Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Feb;72(2):572–576. doi: 10.1073/pnas.72.2.572

Distribution of membrane particles and gap junctions in normal and transformed 3T3 cells studied in situ, in suspension, and treated with concanavalin A.

P Pinto Da Silva, A Martinez-Palomo
PMCID: PMC432355  PMID: 164659

Abstract

Freeze-fracture techniques were used to study the ultrastructural distribution of plasma membrane particles in cultures of normal Balb/c and Swiss 3T3 and simian virus 40- or murine sarcoma virus-transformed fibroblasts. No apparent differences were observed. Cultures fixed in situ show a seemingly random distribution of membrane particles both in normal or in transformed cells. Treatment of cell cultures in situ with concanavalin A does not result in an altered pattern of particle distribution. EDTA-induced suspension of normal or transformed cells does not result, per se, in modification of the type of membrane particle distribution seen in cells fixed in situ. However, upon further incubation, a proportion of normal or transformed cells in suspension show a varying degree of particle aggregation following a network pattern. Concanavalin A treatment of normal and transformed cells in suspension does not result in a specific change of the pattern of particle distribution. Because it has been established that treatment with concanavalin A of simian virus 40-transformed Balb/c 3T3 fibroblasts causes pronounced clustering of the concanavalin A receptors at the outer-surface, our results probably imply independence of membrane particles and concanavalin A receptors of these transformed cells.

Full text

PDF
572

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett R. E., Furcht L. T., Scott R. E. Differences in membrane fluidity and structure in contact-inhibited and transformed cells. Proc Natl Acad Sci U S A. 1974 May;71(5):1992–1994. doi: 10.1073/pnas.71.5.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cunningham W. P., Staehelin L. A., Rubin R. W., Wilkins R., Bonneville M. Effects of phosphotungstate negative staining on the morphology of the isolated Golgi apparatus. J Cell Biol. 1974 Aug;62(2):491–504. doi: 10.1083/jcb.62.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Da Silva P. P., Martinez-Palomo A. Induced redistribution of membrane particles, anionic sites and con A receptors in Entamoeba histolytica. Nature. 1974 May 10;249(453):170–171. doi: 10.1038/249170a0. [DOI] [PubMed] [Google Scholar]
  4. De Petris S., Raff M. C., Mallucci L. Ligand-induced redistribution of concanavalin A receptors on normal, trypsinized and transformed fibroblasts. Nat New Biol. 1973 Aug 29;244(139):275–278. doi: 10.1038/newbio244275a0. [DOI] [PubMed] [Google Scholar]
  5. Goodenough D. A., Revel J. P. A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol. 1970 May;45(2):272–290. doi: 10.1083/jcb.45.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guérin C., Zachowski A., Prigent B., Paraf A., Dunia I., Diawara M. A., Benedetti E. L. Correlation between the mobility of inner plasma membrane structure and agglutination by concanavalin A in two cell lines of MOPC 173 plasmocytoma cells. Proc Natl Acad Sci U S A. 1974 Jan;71(1):114–117. doi: 10.1073/pnas.71.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Karnovsky M. J., Unanue E. R. Mapping and migration of lymphocyte surface macromolecules. Fed Proc. 1973 Jan;32(1):55–59. [PubMed] [Google Scholar]
  8. Martinez-Palomo A., Wicker R., Bernhard W. Ultrastructural detection of concanavalin surface receptors in normal and in polyoma-transformed cells. Int J Cancer. 1972 May 15;9(3):676–684. doi: 10.1002/ijc.2910090326. [DOI] [PubMed] [Google Scholar]
  9. McIntyre J. A., Gilula N. B., Karnovsky M. J. Cryoprotectant-induced redistribution of intramembranous particles in mouse lymphocytes. J Cell Biol. 1974 Jan;60(1):192–203. doi: 10.1083/jcb.60.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McNutt N. S., Weinstein R. S. The ultrastructure of the nexus. A correlated thin-section and freeze-cleave study. J Cell Biol. 1970 Dec;47(3):666–688. doi: 10.1083/jcb.47.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nicolson G. L. Temperature-dependent mobility of concanavalin A sites on tumour cell surfaces. Nat New Biol. 1973 Jun 13;243(128):218–220. doi: 10.1038/newbio243218a0. [DOI] [PubMed] [Google Scholar]
  12. Nicolson G. L. Topography of membrane concanavalin A sites modified by proteolysis. Nat New Biol. 1972 Oct 18;239(94):193–197. doi: 10.1038/newbio239193a0. [DOI] [PubMed] [Google Scholar]
  13. Pinto da Silva P., Branton D. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker. J Cell Biol. 1970 Jun;45(3):598–605. doi: 10.1083/jcb.45.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pinto da Silva P., Douglas S. D., Branton D. Localization of A antigen sites on human erythrocyte ghosts. Nature. 1971 Jul 16;232(5307):194–196. doi: 10.1038/232194a0. [DOI] [PubMed] [Google Scholar]
  15. Pinto da Silva P., Fudenberg H. H. Anionic sites on the membrane intercalated particles of human erythrocyte ghost membranes. Freeze-etch localization. Exp Cell Res. 1973 Sep;81(1):127–138. doi: 10.1016/0014-4827(73)90119-5. [DOI] [PubMed] [Google Scholar]
  16. Pinto da Silva P., Gilula N. B. Gap junctions in normal and transformed fibroblasts in culture. Exp Cell Res. 1972;71(2):393–401. doi: 10.1016/0014-4827(72)90309-6. [DOI] [PubMed] [Google Scholar]
  17. Rosenblith J. Z., Ukena T. E., Yin H. H., Berlin R. D., Karnovsky M. J. A comparative evaluation of the distribution of concanavalin A-binding sites on the surfaces of normal, virally-transformed, and protease-treated fibroblasts. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1625–1629. doi: 10.1073/pnas.70.6.1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Scott R. E., Furcht L. T., Kersey J. H. Changes in membrane structure associated with cell contact. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3631–3635. doi: 10.1073/pnas.70.12.3631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Silva P. P., Nicolson G. L. Freeze-etch localization of concanavalin A receptors to the membrane intercalated particles of human erythrocyte ghost membranes. Biochim Biophys Acta. 1974 Sep 23;363(3):311–319. doi: 10.1016/0005-2736(74)90071-6. [DOI] [PubMed] [Google Scholar]
  20. Tillack T. W., Scott R. E., Marchesi V. T. The structure of erythrocyte membranes studied by freeze-etching. II. Localization of receptors for phytohemagglutinin and influenza virus to the intramembranous particles. J Exp Med. 1972 Jun 1;135(6):1209–1227. doi: 10.1084/jem.135.6.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES