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Reversal Learning and Dopamine: A Bayesian Perspective
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Reversal learning has been studied as the process of learning to inhibit previously rewarded actions. Deficits in reversal learning have
been seen after manipulations of dopamine and lesions of the orbitofrontal cortex. However, reversal learning is often studied in animals
that have limited experience with reversals. As such, the animals are learning that reversals occur during data collection. We have
examined a task regime in which monkeys have extensive experience with reversals and stable behavioral performance on a probabilistic
two-arm bandit reversal learning task. We developed a Bayesian analysis approach to examine the effects of manipulations of dopamine
on reversal performance in this regime. We find that the analysis can clarify the strategy of the animal. Specifically, at reversal, the
monkeys switch quickly from choosing one stimulus to choosing the other, as opposed to gradually transitioning, which might be
expected if they were using a naive reinforcement learning (RL) update of value. Furthermore, we found that administration of haloper-
idol affects the way the animals integrate prior knowledge into their choice behavior. Animals had a stronger prior on where reversals
would occur on haloperidol than on levodopa (L-DOPA) or placebo. This strong prior was appropriate, because the animals had extensive
experience with reversals occurring in the middle of the block. Overall, we find that Bayesian dissection of the behavior clarifies the
strategy of the animals and reveals an effect of haloperidol on integration of prior information with evidence in favor of a choice reversal.

Key words: Bayesian; dopamine; haloperidol; L-DOPA; reinforcement learning; reversal learning

Introduction
Reversal learning has been studied extensively as a behavior that
indexes important fundamental neural processes that underlie
inhibiting previously rewarded actions. For example, previous
studies examined the effect of dopamine manipulations on rever-
sal learning. This work has shown that Parkinson’s disease pa-
tients have deficits in reversal learning on medication, but not off
(Cools et al., 2001, 2006; Graef et al., 2010) and that manipulating
dopamine D2 receptors in the striatum can also lead to deficits
(Mehta et al., 2001; Clarke et al., 2011). Similarly, studies in ani-
mals (Jones and Mishkin, 1972; Dias et al., 1996; Chudasama and
Robbins, 2003; Schoenbaum et al., 2003; Izquierdo et al., 2004)
and humans (Fellows and Farah, 2003; Hornak et al., 2004) show
that damage to the orbitofrontal cortex leads to deficits in reversal
learning.

Whether a particular neural process contributes to reversal
learning may depend on how experienced subjects are with the
task (Rygula et al., 2010). Most studies on reversal learning used
tasks in which the subjects had limited or no experience with
reversals in stimulus reward mappings before the period of data
collection. In these tasks, subjects often improve as they experi-
ence more reversals (Clarke et al., 2011; Rudebeck et al., 2013).
Before experiencing reversals, subjects probably assume that

stimulus reward mappings are relatively stable, and the first few
reversals violate this assumption. Such violations have been re-
ferred to as unexpected uncertainty (Yu and Dayan, 2005).
Therefore, the behavioral performance during the first few rever-
sals likely reflects the interplay of two processes. First, a naive
model the subjects apply to the task before they learn that stim-
ulus reward mappings change with some regularity. Second, a
process whereby the subjects are learning a model of the environ-
ment that allows for reversals in stimulus reward mappings.
Therefore, deficits in these tasks could reflect problems with
either process. As subjects gain experience with reversals,
the second process will come to dominate and the reversal in
the reward mapping will become an expected uncertainty. The
subject does not know when a reversal will occur, but they
expect it to occur.

In the present study, we examined reversal behavior after ex-
tensive training on a reversal learning task. Therefore, reversals
are expected. It is only when they will occur that is uncertain.
There are two advantages of studying this regime. First, effects of
manipulations can be attributed to problems applying the model
to the task, as opposed to problems with learning the model.
Second, we can develop a Bayesian framework for analyzing
choice behavior under the assumption that the animals have
learned the statistics of the task. To demonstrate the utility of this
approach, we examined the effect of two dopamine manipula-
tions—systemic administration of L-DOPA or haloperidol—
shown previously to have disparate effects on reversal learning.
We find that, in this regime, there are no effects of dopamine
manipulations on learning. However, we do find that adminis-
tration of haloperidol leads to an increased reliance on prior be-
liefs about when a reversal will occur.
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Materials and Methods
Subjects. Three male rhesus monkeys (Macaca mulatta), aged 5– 6 years
with weights ranging from 6.5 to 9.3 kg, were studied. All monkeys were
placed on water control for the duration of the study and, on test days,
earned all of their fluid through performance on the task. Experimental
procedures for all monkeys were performed in accordance with the Na-
tional Institutes of Health Guide for the Care and Use of Laboratory Ani-
mals and were approved by the Animal Care and Use Committee of the
National Institute of Mental Health.

Experimental setup. The monkeys completed 4 – 44 (20.93 � 0.93,
mean � SE) blocks per session of a two-arm bandit problem. Each block
consisted of 80 trials and involved a single reversal of the stimulus–
reward contingencies (Fig. 1). On each trial, the monkeys had to first
acquire and hold a central fixation point (250 –750 ms). After the mon-
key fixated for the required duration, two stimuli appeared to the left and
right (6° visual angle) of the central fixation point. Stimuli varied in shape
and color, and stimulus location (left vs right for each shape) was ran-
domized within a block. Monkeys chose between stimuli by making a
saccade to one of the two stimuli and fixating the cue for a minimum of
500 ms. One of the stimuli had a high reward probability, and one had a
low reward probability. Juice rewards were probabilistically delivered at
the end of each trial, followed by a fixed 1.5 s intertrial interval. A failure
to acquire/hold central fixation or to make a choice within 750 ms re-
sulted in a repeat of the previous trial. The three reward schedules used
were 80/20%, 70/30%, and 60/40%. Use of these three reward schedules
anticorrelates the mean reward probabilities of the bandit arms. The trial
on which the cue–reward mapping reversed within each block was se-
lected pseudorandomly from a uniform distribution across trials 30 –50.
The reversal trial did not depend on the monkey reaching a performance
criterion. Reward schedules were always constant within a block but
could (and usually did) change across blocks.

Stimuli consisted of simple images of a circle and square in one of three
colors (red, green, and blue). The two choice options always differed in
color and shape. This resulted in six unique stimulus combinations.
When these combinations were crossed with the three reward schedules
and whether a particular shape was more or less initially rewarding (e.g.,
whether the blue square was the best choice before or after the reversal),
this resulted in 36 block combinations. Block presentations were fully

randomized without replacement. This ensured that a specific stimulus–
reward combination was never repeated directly until all 36 block com-
binations were experienced (�4% of sessions). Although combinations
were potentially repeated across sessions, during inspection, there was no
evidence of improved performance across sessions.

Each monkey received 10 –14 d of initial training on the described
reversal learning task until they were routinely completing 15–20 blocks
per session. Animals first learned the structure of the task under a deter-
ministic reward schedule. Probabilistic reward schedules were then in-
troduced progressively until the animals exhibited stable performance on
the tested reward schedules.

Stimulus presentation and behavioral monitoring were controlled by a
personal computer running the Monkeylogic (version 1.1) MATLAB
toolbox (Asaad and Eskandar, 2008). Eye movements were monitored
using an Arrington Viewpoint eye-tracking system (Arrington Research)
and sampled at 1 kHz. Stimuli were displayed on an LCD monitor
(1024 � 768 resolution) situated 40 cm from the monkey’s eyes. On
rewarded trials, 0.085 ml of apple juice was delivered through a pressur-
ized plastic tube gated by a computer-controlled solenoid valve (Mitz,
2005).

Drug administration. Before drug testing, monkeys were first habitu-
ated to intramuscular needle injections of saline given in conjunction
with free juice (pH 7.4, 0.1 ml/kg). After this habituation period, mon-
keys readily presented their leg for injections. At the start of each placebo
session—while chaired and outside of the test box—the monkeys re-
ceived an intramuscular injection of saline (1 ml) while they drank 6 ml
of apple juice from a plastic syringe. They were then head posted and
placed inside the test box. The eye-tracking system was then calibrated to
avoid drug-related effects on eye-tracking sensitivity. During the remain-
der of the wait period, the animals viewed a nature movie. This placebo
procedure was consistent with the two methods of drug administration.
Free juice was similarly delivered at the start of each drug session before
waiting 30 min to start the task. On days the monkeys received L-DOPA,
we dissolved, under sonication, a pulverized fixed dose tablet of L-DOPA
(100 mg/25 mg carbidopa; Actavis) into the delivered free juice and
paired it with an intramuscular injection of saline. On days the monkeys
received haloperidol, free juice was delivered in conjunction with an
intramuscular injection of haloperidol (6.5 �g/kg; Bedford Laborato-
ries). This dose was consistent with doses shown previously to have be-
havioral effects (Turchi et al., 2010). Injections were prepared by first
dissolving a fixed dose of haloperidol (100 �g) under sonication into PBS
under strict sterile conditions and stored at 4°C for use within the week.
On the day of the drug injections, aliquots were resonicated and allowed
to reach room temperature before injection. Injections were given intra-
muscularly into the lateral hindlimb.

The monkeys completed multiple sessions under each drug condition.
On L-DOPA, monkey E completed seven sessions comprising 138 total
blocks, monkey G completed six sessions comprising 159 total blocks,
and monkey M completed seven sessions comprising 193 total blocks.
On haloperidol, monkey E completed seven sessions comprising 100
total blocks, monkey G completed eight sessions comprising 142 total
blocks, and monkey M completed seven sessions comprising 143 total
blocks. The total number of placebo sessions ranged from 15 to 24 ses-
sions per animal (22 for E, 24 for G, and 16 for M), comprising 370 – 479
blocks. Haloperidol sessions were spaced a minimum of 7 d apart to
facilitate washout, whereas the faster clearance of L-DOPA permitted a
minimum spacing of 3 d between sessions. L-DOPA and haloperidol
sessions were interleaved and counterbalanced for the day of the week to
minimize routine caretaking effects on behavior. Each drug session was
preceded by at least one placebo session, and all placebo sessions lagged
the most recent drug session by a minimum of 2 d to minimize carryover
effects.

Bayesian models. We fit three Bayesian models that estimated the pos-
terior probability that reversals occurred on each trial, under various
assumptions. To estimate the models, we fit a likelihood function given
by the following:

f� x, y�r, p, h, M� � � k�1

T
q�k�, (1)

Figure 1. Trial structure of a single block and the sequence of events in a single trial of the
two-arm bandit reversal learning task. Each block contained 80 trials. The stimulus reward
mapping was reversed on a randomly chosen trial between trials 30 and 50. Trials before the
reversal are referred to as acquisition, and trials after the reversal are referred to as reversal. The
reward schedule was always constant within a block (i.e., 80/20, 70/30, or 60/40%), but it
usually changed across blocks. ITI, Intertrial interval.
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where r is the trial on which the reward mapping reversed (r� 0 – 81), and
p is the probability of reward for the high reward option (models 1 and 3)
or the consistency with which the animals chose their preferred option
(model 2). The variable h encodes whether option 1 or option 2 begins
the block as the high reward option (h� 1, 2), k indexes trial number in
the block, and T is the current trial. The variable r ranges from 0 to 81
because we allowed the model to assume that reversals occurred before
the block started or after the block ended. In either of these cases, there
would be no switch within the block (the model estimated no reversal in
�1% of the total blocks analyzed), and the posterior probability of a
switch would be equally weighted for r equal to 0 or 81. The data are given
by the vectors x and y, where the elements of x are the rewards (xi� 0, 1),
and the elements of y are the choices ( yi� 1, 2) in trial i. We fit three
variants of this model indicated by M (M� 1, 2, 3). M � 1 is the ideal
observer. This model was used to estimate the evidence the animal had
available to it when it made its decisions, as well as the ideal reversal
point. M � 2 is the behavioral choice model. This model was used to
estimate where the animal reversed its choice behavior. The third model,
M � 3, is similar to the ideal observer except we parameterized a prior
over reversals to better fit the animal’s choice behavior instead of using
the generative prior (used in model 1), which only allowed reversals
during trials 30 –50.

The behavioral choice model (M � 2) estimates the trial on which the
animals switched their choice behavior. This only depends on the pattern
of choices, not on whether they were rewarded. We assumed that the
animal had a stable choice preference that switched at some point in
the block from one stimulus to the other. Given the choice preference,
the animals occasionally chose the wrong stimulus (i.e., the stimulus
inconsistent with their choice preference) at some lapse rate 1 � p. Thus,
for k � r and h � 1, choosing option 1, q(k) � p; and choosing option 2,
q(k) � 1 � p. For k � r and h � 1, choosing option 1, q(k) � 1 � p; and
choosing option 2, q(k) � p. Correspondingly, for k � r and h � 2,
choosing option 2, q(k) � p, etc. Thus, this model assumed that the
monkey preferred one option before switching and preferred the other
option after switching. It most often chose its preferred option ( p 	 0.5),
but it occasionally chose the wrong target perhaps as a result of lapses in
attention. For all reported analyses, we marginalized over the correct
choice rate p. Therefore, we assumed that the animals were maximizing
and not doing probability matching. These values for q(k) were filled in
for the entire block, because we were performing this analysis post hoc to
estimate where the animal reversed.

For models 1 and 3, we estimated whether a reversal had occurred
conditioning only on outcomes before the current trial, T. (Models 1 and
3 have different priors on the reversal trial, defined below, but identical
likelihood functions.) This provided an estimate of the information on
which the animal was making its choice. For these models, values of q(k)
for each schedule were given by the following mappings from choices to
outcomes. For k � r and h � 1 (before reversal and target 1 is the high
probability target), choose 1 and get rewarded q(k) � p; choose 1 and not
get rewarded, q(k) � 1 � p; choose 2 and get rewarded, q(k) � 1 � p; and
choose 2 and not get rewarded, q(k) � p. For k � r, these probabilities
flip. Correspondingly, for k � r and h � 2, the probabilities are also
complimented. These values were filled in up to the current trial, T.

Given these mappings for q(k), we could then calculate the likelihood
as a function of r, p, and h for each block of trials. The posterior is given
by the following:

p(r, p, h�x, y, M) � f(x, y�r, p, h, M)p(r�M)p(p, h�M)/p(x, y�M).

(2)

The priors on p and h were flat for all models. The prior on r, p(r�M ),
varied by model. For model 1, the prior was given by the generative model
for the data, which only allowed reversals for trials 30–50. Specifically, for r�
30 or r 	 50, p(r�M � 1) � 0. For r 	 29 or r � 51, p(r�M � 1) � 1/21.
Using this prior, there was general agreement between the ideal observer
estimate of the reversal point and the actual programmed reversal point
(mean � SE session, r � 0.44 � 0.16, t(87) � 3.5, p � 0.001). For model
2, the prior was flat on r�0 – 81, p(r�M � 2) � 1/82. For model 3, results

are presented with either a flat prior [i.e., p(r�M � 3) � 1/82] or a
Gaussian prior, given by the following:

p�r�M � 3�
 exp��
�r � �d�

2

2�2 �. (3)

Model 1 always used the flat prior restricted to have support over trials
30 –50, whereas model 3 used either a flat prior with support over trials
0 – 81 or a parameterized Gaussian prior given by Equation 3. The differ-
ent priors for model 3 are indicated explicitly in Results, and they are
used to test hypotheses about the strategy the animals used to solve the
task.

Given the priors, the posterior over switch trial could be calculated by
marginalizing over p and h. Specifically,

p(r�x, y, M) � �p,h p(r, p, h�x, y, M). (4)

Similarly, the posterior over the probability of reward for the high prob-
ability option could be calculated by marginalizing over r and h:

p(p�x, y, M) � �r,h p(r, p, h�x, y, M). (5)

After the posterior over r for the behavioral choice (M � 2) was
calculated, the expected reversal point was calculated as
�r�M � 2	 � �r�0

81 r p�r�x, y, M � 2�. Because the estimated
reversal point was not guaranteed to be an integer, it was rounded to
the nearest integer when it served as an index of summation. Trials
less than �r�M� were assigned to the acquisition phase, whereas trials
greater than or equal to �r�M� were assigned to the reversal phase.

To calculate a point estimate of the reversal using the ideal observer
(M � 1), we first calculated the posterior evidence that a reversal had
occurred before trial k, as follows:

p�r � k�x, y, M � 1� � 	i�1

k�1
p�r � i�x, y, M � 1�. (6)

This evidence was then compared with a threshold, and the reversal trial
was defined as the first trial in which the evidence exceeded the threshold,
i.e., p(r � k�x, y, M � 1) 	 �. To compute a point estimate of the reversal
trial, we assumed a distribution over thresholds, uniform on 0.51– 0.99,
and computed an expectation over this distribution. Thus,

�r � k�M � 1
: � �[min(k)�p(r � k�x, y, M � 1) 	 �]
p�� �.

(7)

For model 3, we inferred the parameters of the Gaussian prior to best fit
the animal’s choice behavior. When we estimated these priors, we calcu-
lated the posterior evidence available to the animal when it switched,
p(r � k�x, y, M � 3). The animal’s switch trial was given by k � �r�M � 2�.
This is the posterior evidence that a reversal occurred on the trial on
which the animal reversed. Note that the data plotted in Figure 3, A and
B, are from model 3 with a flat prior on trials 0 – 81. This shows the model
evidence available to the animal, under an uninformative prior. When we
fit the Gaussian prior for model 3, we maximized the posterior evidence
conditioned on �d and � 2. Thus, we maximized:

f(x, y��d, � 2) � �N p(r � k � 1�x, y, M � 3), (8)

where the product is over N blocks, with one value for each block and k �
�r�M � 2�.

We tested statistically whether there was a significant effect of the prior
on the animals’ choice behavior. We did this in two ways. First, we fit
separate priors to each schedule in each session and compared the mean,
�d, and SD, �, of the fitted priors across schedules and drug conditions
with a mixed-effects model. Specifically, either the mean or the SD was
the dependent variable. We then specified drug and reward schedule as
fixed effects with session specified as a random variable nested in mon-
key. Second, we used likelihood ratio test statistics to compare three
models: (1) a model that had a flat prior over trials 0 – 81; (2) a model that
fit an individual Gaussian to each session (two parameters per session);
and (3) a model that fit an individual Gaussian to each schedule in each
session (six parameters per session).
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Reinforcement learning (RL) model. We first split the trials in each
block into acquisition and reversal phases using the expected reversal
trial calculated with model 1 and model 2. We then fit separate reinforce-
ment learning models to each phase. This was done in each session and
separately for each schedule. Thus, four reinforcement learning models
were fit to each schedule (i.e., acquisition defined by model 1, acquisition
defined by model 2, reversal defined by model 1, and reversal defined by
model 2). We used a standard reinforcement learning model to estimate
learning from positive and negative feedback, as well as the inverse tem-
perature. Specifically, value updates were given by the following:

vi(k 
 1) � vi(k) 
 �f(R � vi(k)), (9)

where vi is the value estimate for option i, R is the reward feedback for the
current choice, and �f is the learning rate parameter, where f is either
positive or negative. In other words, we fit different values of � for posi-
tive (R � 1) versus negative (R � 0) feedback. These value estimates were
then passed through a logistic function to generate choice probability
estimates:

d1�k� � � 1 
 e
��v2�k��v1�k����1

, d2�k� � 1 � d1�k�. (10)

The likelihood is then given by the following:

f(D��, �pos, �neg) � �k[d1(k)c1(k) 
 d2(k)c2(k)], (11)

Where c1(k) had a value of 1 if option 1 was chosen on trial k and c2(k) had
a value of 1 if option 2 was chosen. Otherwise, they had a value of 0.
Standard function optimization techniques were used to maximize the
log of the likelihood of the data given the parameters. Because the esti-
mation can settle on local minima, we used 100 initial values for the
parameters. The maximum of the log likelihood across fits was then used.
When we fit the RL model to the acquisition phase, starting values were
reset to 0.5 at the beginning of each block, whereas for the reversal phase,
starting values for each block corresponded to end values of the corre-
sponding acquisition phase.

Classical statistics. The final statistical analyses involved mixed-model
ANOVAs. Each dependent variable was entered into full factorial,
mixed-effects ANOVA models implemented in MATLAB. Drug, sched-
ule, learning phase, feedback type, and monkey were specified as fixed
effects, whereas session nested under monkey and drug was specified as a
random effect. Post hoc analyses of significant main effects used Fisher’s
least significant difference test to correct for multiple comparisons, given
its desirable properties when testing differences among three groups
(Levin et al., 1994). Post hoc tests of significant interactions consisted of
computing univariate ANOVAs for component effects and similarly cor-
recting for multiple comparisons.

Results
Bayesian analysis of reversal learning
We used a Bayesian framework to estimate, for each block of
trials, a posterior distribution over the trial on which an ideal
observer (model � 1; see Materials and Methods) detected a
reversal in the reward contingencies and also the trial on which
the animal’s choice behavior (model � 2) reversed. We also de-
veloped a model in which we parameterized prior assumptions
about where reversals occur and fit these to the animal’s choice
behavior (model � 3) to infer the priors the animals were using to
drive their choices. These algorithms gave us an estimate of where
an ideal observer would reverse its choice behavior (model 1),
where the animals reversed their choice behavior (model 2), and
the prior information the animals used when they reversed their
choice behavior (model 3).

We began by examining where the animals reversed on aver-
age (model 2) and comparing this with where the ideal observer
reversed (model 1). We first examined schedule- and drug-
related effects on the average posterior probability distribution

over reversals in the monkeys’ choice behavior (model 2; Fig.
2A,B). Posterior probability estimates of the reversal in the mon-
key’s choice behavior were more dispersed for the harder sched-
ules, and the animals also exhibited a tendency to switch earlier
on more difficult schedules (e.g., a heavier left tail in the reversal
distribution). Next, we examined the effect of drug on these pos-
teriors. Inspection of the posterior probability distributions sug-
gested that the animals were likely to reverse more efficiently on
haloperidol or L-DOPA compared with placebo, because these
distributions were more peaked than the saline distribution. To
quantify effects of reward schedule and drug on the reversal be-
havior, we computed the expected value of the reversal trial (i.e.,
a point estimate of the trial on which the switch occurred, with
the expectation taken across the posterior) for each block of the
animal’s choice behavior. We also computed the expected rever-
sal trial for the ideal observer (model 1). The difference between
these points quantifies where the monkeys reversed relative to
the ideal observer (Fig. 2C), whereas the absolute value of the
difference between the two estimates quantifies how closely
the animals switched their behavior relative to the ideal ob-
server (Fig. 2D).

On average, the animals’ reversed their choice behavior earlier
than expected compared with the ideal observer (mean � SEM
difference, �1.43 � 0.29, t(83) � �4.52, p � 0.001), although
sufficiently close to the ideal observer estimate (mean � SE ab-
solute difference, 7.07 � 0.26) to well approximate the trial win-
dow in which the programmed reversals occurred (e.g., trials
30 –50). On average and in reference to the ideal observer (Fig.
2C), the monkeys reversed their behavior earlier during 60/40%
blocks compared with 70/30% (t(89) � �4.77, p � 0.001) or
80/20% blocks (t(89) � �8.77, p � 0.001; effect of schedule,
F(2,152) � 10.43, p � 0.001). The accuracy of the animals in re-
versing their choice behavior relative to the ideal observer also
increased with the reward schedule (F(2,149) � 38.54, p � 0.001).
The animals were less accurate in reversing their behavior during
60/40% blocks (t(75) � 5.06, p � 0.001) and more accurate during
80/20% blocks (t(80) � 4.4, p � 0.014) compared with their be-
havior during 70/30% blocks. These schedule effects were consis-
tent across drug conditions (drug � schedule, both F values
�1.4, p 	 0.26).

The average difference between the estimated reversal in the
monkeys’ behavior and the ideal observer model did not differ by
drug (Fig. 2C; F(2,36) � 1, p � 0.486). However, there was a main
effect of drug on the absolute deviation of the two reversal points
(Fig. 2D; F(2,36) � 8.18, p � 0.001). On haloperidol (t(19) � 3.66,
p � 0.001) or L-DOPA (t(17) � 2.97, p � 0.008), estimated rever-
sals in monkeys’ choice behavior were closer to the reversal points
estimated by the ideal observer model than when the monkeys
received placebo. Reversal accuracy did not differ under haloper-
idol versus L-DOPA (t(17) � 1.65, p � 0.11). Given that haloper-
idol and L-DOPA led to behavioral switches that were closer to
the ideal observer, we reexamined the behavioral choice posterior
distributions after aligning to the ideal observer switch trial (Fig.
2E). It could be seen that the posterior distribution peaked higher
and more quickly under either drug compared with saline.

Next, we examined the evidence on which reversals were
based (Fig. 3A,B). To calculate the evidence, we examined the
posterior evidence that a reversal had occurred (model 3 with flat
prior) before the trial on which the animals actually reversed their
choice behavior (given by model 2: �r�M � 2�). When the poste-
rior of model 3 was aligned to the estimated reversal in the mon-
key’s choice behavior, it could be seen that switches in the
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animals’ choice behavior followed a clear peak in the posterior
distribution (Fig. 3A,B). This is to be expected, because the
animals should switch their choice behavior after outcomes
that signaled a reversal. Across the three reward schedules,
reversals in choice behavior followed successively smaller
peaks in the posterior distribution (Fig. 3A; schedule, F(2,153) �
167.31, p � 0.001), consistent with the fact that evidence scales
with the difference in the cue reward probabilities. There were
no drug-related differences in the peak of the posterior distri-
bution (Fig. 3B; drug, F(2,36) �1, p � 0.862). Thus, reversals in
choice behavior were triggered by a similar feature across drug
conditions.

Before examining the priors that the animals may have been
using during the task, we characterized the stability of their be-
havior. The animals had considerable experience with the task.
Across animals and conditions, data were collected in 2219 blocks
(629 –787 blocks per animal). Because the animals had extensive
experience, we assumed they had a stable strategy, which in-
cluded knowledge that reversals occurred in the middle of the
block. To validate this assumption, we used the causal model
(M � 3, flat prior) to compute the amount of evidence available

to the monkeys at the time they reversed
their behavior for each block and averaged
this in each session, separately for each re-
ward schedule. We then linearly regressed
the sequential session number against the
average accumulated evidence for each re-
ward schedule and monkey. If the mon-
keys had a stable strategy, we would expect
accumulated evidence at reversal to be
stable across sessions. Indeed, the number
of sessions completed was unrelated to the
amount of evidence available at the time
the monkeys reversed their behavior (ses-
sion count, F(1,2) � 9.43, p � 0.09). There-
fore, the evidence on which animals
reversed their choice behavior was stable
across the period of data collection, and
animals were familiar with the fact that a
contingency reversal would occur during
each block.

We next examined the hypothesis that
a prior may have been playing a role in the
choice behavior and that this prior was
affected by the drug condition and/or re-
ward schedule. The animals would be ex-
pected to have such a prior, given their
experience with the task as just shown.
One choice would be to specify a uniform
prior between trials 30 and 50. However,
the animals reversed their behavior out-
side this window in 40.6% of the blocks
analyzed. Therefore, we used a Gaussian
prior and fit the mean and SD to the data
in two ways. The first prior we tested pa-
rameterized a single mean and SD per
drug session, independent of the reward
schedule. A likelihood ratio test indicated
a significant improvement in model fit
compared with specifying a flat prior, uni-
form on trials 1– 80 (Fig. 3C; 
�515�

2 �
3563.88, p � 0.001). We also tested
whether the prior distribution varied in

terms of the reward schedule by fitting a second set of Gaussian
priors, in which we parameterized, per drug session, separate
mean and SDs for each reward schedule. Despite an increase in
the number of specified parameters, there was a significant im-
provement in model fit compared with when we fit a common
Gaussian prior across schedules (
�1236�

2 � 6819.44, p � 0.001).
This suggests that both the reward schedule and drug condition
influenced the animals’ prior expectation about when a reversal
could occur.

A hierarchical comparison of the estimated parameters of this
final set of priors allowed us to determine how the mean and SD
of the prior distribution varied with the reward schedule and
drug condition (Fig. 3D). The mean of the prior was unaffected
by the reward schedule (F(2,152) � 2.48, p � 0.080). The SD of the
prior was inversely related to the reward schedule (Fig. 3E; F(2,152) �
15.48, p � 0.001). The SD of the prior was smallest for 80/20%
blocks (t(71) � 2.47, p � 0.017) and largest for 60/40% blocks
(t(81) � 2.99, p � 0.004) compared with the SD of the prior for
70/30% blocks. The mean of the prior also did not differ by drug
condition (Fig. 3F; F(2,37) � 1.76, p � 0.185). The SD of the prior

Figure 2. Bayesian estimates of reversal points by reinforcement schedule and drug condition. Error bars and shading indicate 1 SEM,
and the gray windows indicate the trial range in which a reversal was programmed to occur. A, The mean posterior probability by schedule
that the animal reversed its choice behavior on each trial (M�2; see Materials and Methods). B, Same as A, split out by drug condition. C,
Difference in the estimated reversal trial between the behavioral choice (BC; M � 2) and ideal observer (IO; M � 1) models, broken
out by schedule and drug condition. D, Same as C except for absolute value of difference. E, Behavioral choice posterior distributions
averaged after aligning the posterior from individual blocks to the ideal observer switch trial from each block.
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did differ by drug (F(2,37) � 4.96, p �
0.012). Specifically, the SD of the prior
was smaller on haloperidol relative to
L-DOPA (t(17) � �2.51, p � 0.022) or sa-
line (t(20) � �2.0, p � 0.048). The SD of
the prior did not differ on L-DOPA versus
saline (t(17) � 1, p � 0.483).

Choice behavior
We next examined the choice behavior of
the animals, split by reward schedule and
drug condition. We aligned the trials in
each block around the reversal point esti-
mated by both the ideal observer (Fig. 4A)
and behavioral choice estimates of the re-
versal point (Fig. 4B). To quantify how
realignment affected assessment of the
animals’ performance, we fit individual
logistic regression models to choice be-
havior surrounding (�10 trials) the re-
versal points of each model, grouped by
reward schedule and session. We then
tested to see whether there was a signifi-
cant change in the slope coefficient when
choice behavior was aligned to each
model. When choices were aligned ac-
cording to the behavioral choice model
versus the ideal observer model, there was
an increase in the slope coefficient, indi-
cating a faster switch in choice behavior
before and after the reversal (model,
F(1,28) � 14.59, p � 0.001). This effect was
consistent across the three reward sched-
ules (model � schedule, F(2,67) � 1, p �
0.509) and drug conditions (model �
drug, F(2,52) � 2.53, p � 0.082), although a
direct comparison of the model-related
change in slope (e.g., slope for model 2 �
model 1) did indicate a larger increase on
haloperidol (mean � SE, 1.05 � 0.26)
compared with either saline (mean � SE,
0.33 � 0.17) or L-DOPA (mean � SE,
0.16 � 0.27; drug, F(2,46) � 3.26, p �
0.047). Thus, when the animals detected a reversal in the reward
contingencies, they abruptly switched their choice behavior, even
in the 60/40% condition, and this was detected using the behav-
ioral choice model. The more gradual slopes seen when the choice
data were aligned to the ideal observer reversal point were not
attributable to a stochastic sampling period in each block. Rather,
they reflected averaging rapid switches across stimuli that oc-
curred at different points in different blocks relative to the ideal
observer.

Referencing the animals’ choice behavior to an ideal observer
(model 1) also allowed us to determine whether the administered
drug modulated how monkeys optimized their choice behavior.
The monkeys’ choice behavior was more optimal (i.e., they se-
lected the option that was most likely to be rewarded on the basis
of the past choices and outcomes) on haloperidol (t(20) � 2.51,
p � 0.025) or L-DOPA (t(17) � 3.17, p � 0.025) compared with
saline (drug, F(2,38) � 6.35, p � 0.004). As a consequence, the
percentage of rewards earned per block also differed by drug
(F(2,38) � 4, p � 0.026), with more rewards earned on haloperidol
(t(20) � 2.43, p � 0.024) or L-DOPA (t(17) � 2.13, p � 0.047)

compared with saline. These results are consistent with the de-
creased variance between the ideal observer and the animal’s
choice reversals on either drug compared with saline (Fig. 2D).

Reinforcement learning in acquisition and reversal
We next fit reinforcement learning models to the choice behavior
to estimate the effects of positive and negative feedback (feedback
type) on choices, as well as the consistency of the animals’ deci-
sions (the inverse temperature, a measure of choice consistency).
These three parameters, one for positive feedback, one for nega-
tive feedback, and one for inverse temperature, were estimated as
a function of drug condition, reward schedule, and learning
phase. We first split each block into an acquisition and reversal
phase according to the switch points estimated by the ideal ob-
server or behavioral choice models. The split by either the ideal
observer or behavioral choice models affected whether individual
trials were included in the acquisition or the reversal phase during
model estimation. A separate set of RL model parameters were
then fit for each phase. Comparing analyses under the two
different splits can provide additional insight into the animal’s

Figure 3. Causal evidence at the time the monkeys reversed their behavior. ***p � 0.001. Error bars and shading indicate 1
SEM, and the gray windows indicate the trial range in which a reversal was programmed to occur. A, The posterior of the causal
model (M � 3, flat prior) aligned to the estimated trial on which the monkeys switched their choice behavior, averaged by reward
schedule (A) or drug condition (B). Note that the posterior in these plots was calculated with a flat prior. C, Log likelihoods for
different models with different priors. Sess, Session; Sched, schedule. D, Mean and SD of prior distributions fit to individual sessions
for each schedule and drug condition. E, F, Average prior distributions for each reward schedule and drug condition.
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strategy, as well as explain effects on learning that would be at-
tributable to improperly considering the animal’s strategy and
analyzing all data as if they behaved optimally.

The inverse temperature quantifies how consistently the ani-
mals chose the higher value option, particularly when value esti-
mates have reached asymptote. As the inverse temperature
parameter increases, animals more consistently choose the higher
valued option for a fixed difference in values. When the reversal
was estimated with blocks split by the ideal observer, the inverse
temperature increased across the three reward schedules (Fig. 5A,
left; schedule, F(2,161) � 3.22, p � 0.042). In addition, the admin-
istered drug affected the inverse temperature differently for ac-
quisition and reversal (Fig. 5B, left; drug � phase, F(2,37) � 4.43,
p � 0.019). On haloperidol, there was a decrease in the inverse
temperature as the animals moved from the acquisition to the
reversal phase, whereas on L-DOPA (F(2,17) � 5.01, p � 0.038) or
saline (F(2,20) � 4.88, p � 0.039), the inverse temperature in-
creased between the two learning phases.

We next performed the same analysis with the blocks split by
reversal points estimated from monkeys’ choice behavior (Fig. 5,
right columns). With the data split in this manner, there was a
main effect of learning phase (F(1,101) � 7.42, p � 0.008), but
there was no main effect of reward schedule (F(2,152) � 1, p �
0.591) or an interaction with learning phase (schedule � phase,
F(2,143) � 1.97, p � 0.143). Thus, the schedule effect seen when
the data were split by the ideal observer was not found when the

data were split by the behavioral choice model and were sub-
sumed by the phase-related changes in the inverse temperature.
There were also no drug-related effects on the inverse tempera-
ture (Fig. 5B, right; drug, F(2,38) � 1, p � 0.943; drug � phase,
F(2,40) � 1, p � 0.553). This is consistent with the fact that the
choice data (Fig. 4) switches more abruptly when it is aligned to
the behavioral choice model.

Next we analyzed the positive and negative feedback learning
rate parameters. Using the reversal point estimated by the ideal
observer (Fig. 6A, left), learning was more influenced by positive
versus negative feedback (feedback, F(1,95) � 124.65, p � 0.001),
and learning rates were overall higher in the reversal compared
with the acquisition phase (phase, F(1,90) � 4.1, p � 0.046). There
was no evidence that compared with saline, haloperidol, or
L-DOPA modulated learning from positive versus negative feed-
back (drug � feedback, F(2,38) � 2.68, p � 0.081). However, there
was evidence that, when tested relative to each other (i.e., halo-
peridol vs L-DOPA), the two dopaminergic drugs modulated
feedback learning (drug � feedback, F(1,20) � 6.97, p � 0.015).
Specifically, learning from positive feedback was heightened on
L-DOPA compared with haloperidol (t(18) � 2.58, p � 0.018),
whereas learning from negative feedback was unaffected by drug
(t(18) � 1.67, p � 0.221).

When we further analyzed learning rates with blocks split ac-
cording to the behavioral choice model (Fig. 6, right column),
learning was again more influenced by positive versus negative
feedback (feedback, F(1,99) � 189.4, p � 0.001), with higher pos-
itive learning rates in the reversal compared with the acquisition

Figure 4. The fraction of times the initial high probability cue was chosen in the acquisition
and reversal phases, broken out by drug and reward schedule. Curves were smoothed with a
moving average window of six trials. Because the number of trials before and after acquisition
varied across blocks, trial number was normalized to be between 0 and 1 within each phase and
then averaged across blocks to generate the plots. A, Choices aligned to reversal points esti-
mated by the ideal observer model (M � 1). B, Choices aligned to reversal points based on
reversals in the monkeys’ behavior (M � 2).

Figure 5. Effects of drug and schedule on inverse temperature estimated with phase divided
by ideal observer and behavioral choice models. Error bars indicate 1 SEM. A, Inverse tempera-
ture broken out by schedule when acquisition and reversal are defined by ideal observer (left)
and behavioral choice (right) models. B, Inverse temperature broken out by drug condition
when acquisition and reversal are defined by ideal observer (left) and behavioral choice (right)
models.
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phase (feedback � phase, F(1,99) � 20.66,
p � 0.001). When choice data were split
according to the behavioral choice model,
learning rates did not differ by drug con-
dition (Fig. 6B, right; drug, F(2,38) � 1.66,
p � 0.204; drug � feedback, F(2,40) � 1,
p � 0.817; drug � feedback � phase,
F(2,40) � 1, p � 0.657). Thus, when learn-
ing was referenced to when the animal re-
versed its choice behavior, there was no
evidence that dopamine modulated learn-
ing rates.

Discussion
We have examined the effects of dopa-
mine manipulation on detecting reversals
in stimulus–reward associations during
conditions of expected uncertainty (Yu
and Dayan, 2005). Using a Bayesian anal-
ysis to characterize reversals in choice
behavior, we found that the animals
abruptly switched their choice behavior,
consistent with a strategy well matched to
the structure of the task. On haloperidol
and L-DOPA, the animals were more ac-
curate in detecting reversals, and they
more often chose the optimal stimulus,
earning more rewards. In addition, on
haloperidol, there was a decrease in the
variance of the monkeys’ prior estimates
about when reversals would occur. Fi-
nally, we used reinforcement learning
models to analyze the behavior, splitting
the data by either the ideal observer or the
animals’ choice behavior. There were
drug-related effects on learning when the
data were split by the ideal observer but
not when the data were split by the behavioral choice model.
These results emphasize that understanding the strategy of the
animal is important for interpreting behavioral effects.

Bayesian model of reversal learning
The Bayesian models provided a detailed characterization of the
behavior. Specifically, we used an ideal observer (model 1) to
calculate a posterior over the trial on which the stimulus reward
mapping switched, as opposed to using the point at which the
algorithm switched the mapping. These will not necessarily coin-
cide, particularly in the more difficult schedules. Once we ob-
tained a posterior distribution over switch trials, we derived a
point estimate of the trial on which the reversal occurred. We
performed a similar analysis for the choice behavior of the ani-
mals (model 2). This model estimated when the animal’s choice
behavior switched, as opposed to the ideal observer’s estimate of
when the stimulus reward mapping switched. Combining these
approaches allowed us to examine when the animal switched
relative to when the ideal observer identified a switch. This
showed that, during 60/40% blocks, the animals, on average,
switched before the trial that was identified by the ideal observer.
Switching before the actual reversal reflects the influence of the
animal’s prior belief about where the switch would occur (i.e.,
between trials 30 and 50). When we examined the absolute
deviation between the ideal observer and the animal’s behav-
ioral choice, it was largest in the most difficult schedule and

smallest in the easiest schedule, again consistent with the
structure of the task.

We also found that, when the behavioral choice data were
aligned to the ideal observer’s switch point, it looked as though
the animals gradually switched their choice behavior, especially
in the 60/40% condition. However, when we aligned the data
using the estimate of where the animal reversed, it could be seen
that the animals switched relatively abruptly. Thus, rather than
gradually switching their choices as might be expected if they had
used a simple reinforcement learning strategy with noisy explo-
ration, they switched abruptly, consistent with the actual statis-
tics of the task.

We also examined the evidence on which the choice to reverse
was based. Consistent with the statistics of the task, the evidence
on which the animals reversed their behavior was weaker in the
60/40% condition than in the 80/20% condition. There were no
differences in the causal evidence on which animals switched as a
function of drug. As already mentioned, the switching behavior
of the animals suggested they used a prior in combination with
causal evidence to determine when a contingency reversal oc-
curred. When we estimated a prior over reversal trial under this
assumption, we found that haloperidol led to a prior with less
variance but the same mean as the other drug conditions. Thus,
the animals relied more on their prior when deciding when to
switch under haloperidol, because a prior with less variance more
strongly affects the posterior evidence for a reversal.

Figure 6. Effects on learning rate parameters for positive and negative feedback estimated with acquisition and reversal phase
divided by ideal observer and behavioral choice models. Error bars indicate 1 SEM. A, Learning rates for each form of feedback
broken out by reward schedule and learning phase, averaged across drug condition. Pos, Positive; Neg, negative. B, Learning rates
by drug condition, averaged across learning phase and reward schedule.
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Effects of dopamine manipulations on reversal learning
The relationship between dopamine and learning is often de-
bated (Redgrave et al., 2008; Berridge et al., 2009; Nicola, 2010;
Salamone and Correa, 2012). When we fit the RL algorithm to the
data split by the ideal observer, there were effects of dopamine
manipulations consistent with previous reports (Frank and
O’Reilly, 2006). Specifically, haloperidol increased the effect of
negative feedback and decreased the effect of positive feedback
relative to L-DOPA. However, when we fit the RL model to the
data aligned to the animals’ reversal in choice behavior (which
shifts trials near the reversal point from the reversal to the acqui-
sition phase), we found that neither haloperidol nor L-DOPA
differentially affected learning rates as assessed with the RL algo-
rithm. Therefore, the drug-related effects on learning are ac-
counted for by differences in switch points identified by the two
models. Because the animals switched rather abruptly, they did
not seem to be using a noisy, explorative reinforcement learning
strategy. We also found evidence that they incorporated a prior
into their choice process. Therefore, they appeared to be more
Bayesian, having learned the statistical structure of the task.

Haloperidol did increase the consistency with which the ani-
mals reversed their choice behavior relative to the ideal observer
and correspondingly decreased the variance of the prior that
drove reversals. These results intersect with accumulating evi-
dence that reversal learning in monkeys is mediated by D2 recep-
tor signaling. However, D2 receptor antagonism is typically
found to impair reversal learning. Deficits in reversal learning,
defined in terms of the number of errors made before reaching
criterion, are seen after neurochemical dopamine depletion in
the medial caudate (Clarke et al., 2011), decreases in caudate D2

receptor availability (Groman et al., 2011), and systemic injec-
tions of the D2/D3 receptor antagonist raclopride (Lee et al.,
2007). Therefore, a straightforward interpretation of how halo-
peridol affected reversal learning, in terms of standard theories of
dopamine, is difficult.

One possible explanation is that by disrupting striatal D2

mechanisms, haloperidol causes an increased reliance on learned
strategies driven by cortical mechanisms. For example, when
monkeys are first extensively trained on serial object reversal
learning, subsequent lesions to ventrolateral prefrontal cortex
impair generalization of that training to reversals with novel ob-
ject pairs (Rygula et al., 2010). Related deficits on serial reversal
learning are also seen after disconnection lesions of prefrontal
and inferotemporal cortex (Wilson and Gaffan, 2008). Also in
marmosets, dopaminergic lesions of the orbitofrontal cortex
cause increases in tonic striatal dopamine levels and D2 receptor
occupancy. These changes in dopaminergic tone are then corre-
lated with increased sensitivity to probabilistic reward feedback
(Clarke et al., 2014). Although this study did not assess reversal
learning, this result is intriguing because it does imply that tonic
blockade of striatal D2 receptors with haloperidol might prompt
less reliance on immediate feedback.

Administration of L-DOPA also caused animals to reverse
closer to the ideal observer, but this effect could not be attributed
to a change in the prior. A possible explanation for why haloper-
idol and L-DOPA both increase the accuracy of the animals in
detecting reversals is that both drugs have similar effects on pha-
sic dopamine release, because haloperidol can antagonize presyn-
aptic D2 autoreceptors, causing increased release in the striatum
(Kuroki et al., 1999; Wu et al., 2002; Robinson et al., 2003). How-
ever, identifying potential mechanisms that explain the disso-
ciable effects of haloperidol and L-DOPA on the monkeys’
reliance on a prior is an open question.

A final point is that previous studies of reversal learning have
examined performance while animals were learning that reversals
occur. In these tasks, performance improves over the course of
the experiment. For example, in the study by Clarke et al. (2011),
there is a statistical main effect of number of reversals and no
interaction of reversal and group. This shows that the animals
across all conditions are learning about reversals during the
study. There are two possible hypotheses for the deficits between
groups in these prior studies. One is that deficits are related to
effects of dopamine on a naive model that the animals use to solve
the task before they learn that reversals occur. The other hypoth-
esis is that the animals are not able to learn the correct model that
solves the task more efficiently, analogous to the idea of develop-
ing a learning set (Wilson and Gaffan, 2008). Both of these hy-
potheses would result in similar deficits in the first few blocks, but
they make different predictions about how the deficits evolve
with experience.

Conclusion
We developed a Bayesian model of reversal learning to study the
behavioral effects of dopamine manipulation. We found that,
with extensive experience, animals developed a behavioral strat-
egy that was well matched to the actual features of our task. In
difficult schedules, animals switched their behavior, on average,
earlier than the ideal observer, reflecting the influence of a prior
on when a reversal would occur. In addition, when the behavioral
choice data were aligned to the animals’ switch trial, it could be
seen that the animals switched choices abruptly, as opposed to
gradually changing their behavior over a series of trials. We also
found that administration of haloperidol or L-DOPA lead to in-
creased performance on the task. Overall, the Bayesian formalism
makes explicit the animal’s strategy and allows for a thorough
examination of the behavior and effects of causal manipulations.
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