is related to ac-

tivation of macrophages (Perdigón et al., 1988). However,

the type of stimulus generated appears to be

strain-dependent, and this is not well understood (Seegers

2002). Difficulties in the use of members of this class of

bacteria as efficient vectors are related to a limited under-

standing of their mechanisms of action in the immune sys-

tem, as well as to selection of the most suitable means of

heterologous antigen expression (Pouwels et al., 1996). Im-

munization with Lactococcus lactis remains a challenge, as

it generally fails to induce potent immune responses when

administered by the oral route (Bahey-El-Din and Gahan,

2011).

The reemergence of whooping cough in places with

wide vaccine coverage demands improved immunization

techniques, and live attenuated Bordetella pertussis is an

interesting candidate for intra-nasal vaccination (Feunou et

al., 2010). Live B. pertussis is already undergoing clinical

trials in adults, targeting new-born babies. Recombinant

LBV based on attenuated B. pertussis has also been pro-

posed, especially as a carrier for antigens from causative

agents of respiratory diseases (Li et al., 2011).

Other bacterial species that have been studied for

heterologous antigen delivery include Streptococcus

gordonii (Lee 2003; Oggioni et al., 1995), Vibrio cholerae

(Kaper and Levine 1990; Silva et al., 2008), Mycobacte-

rium bovis (BCG) (Bastos et al., 2009; Nasser Eddine and

Kaufmann, 2005), Yersinia enterocolitica (Leibiger et al.,

2008), and Shigella flexnery (Barry et al., 2006; Sizemore

et al., 1995). Relatively new species that have been investi-

gated for use as vaccine vectors include Pseudomonas

aeruginosa (Epaulard et al., 2006), Bacillus subtilis (Duc et

al., 2003; Isticato et al., 2001; Paccez et al., 2007), and My-

cobacterium smegmatis (Lü et al., 2009). In the veterinary

field, other bacteria have been used to develop a double

protective immune response, against a heterologous anti-

gen and against the vector itself; these include

Erysipelothrix rhusiopathiae (Ogawa et al., 2009),

Mycoplasma gallisepticum (Muneta et al., 2008), and

Corynebacterium pseudotuberculosis (Moore et al., 1999).

A number of live attenuated bacterial vaccines are licensed

for veterinary use, including Lawsonia intracellularis,

Streptococcus equi (deleted in the aroA gene),

Chlamydophila abortus, Mycoplasma synoviae,

Mycoplasma gallisepticum (temperature-sensitive mu-

tants), and Bordetella avium. Most of the strains were se-

lected as attenuated, but were not precisely mutated to

promote the attenuation and do not carry heterologous anti-

gens (Meeusen et al., 2007).

Some examples of the main microorganisms used for

the development of live bacterial vector vaccines are shown

in Table 1, including some LBV vaccines that have reached

Phase I clinical trials.

Bacterial spores as vaccine vectors

Recent research with Bacillus subtilis has demon-

strated the possibility of antigen delivery and induction of

an immune response using bacterial spores as vectors (Duc

et al., 2003; Isticato et al., 2001). Despite poor

immunogenicity due to low levels of antigen expression in

spores, and their short residence time in the gastrointestinal

tract of the host after oral vaccination, their greater resis-

tance to adverse conditions for long periods, heat resis-

tance, probiotic effects, low production cost, and GRAS

status make the spores of B. subtilis attractive for use in de-

livery of vaccine antigens (Duc et al., 2003; Ferreira et al.,

2005).

1118 Silva et al.



Live bacterial vectors 1119
T

a
b

le
1

-
E

x
am

p
le

s
o
f

li
v
e

b
ac

te
ri

al
v
ac

ci
n
e

v
ec

to
rs

u
n
d
er

d
ev

el
o
p
m

en
t

fo
r

u
se

ag
ai

n
st

d
if

fe
re

n
t

cl
as

se
s

o
f

p
at

h
o
g
en

s
o
r

tu
m

o
rs

.

V
ec

to
r/

at
te

n
u
at

io
n

o
r

co
m

p
le

m
en

ta
ti

o
n

A
n
ti

g
en

/
ta

rg
et

A
n
im

al
m

o
d
el

/I
n
o
cu

la
ti

o
n

ro
u
te

D
et

ec
te

d
im

m
u
n
e

re
sp

o
n
se

R
ef

er
en

ce

B
a
ci

ll
u
s

C
a
lm

et
te

-G
u
er

in
/

rB
C

G
3
0

O
v
er

ex
p
re

ss
io

n
A

g
8
5
b

/
M

yc
o
b
a
ct

er
iu

m
tu

b
er

cu
lo

si
s

H
u
m

an
/

In
tr

ad
er

m
al

C
D

4
+

,
C

D
8
+

T
ce

ll
p
ro

li
fe

ra
ti

o
n

(H
o
ft

et
a
l.

,
2
0
0
8
)*

B
a
ci

ll
u
s

su
b
ti

li
s

/
p
ro

b
io

ti
c

L
T

B
/

E
sc

h
er

ic
h
ia

co
li

M
o
u
se

/O
ra

l
Ig

A
,
Ig

G
(P

ac
ce

z
et

a
l.

,
2
0
0
7
)

B
o
rd

et
el

la
p
er

tu
ss

is
B

P
Z

E
1

/
af

fe
ct

ed
ac

ti
v
it

y
o
f

th
re

e
m

a-

jo
r

to
x
in

s

S
P

7
0

/
en

te
ro

v
ir

u
s

7
1

(E
V

7
1
)

M
o
u
se

/
In

tr
an

as
al

Ig
G

(H
o

et
a
l.

,
2
0
0
8
)*

L
a
ct

o
b
a
ci

ll
u
s

ca
se

i
/

n
o
n

p
at

h
o
g
en

ic
E

7
/

H
P

V
1
6

M
o
u
se

/
O

ra
l,

su
b
cu

ta
n
e-

o
u
s,

in
tr

am
u
sc

u
la

r

T
h
1
,
C

T
L

(A
d
ac

h
i

et
a
l.

,
2
0
1
0
)

L
a
ct

o
co

cc
u
s

la
ct

is
/

n
o
n

p
at

h
o
g
en

ic
M

S
A

2
/

P
la

sm
o
d
iu

m
fa

lc
ip

a
ru

m
R

ab
b
it

/
O

ra
l

an
d

n
as

al
Ig

A
,
Ig

G
,
T

h
(R

am
as

am
y

et
a
l.

,
2
0
0
6
)

L
is

te
ri

a
m

o
n
o
cy

to
g
en

es
/D

el
et

ed
g
en

es
fo

r
D

-a
la

n
in

e
sy

n
-

th
es

is

G
ag

/
H

IV
R

h
es

u
s

m
o
n
k
ey

/
O

ra
l

an
d

in
tr

am
u
sc

u
la

r

Ig
G

,
T

h
1
/T

h
2

(J
ia

n
g

et
a
l.

,
2
0
0
7
)

L
is

te
ri

a
m

o
n
o
cy

to
g
en

es
B

U
G

8
7
6

/�
a
ct

A
(a

ct
in

p
o
ly

m
er

iz
a-

ti
o
n
)

L
A

C
K

/
L

ei
sh

m
a
n
ia

m
a
jo

r
M

o
u
se

/
O

ra
l

an
d

in
tr

ap
er

it
o
n
ea

l

T
h
1

(S
o
u
ss

i
et

a
l.

,
2
0
0
2
)

L
is

te
ri

a
m

o
n
o
cy

to
g
en

es
X

F
L

7
/

C
u
lt

u
re

A
tt

en
u
at

ed
C

h
em

-

ic
al

ly
se

le
ct

ed

H
P

V
-1

6
E

7
/

C
er

v
ix

ca
rc

in
o
m

a
H

u
m

an
/

In
tr

av
en

o
u
s

H
P

V
-1

6
E

7
-s

p
ec

if
ic

T
ce

ll
re

-

sp
o
n
se

s

(M
ac

ia
g

et
a
l.

,
2
0
0
9
)*

S
a
lm

o
n
el

la
ty

p
h
i

w
il

d
ty

p
e

T
y
2

V
i-

/�
g
a
lE

(g
al

ac
to

se

ep
im

er
as

e)

G
ag

,
g
p
1
2
0

/
H

IV
M

o
u
se

/
In

tr
an

as
al

Ig
A

,
Ig

G
,
C

T
L

(F
en

g
et

a
l.

,
2
0
0
8
)

S
a
lm

o
n
el

la
ty

p
h
i

T
y
2
1
a

/
g
a
lE

-
O

-P
s

/
S
h
ig

el
la

d
ys

en
te

ri
a
e

M
o
u
se

/
In

tr
ap

er
it

o
n
ea

l
Ig

G
(X

u
et

a
l.

,
2
0
0
7
)*

*

S
a
lm

o
n
el

la
ty

p
h
i

E
sc

h
er

ic
h
ia

co
li

E
T

E
C

L
T

-B
H

u
m

an
/

O
ra

l
Ig

G
o
r

Ig
A

(K
h
an

et
a
l.

,
2
0
0
7
)

*

S
a
lm

o
n
el

la
ty

p
h
i

T
y2

1
a

O
p
rF

-O
p
rI

fu
si

o
n

/
P

.
a
er

u
g
in

o
sa

H
u
m

an
/

O
ra

l,
n
as

al
an

d

sy
st

em
ic

/

Ig
G

,
Ig

A
(B

u
m

an
n

et
a
l.

,
2
0
1
0
)

*

S
a
lm

o
n
el

la
ty

p
h
i

T
y2

1
a

u
re

as
e

o
r

H
P

0
2
3
1

/
H

el
ic

o
b
a
ct

er
p
yl

o
ri

H
u
m

an
/

O
ra

l
C

D
4

+
T

ce
ll

(A
eb

is
ch

er
et

a
l.

,
2
0
0
8
)*

S
a
lm

o
n
el

la
ty

p
h
im

u
ri

u
m

S
L

7
2
0
7

/
a
ro

A
-
(a

ro
m

at
ic

sy
n
th

e-

si
s)

G
ly

co
p
ro

te
in

S
(D

N
A

v
ac

ci
n
e)

/
T

ra
n
sm

is
si

b
le

g
as

tr
o
en

te
ri

ti
s

v
ir

u
s

M
o
u
se

/O
ra

l
Ig

A
,
Ig

G
(Y

an
g

et
a
l.

,
2
0
0
9
)

S
a
lm

o
n
el

la
ty

p
h
im

u
ri

u
m

S
L

3
2
6
1

/a
ro

A
m

u
ta

n
t

S
m

1
4

/
S
ch

is
to

so
m

a
m

a
n
so

n
i

M
o
u
se

/
O

ra
l

Ig
G

(P
ac

h
ec

o
et

a
l.

,
2
0
0
8
)

S
a
lm

o
n
el

la
ty

p
h
im

u
ri

u
m

/
�

cr
p
-2

8
,

�
as

d
A

1
6

P
sp

A
/

S
.
p
n
eu

m
o
n
ia

e
as

se
co

n
d
ar

y
in

fe
ct

io
n

af
te

r
in

-

fl
u
en

za
in

fe
ct

io
n

M
o
u
se

/
O

ra
l

Ig
G

(T
h
1
/T

h
2
).

,
Ig

A
(S

eo
et

a
l.

,
2
0
1
2
)

S
h
ig

el
la

fl
ex

n
er

i
2
a,

S
.
so

n
n
ei

an
d

S
.
d
ys

en
te

ri
a
e

1
/

�
g
u
a
B

A

(g
u
an

id
in

e
sy

n
th

es
is

)

M
u
lt

ip
le

E
T

E
C

s
/

S
h
ig

el
la

an
d

E
.
co

li
G

u
in

ea
p
ig

/
In

tr
an

as
al

Ig
G

,
Ig

A
(B

ar
ry

et
a
l.

,
2
0
0
6
)

S
tr

ep
to

co
cc

u
s

g
o
rd

o
n
ii

R
JM

4
/

co
m

m
en

sa
l

P
er

tu
ss

is
to

x
in

(P
T

)
/

B
o
rd

et
el

la
p
er

tu
ss

is
M

o
u
se

/
O

ra
l

Ig
A

(L
ee

et
a
l.

,
2
0
0
2
)

V
ib

ri
o

ch
o
le

ra
e

C
V

D
1
0
3
-H

g
R

.
/c

tx
A

-
A

(s
u
b
u
n
it

A
o
f

ch
o
l-

er
a

to
x
in

)

In
ti

m
in

/
E

sc
h
er

ic
h
ia

co
li

R
ab

b
it

/O
ra

l
Ig

A
(K

el
le

r
et

a
l.

,
2
0
1
0
)

V
ib

ri
o

ch
o
le

ra
/

�
C

T
A

C
T

-B
/

E
sc

h
er

ic
h
ia

co
li

E
T

E
C

M
o
u
se

,
ra

b
b
it

/
O

ra
l

in
tr

an
as

al

Ig
G

,
Ig

A
(R

o
la

n
d

et
a
l.

,
2
0
0
7
)*

*

Y
er

si
n
ia

en
te

ro
co

li
ti

ca
/

�
Y

o
p
P

(o
u
te

r
m

em
b
ra

n
e

p
ro

te
in

)
L

is
te

ri
o
ly

si
n

(L
L

O
)

/
L

.
m

o
n
o
cy

to
g
en

es
M

o
u
se

/
O

ra
l

S
p
ec

if
ic

C
D

8
T

ce
ll

s
(L

ei
b
ig

er
et

a
l.

,
2
0
0
8
)

*
P

h
as

e
1

cl
in

ic
al

tr
ia

l.

*
*
P

re
cl

in
ic

al
p
h
as

e.



Paccez and colleagues demonstrated that changes in

the antigen expression system can increase the immune re-

sponse (Paccez et al., 2007). An episomal expression cas-

sette using a promoter inducible under stress conditions

increased the concentrations of specific IgG and S-IgA an-

tibodies against the model antigen in mice. Zhou and co-

workers reported that the use of spores of B. subtilis to de-

liver the antigen Tp22.3 by oral immunization conferred

45% protection in challenge assay with the parasite

Clonorchissinensis in mice (Zhou et al., 2008). Uyen and

colleagues reported that use of the model antigen fragment

C of tetanus toxin (FCTT) expressed on the surface of

spores stimulated a Th1 response, while expression within

the germinating spores led to a Th2 response (Uyen et al.,

2007). Nasal immunization with the antigen expressed on

the spore surface needed 10 times fewer spores to induce

the same level of antibodies, compared to oral immuniza-

tion (Uyen et al., 2007).

Systemic and local immune responses to LBVs

As antigen delivery systems, live vectors can readily

induce a wide range of immune responses. Bacterial vec-

tors exhibit a natural tropism for antigen-presenting cells

(APCs), and therefore promote an antigen exposure to stim-

ulate an immune response (Shata et al., 2000). The bacte-

rium Salmonella enterica, which is the most widely studied

LBV, invades the M cells of the intestine and then infects

macrophages (Jones et al., 1995), so that the expressed

heterologous antigens are presented to the host immune

system. Dendritic cells, which represent another class of

APCs, capture Salmonella in the lamina propria and can

also sensitize the host immune system (Rescigno et al.,

2001).

The conserved molecular patterns of microorgan-

isms, such as LPS, specific nucleotide sequences, pepti-

doglycans, and flagellin are recognized by specific

receptors (PRRs). The families of these receptors include

the cell surface Toll-like receptors (TLRs), C-type lectin re-

ceptors (CLRs), and families of cytoplasmic proteins

(NLR, RLRs) (Netea and van der Meer, 2011). During

pathogen invasion across the layer of epithelial cells, they

are recognized by these cells or by the immune system cells

underneath. The recognition of the microorganisms,

whether intracellular or extracellular, occurs through the

PRR receptors and mediates a series of immune system sig-

naling processes. As result, the transcription factor NF-��

is activated, together with other mechanisms that induce the

production of pro-inflammatory cytokines and chemo-

kines. These molecules recruit the APCs and are the key

molecules linking the innate and adaptive immune systems

(Miyaji et al., 2011). Progress has been made in under-

standing the interaction of PAMPs with the intracellular

host receptors and the role of autophagy as a mechanism of

pathogen clearance. This results in immune system signal-

ing and further presentation of antigens, ultimately stimu-

lating cellular and humoral responses mediated by CD4+

and CD8+ lymphocytes (Kuballa et al., 2012; Yano and

Kurata, 2011).

The chosen vector can directly influence the type of

immune response that will be induced. Attenuated

intracellular pathogens, such as Salmonella, Listeria, and

M. tuberculosis, are able to stimulate a strong cellular im-

mune response (Flesch et al., 1998) because they can sur-

vive within macrophages after being phagocytosed. Many

of the molecular mechanisms used by these bacteria to sur-

vive within host cells are well known. They act by slowing

the maturation of phagosomes and inhibiting their fusion

with vesicles containing microbicidal substances (Jones et

al., 1995), or by evading from inside the phagocytic vesicle

directly to the cytoplasm, as shown by the bacterium L.

monocytogenes (Portnoy et al., 1992).

An important advantage of using live bacteria as vac-

cines is the possibility of exploiting the immune response

of a special physiological compartment, namely the mu-

cosal system. Vaccines delivered by mucosal routes are de-

signed to stimulate local and systemic immune responses,

while formulations that employ other inoculation routes

predominantly stimulate systemic immunity. Mucosal

route vaccination strategies are generally associated with

reduced side effects, offer easier administration, and can re-

duce the costs of production and implementation

(Cortes-Perez et al., 2007; Gentschev et al., 2002).

Although the different mucosal sites are spatially

compartmentalized, they are immunologically connected,

so that immune responses induced in one site can also be

observed in another distant mucosal tissue (Pavot et al.,

2012). The secretion of IgA and IgM antibodies constitutes

the major effector response exhibited by the mucosa-

associated lymphoid tissues (MALT). Since more than

90% of infections in humans begin at mucosal sites (Bouvet

and Fischetti, 1999), a line of defense in these tissues is de-

sirable for a higher level of protection, and this can be more

easily achieved by mucosal vaccination.

Pathogenic bacteria are particularly well adapted to

the mucosal surface, where most of them initiate the infec-

tion process. Because of this, certain species of attenuated

pathogenic bacteria have been extensively studied for the

purpose of vaccine development. Amongst the most used

are attenuated mutants of Salmonella enterica serovar

Typhi or Typhimurium (Cárdenas and Clements, 1992;

Galen et al., 2009; Spreng et al., 2006) and Listeria

monocytogenes (Bruhn et al., 2007. Although some live at-

tenuated vaccine strains have been licensed for oral admin-

istration, such as the typhoid vaccine S. typhi Ty21a and the

Mycobacterium bovis vaccine BCG, Vibrio cholerae

CVD103-HgR (Levine et al., 1988) remains as the only re-

combinant live oral vaccine licensed until now.

Administration of LBV vaccines is mostly via the

nose or mouth, although the mucosa of the urogenital tract

is also used. Some researchers argue that the respiratory
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route offers advantages over the oral route, since it avoids

the acidic and proteolytic environment of the stomach

(Cortes-Perez et al., 2007; Locht 2000). In addition, intra-

nasal vaccination generally induces stronger local and sys-

temic immune responses when compared to oral

vaccination (Locht 2000). For example, Cortes-Perez et al.

(2007) reported higher production of IFN-� after nasal ad-

ministration of a vaccine based on lactic acid bacteria car-

rying the antigen E7 of human papillomavirus type 16,

compared to immunization by the oral route (19). Nonethe-

less, concerns remain regarding use of the nasal immuniza-

tion route employing live organisms or powerful adjuvants.

Heterologous Antigen Delivery by LBVs

Antigen expression systems and stability

The form of antigen delivery seems to have a major

impact on the type and magnitude of the immune response

of the vaccinated organism. Kaufmann and Hess reported

that secretion of the antigen significantly increased the ef-

fectiveness of a vaccine used against intracellular patho-

gens (Kaufmann and Hess, 1999). A number of bacterial

secretion systems have been successfully used for this pur-

pose. The Type I secretion system, for which the main pro-

totype is the alpha-hemolysin of E. coli, allows the direct

secretion of the entire protein from the bacteria by using a

plasmid that encodes the HlyC, HlyB, and HlyD proteins,

along with the hemolysin secretion signal (HlyAs) linked to

the recombinant antigen (Gentschev et al., 2002). It repli-

cates stably in various Gram-negative bacteria, including

Salmonella, Shigella spp., and Vibrio cholerae (Spreng et

al., 1999). Many vaccines have been developed for use

against intracellular bacteria, parasites, and viruses, em-

ploying the hemolysin secretion system (Gentschev et al.,

2002).

The Type III secretion system has also been ex-

ploited, and has been proven to effectively deliver antigens

of interest directly into the cytosol of APCs, leading to the

activation of effectors and memory T-CD8+ lymphocytes

(Rüssmann et al., 1998). Attenuated pathogenic bacteria,

such as Salmonella (Panthel et al., 2008), Yersinia

(Leibiger et al., 2008), and Pseudomonas (Epaulard et al.,

2006) have already been used for delivery of antigens using

this system.

The expression of heterologous antigens on the sur-

face of the bacterial vector has been used to induce immune

responses using Gram-positive and Gram-negative bacteria

(Liljeqvist and Ståhl, 1999). For this exposure, the antigen

of interest is usually expressed fused to surface proteins of

the vector (Georgiou et al., 1997; Lee et al., 2002) and

should mainly induce humoral immune responses (Che-

minay and Hensel, 2008). Some examples of these fusion

proteins include Lpp-OmpA, TolC, and FimH of E. coli,

OprF of Pseudomonas, VirG� of Shigella, IgA� of

Neisseria, FliC of Salmonella, and PulA of Klebsiella

(Georgiou et al., 1997; Kotton and Hohmann, 2004;

Liljeqvist and Ståhl, 1999).

The AIDA (Adhesin Involved in Diffuse Adherence)

auto-transporter system has also been used for the surface

expression of model antigens that are important virulence

factors of different pathogens. Some examples are the p60

antigen of Listeria monocytogenes, antigens OspA/OspG

of B. burgdorferi, the LT-B subunit of E. coli, and Stx-B

subunits of enterohemorrhagic E. coli (Buddenborg et al.,

2008).

Several proteins with the LPXTG anchoring motif,

found in a number of species, have been employed to dis-

play heterologous antigens on the surface of Gram-positive

vectors (Leenhouts et al., 1999). In the case of lactic acid

bacteria, better results were achieved using cell surface an-

tigens than secreted proteins, indicating the participation of

the carrying cell for a more effective immune response to

antigens (Pouwels et al., 1996; Seegers 2002).

An alternative secretion system composed of outer

membrane vesicles in Gram-negative bacteria has been in-

vestigated. In this system, the antigen is targeted to the

periplasmic space of the bacteria, and when the outer mem-

brane vesicle is formed, it incorporates the antigen. Such

vesicles guide the antigen to APCs, conferring high immu-

nogenicity on them (Alaniz et al., 2007). An immunization

test using the purified vesicles from recombinant S.

typhimurium, producing a derivative of the pneumococcal

protein PspA, conferred protection against challenge with a

10x 50% lethal dose (LD50) of Streptococcus pneumoniae

in a mouse model (Muralinath et al., 2011).

Stable antigen expression is another crucial factor

that affects the ability of an LBV to stimulate a protective

immune response in the vaccinee. Furthermore, a stable ex-

pression of the antigen in the absence of selective pressure

is required. For this purpose, chromosomal integration of

expression cassettes can be used instead of plasmid-based

gene expression. Ideally, this system enables stable antigen

expression and concomitant production of multiple anti-

gens by inserting multiple expression cassettes in the chro-

mosome. It is free from selective pressure markers, and can

be used to create attenuating mutations concomitantly with

introduction of the antigen expression cassette(s) (Hus-

seiny and Hensel, 2008). The immune response elicited

against antigens carried by LBV as the chromosomal ex-

pression system was lower than the response to plasmid-

based antigen expression. This was supposedly related to

the lower level of antigen expressed, due to fewer copies of

the heterologous gene in the chromosomal expression sys-

tem (Husseiny and Hensel, 2009).

In vivo inducible promoters for antigen expression

In addition to the carrier and the nature of the

immunogen, the promoter used to drive the expression of

the antigen can also have a direct impact on the quality of

the immune response (Medina et al., 2000). The literature
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has described various expression promoters used in

plasmids to control the expression of recombinant genes. In

the case of live bacterial vaccines, a special feature is desir-

able for the promoters, namely in vivo induction. Constitu-

tive expression of the heterologous antigen often causes

metabolic burden, leading to a decrease in the fitness of the

LBV that ultimately affects the immune response (Galen

and Levine, 2001). The use of in vivo inducible promoters,

where the antigen synthesis is driven by promoters that are

activated by microenvironmental conditions encountered

by the LBV in the host tissues, represents an alternative ap-

proach that could improve LBV expression performance.

Frequently-used in vivo inducible promoters include:

ppagC, a promoter related to the invasion and survival of

Salmonella inside macrophages (Miller et al., 1992);

pkatG, a promoter of catalase, induced by exposure of the

microorganism to hydrogen peroxide generated by macro-

phages during infection (Dunstan et al., 1999); phtrA, in-

duced by increasing temperature, which controls the

expression of Htra, required for survival of the microorgan-

ism in the macrophage (Roberts et al., 1998); pnirB, a pro-

moter of NADH-dependent nitrite reductase, induced by

anaerobiosis or by low oxygen pressure inside the host tis-

sue (Oxer et al., 1991); pOmpC, an outer membrane protein

regulated by osmotic and pH changes in the environment;

and pssaG, a promoter located within the Salmonella

Pathogenicity Island-2 (SPI-2), which encodes a type III se-

cretion system involved in adapting the pathogen to the

intravacuole environment within mammalian cells

(McKelvie et al., 2004). Comparative studies have exam-

ined the effectiveness of promoters for induction of the ex-

pression of specific antigens, as well as the resulting

immune responses. Comparing the promoters pnirB,

ppagC, and pkatG in a S. typhimurium �aroAD strain, the

ppagC promoter provided the best results in terms of the

amount of heterologous protein expression and the level of

the antigen-specific antibody response (Dunstan et al.,

1999). Bullifent et al. (Bullifent et al., 2000) compared the

phoP, ompC, pagC, and lacZ promoters for expression of

the Y. pestis F1-antigen in a S. typhimurium aroA strain,

and identified the phoP promoter as the most effective for

induction of serum and mucosal antibody responses after

intragastric immunization. The cytomegalovirus (CMV)

promoter has proven ability to initiate gene transcription in

many different mammalian cell types. This is the promoter

commonly used for DNA vaccines, even when delivered by

live Salmonella so that it can be recognized by the host tran-

scription system (Weiss 2003). Investigations concerning

promoters need to consider their stability in the microor-

ganism during host invasion and maintenance, their ability

to be activated in vivo, and the specific conditions of the en-

vironment for activation, all of which will be reflected in

modulation of the immune response.

LBV Applications, Development, and Innovation

Cytokine and DNA delivery by LBVs

A new strategy to improve antigen presentation is re-

lated to the simultaneous expression and secretion of cyto-

kines. These molecules are essential to determine the innate

and adaptive immune responses, and for establishment of

immunological memory (Chabalgoity et al., 2007). The in

vivo production of IL-12 (Bermúdez-Humarán et al.,

2005), IL-4, and IL-18 (Rosenkranz et al., 2003), as well as

other cytokines, can modulate the type of immune response

against a presented antigen. Chabalgoity’s group per-

formed immunization with S. typhi and S. typhimurium har-

boring plasmids encoding FCTT and the cytokines IL-4 or

IL-18. They concluded that the presence of both cytokines

had pronounced effects on the immune response against

bystander antigens, and also affected IFN-� production

(Rosenkranz et al., 2003).

Cytokines have been successfully employed for ther-

apeutic purposes in several studies. The use of bacterial

vectors for cytokine delivery is a useful alternative to other

techniques such as direct injection of these molecules, as it

increases the time of exposure of the host. This strategy was

demonstrated by Xu et al. (1998), in treatment of

Leishmania major infection using attenuated Salmonella

expressing IL-2, IFN-�, MIF, and TNF-�. Administration

of the recombinant strains expressing the cytokines pro-

moted the in vivo expression of inducible nitric oxide

synthase, limiting the development of lesions and reducing

parasite loads by up to three orders of magnitude. Although

not used for vaccine purposes, it is worth mentioning here

that a Lactococcus strain expressing IL-10 was success-

fully applied in a Phase I clinical trial for treatment of

Crohn’s disease (Braat et al., 2006). Delivery of genes cod-

ing cytokines by bacterial vectors has also been used for tu-

mor prevention and/or therapies. Two mucosal co-

administered live Lactococcus lactis strains expressing cell

wall-anchored E7 Ag and a secreted form of IL-12 were

evaluated for treatment of HPV-16-induced tumors in a

murine model. After challenge, immunized mice developed

a CTL response and an E7-specific mucosal immune re-

sponse that led to the prevention of inducible tumors. Ther-

apeutic immunization induced regression of palpable tu-

mors in mice (Bermúdez-Humarán et al., 2005).

The use of DNA vaccines carried by live bacterial

vectors has been reported as a strategy for transfection of

mammalian cells (termed bactofection) (Loessner and

Weiss, 2004; Schoen et al., 2004; Weiss 2003). These vec-

tors drive the DNA vaccine to mucosal surfaces and the an-

tigens are expressed, processed, and presented by APCs,

especially dendritic cells, resulting in activation of CD8+ T

cells via MHC class I antigen presentation (Schoen et al.,

2004).

In the process of bactofection, the release of plasmid

DNA into the host cell occurs more effectively after lysis of
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the bacterial vector in the cytoplasm or in the phagosome

(Jain and Mekalanos, 2000; Pilgrim et al., 2003). Follow-

ing release, the DNA should proceed to the cell nucleus to

be transcribed. Immunization with plasmid DNA carried by

some bacteria, especially enteroinvasive species such as

Shigella flexneri, Salmonella spp., Yersinia enterocolitica,

and Listeria monocytogenes, has shown good results

(Schoen et al., 2004).

An alternative strategy that does not require transport

of exogenous DNA to the cell nucleus is the delivery of

functional mRNA molecules. Schoen et al. (2005) con-

structed a self-destructing Listeria monocytogenes strain

able to release translation-competent mRNA directly into

the cytosol of epithelial cells, macrophages, and human

dendritic cells. With this system, mRNA molecules coding

for GFP or ovalbumin and containing elements for recogni-

tion and translation by mammalian cells were produced in

the carrier bacteria upon entry into the cytosol, and were

immediately translated after being released from the lysed

bacteria. According to the authors, the system using mRNA

molecules offers many advantages over the plasmid DNA

delivery technique, such as faster production of the desired

protein in the infected cells and no risk of DNA integration

into the chromosome of the mammalian host cells, amongst

others (Schoen et al., 2005).

Cancer vaccines

A recent application of bacterial vectors is for vacci-

nation and/or therapeutic purposes against various types of

tumor, such as melanoma and cancers of the prostate,

breast, kidney, and cervix (Paterson et al., 2010). Tumor

antigens and antigens from viruses associated with onco-

genesis (such as the human papilloma virus) were delivered

by LBV as recombinant proteins or as DNA vaccine mole-

cules.

The immunotherapeutic use of these vectors exploits

their intrinsic immunostimulatory properties to try to cir-

cumvent a major obstacle in tumor immunotherapy, which

is the common tendency of tumor associated antigens

(TAAs) to induce immune tolerance instead of triggering

active responses of T cells. This is related to the initial pre-

sentation of these antigens to the immune system by tumor

cells, without the presence of co-stimulatory molecules

(Pardoll 2003). A strong response of both innate and adap-

tive immunity against the recombinant bacterial vector is

elicited, resulting in breaking of the tolerance pattern

against the TAAs (Paterson et al., 2010).

The vast majority of studies of anti-tumor vaccines,

using mouse models, have employed attenuated strains of

S. typhimurium or Listeria to deliver TAAs (Hernández-

Luna et al., 2013; Singh and Wallecha, 2011). In the latter

case, the antigens are usually expressed fused to the viru-

lence factors LLO or ActA, which possess motif sequences

rich in proline, glutamic acid, serine, and threonine residues

(PEST domains), flanked by clusters containing positively

charged residues that direct the fused proteins to

proteosomes for degradation and presentation of generated

peptides via MHC I (Wood et al., 2008). Using this strategy

in studies with the E7 antigen of HPV-16 in mice, Sewell et

al. (2004) showed that regression of tumors was more pro-

nounced when the antigen was fused to a fragment contain-

ing the LLO PEST domain. In 2009, this bacterial vector

(L. monocytogenes expressing the E7 antigen fused to a

fragment of listeriolysin O, Lm-LLO-E7) was used in a

safety study (Phase I) in patients with advanced carcinoma

of the cervix. This constituted the first clinical trial of a live

attenuated Listeria vaccine, which demonstrated its safety

for human use (Maciag et al., 2009).

Xiang et al. (2008) reported four novel oral DNA vac-

cines delivered by S. typhimurium that caused marked sup-

pression of tumor growth and dissemination by targeting

the tumor vasculature and microenvironment. These vac-

cines were developed against melanoma, colon, breast, and

lung carcinomas in mouse models, and targeted vascular

endothelial growth factor receptor-2, transcription factor

Fos-related antigen-1, and the anti-apoptosis proteins

survivin and Legumain, respectively.

Strategies to improve this class of LBV vaccines in-

clude the associated delivery of DNA encoding cytokines

to increase the immune response against the TAAs and then

against cancer cells (Luo et al., 2003; Rosenkranz et al.,

2003), and the use of the type III secretion system to deliver

the tumor antigen directly into the host immune cell, induc-

ing a cytotoxic mediated response (Epaulard et al., 2006;

Nishikawa et al., 2006).

Another interesting strategy to improve cancer ther-

apy is the use of attenuated Salmonella expressing single

chain antibody fragments on the cell surface, which are spe-

cific against the carcinoembryonic antigen (CEA) pre-

sented by different tumor cells. Salmonella species already

have the ability to invade tumor tissues, but this technique

enables the recombinant LBV to be guided and concen-

trated in the tumor. The strategy is associated with the de-

livery of apoptotic proteins to conclude the elimination of

the tumor cells (Bereta et al., 2007; Chorobik and

Marcinkiewicz, 2011).

Delayed attenuation

A few years ago, pioneering work by Curtiss III and

colleagues resulted in the creation of new recombinant Sal-

monella strains with a feature called “delayed attenuation”,

which in mouse models was able to induce higher immu-

nogenic responses against the carried heterologous anti-

gens (Curtiss et al., 2010). These bacteria were

programmed to have certain virulence genes turned off af-

ter colonization of the host tissues, as a result of which full

attenuation of the strain could only occur in vivo (Curtiss et

al., 2010). The system is based on the control of virulence

genes by an arabinose-inducible promoter. The strains are

cultured in the presence of arabinose, normally expressing
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the virulence genes, and the bacteria exhibit a fully virulent

phenotype. Once in the host tissues, arabinose is no longer

available, resulting in a progressive attenuation of the

strains as cell division proceeds (Curtiss et al., 2009).

Another strategy uses a mutation that limits the ca-

pacity of cells to synthesize the LPS O-antigen side chains

in the absence of mannose. The cells are grown in the pres-

ence of mannose, synthesizing wild-type levels of LPS

O-antigen side chains. Under in vivo conditions, the synthe-

sis of these molecules is terminated by the low availability

(or absence) of free mannose, leading to attenuation of the

Salmonella cells. A fragment of the PspA protein from

Streptococcus pneumoniae was used as a model antigen to

show that the delayed attenuation strains were able to in-

duce stronger immune responses, and provided a higher de-

gree of protection, compared to a “standard” attenuated

Salmonella strain. Delayed attenuation strains exhibiting a

wild-type phenotype during the initial stage of infection are

supposedly able to colonize the host lymphoid tissues more

efficiently than simple attenuation strains, leading to a

more robust immune response (Li et al., 2009). Using a

similar strategy, Kong et al. (2008) constructed strains that

lysed after colonization of the host tissue. These regulated

delayed lysis strains preclude both the persistence of Sal-

monella in the host and the survival of the bacteria if ex-

creted, and hence act as biological containment systems.

A third development was the construction of a system

for delayed antigen synthesis in order to avoid metabolic

burden problems that might reduce colonization ability and

thus immunogenicity (Xin et al., 2008). M. tuberculosis an-

tigens (Juárez-Rodríguez et al., 2012) and influenza

nucleoprotein (Ashraf et al., 2011) are other examples of

antigens delivered by these modified Salmonella strains,

which have yielded good levels of protective immune re-

sponse. The delayed attenuation concept was also em-

ployed to create an attenuated Yersinia pestis strain that

provided good levels of protection (Sun et al., 2010).

Heterologous prime-boost and vector priming

There are continuing concerns regarding reuse of the

same bacterial vector to deliver different antigens to the

same vaccinee, and conflicting results have been reported.

The difficulty is that an immune response elicited against

the vector itself in a first immunization can suppress or

mask the expected response against the antigen delivered in

a second immunization.

There is evidence that prior exposure of an organism

to Listeria, used as a vector, may not affect subsequent

boosters (Starks et al., 2004; Stevens et al., 2005). Despite

faster clearance in animals with previous exposure to the

vector, the vaccines were capable of stimulating functional

T cells and inducing protective immunity (Bruhn et al.,

2007). Similar results were described after tests in humans

(Leong et al., 2009). Studies using Salmonella LBVs indi-

cated that immunization with a particular strain did not hin-

der a response against a heterologous antigen carried by ei-

ther the same or another immunologically related strain

(Bao and Clements, 1991). A Phase I clinical trial for a S.

typhi vaccine carrying the ETEC E. coli LT-B antigen

showed no evidence of anti-carrier immunity preventing

boosting, with anti-LT-B antibodies found in 67% of those

vaccinated (Khan et al., 2007). On the other hand, Gahan et

al. (2008) showed that prior exposure to Salmonella signifi-

cantly decreased the ability of this vector to survive in the

host cells, compromising the effectiveness of the vaccine.

According to the authors, this negative effect did not dimin-

ish with time, and the same vector might not be suitable for

delivery of multiple doses of the same vaccine.

Heterologous prime-boost vaccination seems to be a

good strategy to overcome the live vector-specific immu-

nity question. Originally, this strategy involved the admin-

istration of the same antigen by two different delivery

methods, which generally induced higher levels of immune

response than homologous boosting. Although the mecha-

nisms underlying this process are still not fully understood,

there is substantial evidence that the order of prime-boost

administration, the nature of the antigen, the delivery vehi-

cle, and the route of administration influence the immune

response. Combining different antigen presentation forms

seems to elicit higher quality immune responses, involving

different subsets of T cells and modulation of cytokine pro-

files (Lu 2009). The prime-boost approach for LBVs, pre-

senting the same antigen using two different Salmonella

strains, was studied by Sevil Domenech et al. (2007). It was

found that a second immunization using the same Salmo-

nella vector reduced the maintenance period of the bacteria,

while using a different Salmonella strain for boosting could

effectively circumvent this limitation (Sevil Domènech et

al., 2008). Nonetheless, according to Vindurampulle and

Attridge (2003), the impact of prior immunity to the vector

depends on the strain of Salmonella used, as well as the na-

ture of the antigen delivered.

Although heterologous prime-boost generally em-

ploys live viruses, DNA vaccines, and recombinant puri-

fied proteins, LBV can act as one of the antigen delivery

systems in this vaccination scheme. There have been sev-

eral examples of this strategy. Tartz et al. (2008) reported

the successful combination of a Salmonella-based LBV ex-

pressing the CD8+ epitope of the circumsporozoite protein

(CSP), together with a purified recombinant Bordetella

adenylate cyclase toxoid fusion (ACT-CSP), to construct a

malaria vaccine that provided complete protection against

Plasmodium berghei in murine model experiments. Pan et

al. (2009) prepared a vaccine against the H9 subtype of the

avian influenza virus using a DNA vaccine delivered by

Salmonella typhimurium as prime, followed by a killed

avian influenza vaccine as booster. An anthrax vaccine able

to elicit strong antibody responses consisted of a prime with

Salmonella typhi expressing the protective antigen (PA) of

Bacillus anthracis, and boosting with recombinant PA or
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the licensed US human alum-adsorbed anthrax vaccine

(Baillie et al., 2008).

Conclusions

Viewed as a whole, the research field of live bacterial

vectors (LBVs) has shown significant progress over the

past two decades. Various LBVs have proved to be effec-

tive and powerful tools for use in human and animal health.

New vectors, expression systems, and immunization strate-

gies have gradually increased the potential of vaccines

based on LBV platforms. In parallel with the development

of LBVs, many questions have been raised about the safety

of these genetically modified microorganisms, including

the risk of environmental contamination, lateral transfer of

genes conferring resistance to antibiotics, and reversion of

the attenuation to a more virulent form. The need to address

these issues has led to renewed efforts to combine the high

immunogenicity of LBVs with low risk, a proper level of

safety, and efficacy. Nowadays, research is also focused on

the refinement of existing LBV vaccine candidates, as well

as the development of specially designed new LBVs. A

good example of a promising LBV candidate developed

following this strategy is the Salmonella strain prepared by

the Curtiss III group, which is under evaluation in clinical

trials. This strain carries multiple genetic modifications

that, besides increasing its immunogenicity, address issues

such as the reduction of undesirable side effects by lower-

ing its reactogenicity, and providing proper biological con-

tainment of the recombinant microorganism.

Research employing attenuated pathogens as carriers

is notably more advanced than studies using commensal

bacteria. As a consequence, genetically mutated pathogens,

after being proven to be safe in clinical trials, are more

likely to first be used as LBVs, even though they do not

have GRAS status. It is also possible that, as has been seen

for other innovative technologies in vaccine development,

such as DNA vaccines or recombinant virus vectors, the

first LBV-based vaccines carrying heterologous antigens

will be licensed in the veterinary field, due to the less strin-

gent regulatory requirements compared to products in-

tended for use in human health.

The viability of LBV vaccine production is favored

by its advantageous characteristics, as well as by its poten-

tially lower production costs, since no complex purification

is required and adjuvants are avoided, in contrast to other

recombinant vaccine technologies. A further favorable

point is the ability to use the mucosal route, which simpli-

fies vaccine administration and promotes a special type of

local immunity. This is a highly attractive feature of this

class of vaccines, especially for mass vaccination programs

in both developed and developing countries.

The successful development of this vaccine delivery

technique enables it to be used in applications including the

transport of cytokines, modulation of the immune response,

and delivery of DNA vaccines to the interior of APCs. It

provides new options for tumor treatment, which is encour-

aging research efforts to further improve the system, which

is certainly expected to be an important player in a new gen-

eration of vaccines in the near future.
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