
Myopia is an important public health issue [1-3]. 
Recently, the maculopathy of high myopia has become the 
leading cause of untreatable blindness in East Asia [4-6].

Thinning of the sclera and excessive elongation of the 
myopic eyeball are accompanied by long-term thinning and 
stretching of other ocular tissues, especially in the retina 
and choroid. Consequently, this leads to complications, such 
as cataracts, glaucoma, retinal detachment, myopic retinal 
degeneration, visual impairment, and blindness [7-10]. While 
optical and laser surgical corrective techniques have been 
used to alter the refractive state of the myopic eye, these 
therapies do not address the abnormal elongation of the eye 

and do not treat pathologic changes in the fundus of high 
myopia patients.

The outer coating of the eyeball, the sclera, becomes 
pathologically thin in high myopia patients [11]. Although 
historically the sclera has been considered a relatively inert 
tissue, the role of the sclera is not simply a static container. 
Recent research has shown the sclera is a dynamic tissue, 
capable of responding rapidly to changes in the visual 
environment to alter ocular size and refraction [12,13]. Its 
biochemical and biomechanical properties determine the 
shape and size of the eyeball and therefore play an important 
role in the determination of refraction status [14]. Scleral 
extracellular matrix remodeling plays an important role in the 
enlargement of the ocular globe [15-18]. It has been reported 
that the development of myopia is controlled by local ocular 
tissue rather than the central nervous system [19-21]. Even 
though the mechanism of myopia is still under investigation, it 
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Purpose: Previously, we demonstrated that scleral stem/progenitor cells (SSPCs) from mice have a chondrogenic differ-
entiation potential, which is stimulated by transforming growth factor-β (TGF-β). In the present study, we hypothesized 
that chondrogenesis in the sclera could be a possible mechanism in myopia development. Therefore, we investigated the 
association of form-deprivation myopia (FDM) with expressions in mice sclera representing the chondrogenic phenotype: 
collagen type II (Col2) and α-smooth muscle actin (α-SMA).
Methods: The mRNA levels of α-SMA and Col2 in cultured murine SSPCs during chondrogenesis stimulated by 
TGF-β2 were determined by real-time quantitative RT–PCR (qRT-PCR). The expression patterns of α-SMA and Col2 
were assessed by immunohistochemistry in a three dimensional pellet culture. In an FDM mouse model, a western blot 
analysis and immunofluorescence study were used to detect the changes in the α-SMA and Col2 protein expressions 
in the sclera. In the RPE-choroid complex, qRT-PCR was used to detect any changes in the TGF-β mRNA expression.
Results: The treatment of SSPCs in vitro with TGF-β2 for 24 h at 1 or 10 ng/ml led to increased levels of both the α-SMA 
and Col2 expressions. In addition, we observed the formation of cartilage-like pellets from TGF-β2-treated SSPCs. 
Both α-SMA and Col2 were expressed in the pellet. In an in-vivo study, the α-SMA and Col2 protein expressions were 
significantly increased in the sclera of FDM eyes in comparison to contralateral control eyes. Similarly, the levels of 
TGF-β in the RPE-choroid complex of an FDM eye were also significantly elevated.
Conclusion: Based on the concept of stem cells possessing multipotent differentiation potentials, scleral chondrogen-
esis induced by SSPCs may play a role in myopia development. The increased expressions of the cartilage-associated 
proteins Col2 and α-SMA during scleral chondrogenesis may be potential markers for myopia development. In addition, 
the increased levels of TGF-β mRNA in the RPE-choroid complex might induce the chondrogenic change in the sclera 
during myopia development.
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is well known that scleral tissue is the target tissue of myopia 
[18]. The signal from nearby tissues induces scleral tissue 
remodeling and can result in eyeball elongation. There are 
several categories and types of experimental manipulations 
for an induced myopia model. The most relevant models for 
understanding the role of vision in common forms of myopia 
are form deprivation (alterations in retinal image contrast) 
and lens compensation (focus behind the retina) experiments 
[22].

In eutherian mammals, the inner layer of cartilage is 
absent, so the entire sclera consists of a fibrous, collagen type 
I-dominated (90%) extracellular matrix [23].

In contrast, the scleras of most other vertebrates, 
including chicks, comprise an inner layer of cartilage and 
an outer fibrous layer [24]. Recently, we successfully identi-
fied scleral stem/progenitor cells (SSPCs) from mouse sclera, 
as well as demonstrated that SSPCs have a chondrogenic 
differentiation potential, which is stimulated by transforming 
growth factor-β (TGF-β) [25]. The expression of cartilage-
related markers, such as glycosaminoglycan, aggrecan, and 
collagen type II (Col2), were all increased in the cartilage-
like pellet. The expression of Col2 is considered a hallmark 
of cartilage differentiation [26]. In addition, Col2 is a major 
fibrillar collagen of the largely cartilaginous avian sclera and 
has been identified in the scleras of embryonic mice [27]. 
On the other hand, it has been suggested that the increased 
expression of alpha- smooth muscle actin (α-SMA) in scleral 
tissue is associated with aging and myopia [28-30]. As well, 
α-SMA is also expressed during chondrogenesis in human 
mesenchymal stem cells and is considered to have the func-
tion of maintaining the integrity of cartilage tissue [31].

Therefore, we hypothesize that SSPCs possessing a 
chondrogenic differentiation potential may play an impor-
tant role in myopia development in mammals. In this study, 
we investigated the association between chondrogenesis and 
form deprivation myopia (FDM) in mice.

METHODS

Mice: Male wild-type C57BL/6 mice (Jackson Labs) were 
used in this study. All procedures were performed in accor-
dance with an institutional IACUC approved protocol, as well 
as according to the ARVO Statement for the Use of Animals 
in Ophthalmic and Vision Research.

Scleral stem/progenitor cell (SSPC) isolation and culture: 
The SSPCs were isolated and cultured, as previously 
described [25]. In brief, mouse eyes were obtained and 
scleras were carefully dissected away from the limbus and 
optic disc under a dissecting microscope. After the retina 

and choroid tissues were removed, the scleral tissue was cut 
into small pieces and digested with 1.5 mg/ml of collagenase 
type I (Worthington) and 2 mg/ml of Dispase (Roche) in a 
PBS for 1 h at 37 °C to release individual cells. Individual 
cells were cultured in α-MEM (Gibco), supplemented with 
20% lot-selected FBS (Equitech-Bio), glutamine, penicillin/
streptomycin, and 55 μM of 2-mercaptoethanol (Gibco) for 8 
to 10 d at 5% CO2 and 37 °C .

TGF-β treatment: In the early passages (3 to 5), 1 × 105 
SSPCs were seeded into each well of a 12-well plate. 
Different concentrations of TGF-β2 were added into the 12 
wells of SSPCs. After 24 h, the images of cell morphology 
were recorded. Then, total RNA was extracted for further 
analysis. In addition, the same conditions were performed in 
a chamber slide culture for the immunofluorescence study.

Induction of chondrogenic differentiation: At semi-conflu-
ence, the second passage SSPCs were trypsinized and counted 
to make aliquots of 2×105 cells in 2 ml of the growth medium, 
and they were spun down at 500 g for 10 min to obtain the 
pellets, as previously described [25]. The pellets were incu-
bated at 37 °C under 5% CO2. Within 12–24 h of incubation, 
the cells formed an essentially spherical aggregate that did 
not adhere to the walls of the tube. The culture medium was 
added to 10 ng/ml TGF-β2 and the medium was changed at 
2- to 3-day intervals. The pellets were then harvested at 4 
weeks. Subsequently, they were washed twice in a PBS, fixed 
in 4% paraformaldehyde for 3 h at room temperature, and 
prepared for paraffin embedding. Furthermore, 8-μm thick 
sections were obtained for immunohistochemistry,

Immunohistochemistry and immunofluorescence study: We 
performed immunohistochemistry and immunofluorescence 
studies to demonstrate the presence of SMA and the Col2 
protein during chondrogenesis. For immunohistochemistry, 
paraffin sections were treated with a 20% blocking goat serum 
for 30 min and then incubated with primary antibodies, which 
were rabbit IgG anti-SMA mAb (1:200 dilution; Abcam, 
Temecula, CA) and mouse IgG2a anti-type II collagen mAb 
(1:100 dilution; Abcam) at 4 °C overnight. The sections were 
then treated with horseradish peroxidase (HRP)-conjugated 
secondary (1:200; Santa Cruz Biotechnology, Santa Cruz, 
CA) antibodies for 1 h. The DAB reagent (diaminobenzi-
dine tetrahydrochloride) was subsequently used to detect 
immunoactivity. For immunofluorescence, cryostat sections 
and rehydrated paraffin sections were treated with blocking 
serum, incubated with a primary antibody, reacted with 
the corresponding fluorescein-isothiocyanate-conjugated 
secondary antibody, and finally evaluated by fluorescence 
microscopy.
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Real-time PCR: Total RNA from the SSPCs or the choroid 
tissue in each eye was isolated using Trizol (Invitrogen, 
Carlsbad, CA) according to the manufacture’s protocol. The 
qRT-PCR analysis was performed using the iScript one-step 
RT–PCR kit with SYBR Green (Bio-Rad, Hercules, CA) on 
an ABI PRISM 7900 HT sequence detection system (Applied 
Biosystems, Foster City, CA), according to the manufacturer’s 
instructions. Primers used for the experiment are shown in 
Table 1. GAPDH and β-actin served as controls. The Ct values 
of the control gene were subtracted from those of α-SMA 
and Col2 to provide a semi-quantitative analysis, and the fold 
change relative to no treatment was assessed.

Induction of Mouse FDM: On the day of the experiment 
(postnatal day [P] 21–24), C57BL/6J mice were anesthetized 
by an intraperitoneal injection of ketamine (90 mg/kg) and 
xylazine (10 mg/kg), and diffuser eye patches were sutured 
to the skin surrounding the right eye with three to six stitches 
(type: prolene suture; size: 4–0). The left eye served as a 
control. Hemispherical plastic diffuser eye patches were 
made from caps of 0.5-ml PCR plastic tubes. Animals were 
placed on a warming pad during recovery and were moni-
tored until fully mobile. Treated animals were housed in 
transparent plastic cages under 12 h:12h light-dark conditions 
(200±15 lx horizontal illuminance) for 21 days. The method 
of measuring axial length was described by Jiang et al. [32] 
A spectral-domain optical coherence tomography was used 
for the ocular biometric measurement before and after FDM 
induction (Figure 1).

Western blot analysis: The total protein from the scleras 
was extracted using a RIPA protein extraction buffer. 
After homogenization of the scleral tissue, the sample was 
centrifuged and the supernatant was collected. The protein 
concentration of each sample was measured using a BCATM 
Protein Assay Kit (Bio-Rad). Scleral protein samples were 
standardized and electrophoresed on 10% SDS–PAGE 
gel, then transferred to a polyvinylidene fluoride transfer 

membrane (Immun-Blot PVDF Membrane, BIO-RAD) at 21 
V for 1 h. Membranes were blocked for 1 h at room tempera-
ture with 5% dry milk in PBS with 0.1% Tween and incubated 
at 4 °C overnight with primary antibodies. Membranes were 
washed and incubated with 1:10,000 goat anti-mouse or anti-
rabbit IgG antibodies conjugated to horseradish peroxidase 
(Santa Cruz) for 1 h at room temperature and washed again. 
Membranes were developed by chemiluminescence with 
the reagent Lumigen TMA-6 (GE Healthcare UK limited, 
Buckinghumshire, UK), and images were captured with 
the Fujifilm imaging system (LAS-4000; Fujifilm, Tokyo, 
Japan). Protein bands were quantified using ImageJ software.

Statistical analysis: For in vitro studies, the ANOVA test 
with a Bonferroni post-hoc test was performed to compare 
the expressions of α-SMA and Col2 following different 

Table 1. Primers.

Primer name Sequence (5′-3′)
α-SMA F: ATGCCTCTGGACGTACAACTG

R: CGGCAGTAGTCACGAAGGAAT
Col2 F: GTCCTTCTGGCCCTAGAGGT

R: TGTTTCTCCTGAGCGTCCA
β-actin F: CATTGCTGACAGGATGCAGA

R: CTGATCCACATCTGCTGGAA
GAPDH F: AACTTTGGCATTGTGGAAGG

R: ACACATTGGGGGTAGGAACA

Figure 1. Representative spectral-domain optical coherence tomog-
raphy image of a mouse eye.
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concentrations of TGF-β2 treatment. For in vivo studies, the 
paired t test was used to determine the statistical significance 
between FDM eyes and contralateral control eyes. A statis-
tical significance was defined as a p value less than 0.05.

RESULTS

Changes in morphology of cultured SSPCs after TGF-β 
treatment: The cell morphology dramatically changed after 
TGF-β2 treatment (1–10 ng/ml) for 24 h. In the control and 
in the 0.1 ng/ml TGF-β2 treatment groups, some SSPCs 
had the characteristics of a thin spindle shape, and a small 
portion of cells showed a widened phenotype (Figure 2A,B). 
In addition, the cytoskeleton filaments of the cells were not 
obvious (Figure 2E). When the SSPCs were treated with 1 or 
10 ng/ml of TGF-β2, nearly all cells became broad and mostly 

rhombus- or triangle-shaped with prominent cytoskeletal 
filaments (Figure 2C,D). Immunofluorescence microscopy 
showed that 10 ng/ml of the TGF-β2 treatment resulted in 
an increased number of α-SMA protein-positive cells and 
prominent intracellular α-SMA filament staining (Figure 2F).

Effect of TGF-β treatment on α-SMA and Col2 expressions 
in cultured SPPCs: Next, we examined whether there were 
any alterations to the α-SMA and Col2 gene expressions after 
TGF-β2 treatment for 24 h. A quantitative RT–PCR analysis 
showed there were statistically significant dose-dependent 
increases in mRNA levels for both α-SMA and Col2 after 
treatments of TGF-β2 (Figure 3; p<0.0001 and p = 0.011 
respectively, ANOVA test).

α-SMA and Col2 expressions and localization in 3-D pellets 
of SSPCs: The cell pellets did not grow in the control medium 

Figure 2. The changes in SSPC 
morphology following 24 h of 
treatment with different concentra-
tions of TGF-β. A: Without TGF-β 
treatment, some SSPCs had the 
characteristics of thin spindle 
shapes and some showed a widened 
phenotype. The cytoskeletal fila-
ments of cells were not obvious 
(original magnification, ×200). B: 
Following treatment with 0.1 ng/ml 
of TGF-β, SSPCs did not change in 
comparison to no TGF-β treatment. 
C, D: SSPCs treated with 1 and 10 
ng/ml of TGF-β all became broad 
and mostly rhombus- or triangle-
shaped with prominent cytoskeletal 
filaments. E, F: The expression of 
the α-SMA protein was deter-
mined by immunof luorescence 
microscopy. Nuclei were stained 
with DAPI (original magnification, 
×400). Representative of three inde-
pendent experiments.
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when cultured for 4 weeks. In contrast, the pellets continued 
to grow in the medium containing TGF-β2 at 10 ng/ml 
(TM-pellets) during the 4-week culture period (Figure 4). A 
histological analysis showed that most cells were located in 
the peripheral and mid-peripheral areas that surrounded the 
central matrix tissue in TM pellets. An immunohistochemical 
analysis showed the Col2 protein localized in a region of the 
mid-peripheral area of TM pellets (Figure 4C). In contrast, 
the localization of α-SMA was more extended within the TM 

pellets, especially in the mid-peripheral and peripheral areas 
(Figure 4D).

Mouse FDM: The difference in axial length between the 
two eyes of each animal was initially insignificant (p = 
0.378). However, by the 21st day, monocularly deprived 
eyes had myopia with an axial length of 3055±39 μm, which 
was significantly longer than the contralateral control eyes 
(3015±40 μm, n = 6, paired t test, p<0.001).

Figure 3. After SSPCs were treated 
with different concentrations of 
TGF-β in culture, real-time PCR 
detected a dose-dependent increase 
in α-SMA and Col2 mRNA normal-
ized to the β-actin expression. Data 
are expressed as the fold change 
over the control sample, as deter-
mined by the delta-delta Ct method. 
Bars, SD * represents statistically 
significant (p<0.05).

Figure 4. Expressions of the α-SMA 
and Col2 proteins in the 3-D pellets 
of SSPCs, as stimulated by TGF-β2. 
In a culture medium supplemented 
with 10 ng/ml of TGF-β2, the 3-D 
pellets grew during the 4-week 
culturing period. Protein expres-
sions and localization were visual-
ized by a DAB reagent. (A) The 
negative control without the Col2 
antibody. (B) Col2 expressed in the 
local, mid-peripheral areas of the 
TM pellets (arrow). (C) The nega-
tive control without the α-SMA 
antibody. (D) The α-SMA expres-
sion was more extended within 
the TM pellets, especially in the 
mid-peripheral and peripheral areas 
(arrow).
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Col2 and α-SMA protein in the sclera of mouse FDM: The 
protein expressions of Col2 and α-SMA were detected by 
western blot (Figure 5A). After 21 days of visual deprivation, 
the relative expression levels in FDM eyes were significantly 
higher than in contralateral control eyes of the same animals 
for Col2 and α-SMA (p = 0.021 and p = 0.042, respectively, 
by paired t test, n = 6 in each group, 2 repeats, Figure 5B). 

Immunostaining for the Col2 expression in the scleral area 
was greater in the FDM eyes than in the control eyes after 21 
days of induction (Figure 6A,B). For the α-SMA expression, 
a greater expression was noted in the scleral and choroid areas 
of FDM eyes in comparison to control eyes (Figure 6C,D). In 
addition, the increased expression of α-SMA in the sclera of 
FDM eyes was mostly located near the choroid side (Figure 
6C).

TGF-β mRNA in the choroids of mouse FDM eyes: Due to the 
α-SMA expression, which was mostly found near the choroid 
side of the scleras in FDM eyes, the possible influence of 
the choroid on the sclera was hypothesized, and we inves-
tigated the possible changes in TGF-β levels in the choroids 
of FDM eyes (n = 5 in each group). The relative expression 
levels of TGF-β1, TGF-β2, and TGF-β3 mRNA in FDM eyes 
were significantly higher than in contralateral control eyes 
(2.98, 4.44, and 3.86 fold change, p = 0.042, 0.045, and 0.041, 
respectively, Figure 7).

DISCUSSION

In this study, the expression levels of Col2 and α-SMA were 
investigated in the scleras of mice following induction of 
FDM. It was found that both Col2 and α-SMA were upregu-
lated in mouse sclera after 21 days of form deprivation. This 
is the first report on the increased expression of the chon-
drogenic protein, type II collagen, in a mammalian myopia 
model. In addition, the increased expression of TGF-β from 
the RPE-choroid complex in myopic eyes might contribute to 
chondrogenesis in the sclera.

Figure 5. Western blot analysis of Col2 and α-SMA (bands at about 
142 kDa and 42 kDa, respectively) in the scleras of mice with form-
deprivation myopia (FDM). A: After 21 days of visual deprivation, 
both the Col2 and α-SMA expression levels were increased. B: A 
densitometry analysis showed that the Col2 and α-SMA expressions 
were significantly increased in FDM eyes compared to the control 
eyes (p<0.05, respectively).

Figure 6. Immunostaining for 
the Col2 expression in the scleras 
of FDM mouse eyes on day 21 
following induction. Col2 was more 
highly expressed in the FDM eyes 
than in the control eyes (Figure 
5A,B). For the α-SMA expression, a 
greater expression was noted in the 
scleral and choroid areas of FDM 
eyes in comparison to control eyes. 
(Figure 5C,D). Some extra-ocular 
muscle (EOM) tissue existing 
outside the sclera.

http://www.molvis.org/molvis/v21/138


Molecular Vision 2015; 21:138-147 <http://www.molvis.org/molvis/v21/138> © 2015 Molecular Vision 

144

During myopia development, the sclera’s mechanical 
properties are altered. Mammalian scleras are composed of 
approximately 90% collagen by weight, consisting predomi-
nantly of collagen type I [23,33,34]. Collagen type I fibrils 
have enormous tensile strength and are stronger than steel, 
gram for gram [35]. It has been reported that the expres-
sion of collagen type I is decreased in myopic scleras [36]. 
The elastic properties of the scleras in myopic eyes show an 
increase in scleral elasticity (creep rate) early in the develop-
ment of myopia. Our study showed an increase in Col2 in 
mouse myopic eyes. This may explain why in myopic eyes, 

following a decrease in collagen type I or replacement by an 
increase in Col2, the myopic sclera stiffness would decrease, 
and the elasticity would increase. The myopic eyes would 
therefore be more susceptible to elongation and an increased 
axial length.

Chondrogenesis might account for the possible mecha-
nism of myopia development. Col2 has been identified in the 
scleras of embryonic mice and is a major fibrillar collagen of 
the cartilaginous avian sclera. Even though little or no Col2 
has previously been detected in human scleras [23], there 
is still some evidence that Col2 plays an important role in 
human myopia development, as Stickler syndrome type II 
is a disease with a Col2A1 gene mutation and is associated 
with myopia [37-39]. In addition, it is difficult to explain why 
myopia progression would not stop or retard until late adoles-
cence [37-39]. If chondrogenesis is the major contributing 
mechanism of myopia development in humans, the growth 
pattern should be similar to other cartilage-associated parts 
of our body. The bony cartilage (growth plates), for example, 
disappears at the time of adolescence after a burst of pubertal 
activity [40]. Articular cartilage, similarly, ceases growth 
in the early twenties, and it is regulated by growth and sex 
hormones.

TGF-β plays an important role in myopia development. 
Several genetic studies showed that the TGF- β gene is associ-
ated with myopia [41,42]. In a Marfan syndrome mouse model 
with TGF- β enhancement, the mice treated with anti-TGF-β 
antibodies demonstrated a significantly lower axial length 
[43]. TGF-β has an antagonistic effect on fibroblast growth 
factor-2 (FGF-2); FGF-2 reduces myopia and TGF-β inhibits 
the FGF effect on myopia [44-47]. In our study, the increased 

Figure 7. In the RPE-choroid complex of FDM eyes, the levels of 
the TGF-βs mRNA expression were analyzed by real-time PCR 
normalized to the β-actin expression. The TGF-β 1, 2, and 3 mRNA 
levels were all significantly increased in the RPE-choroid complex 
of FDM eyes in comparison to control eyes. Data are expressed 
as the fold change over the control sample, as determined by the 
delta-delta Ct method. Bars, SD * represents statistically significant 
(Student’s paired t test).

Figure 8. A possible mechanism for myopia development. 
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expression of TGF-β was found in the RPE-choroid complex 
of FDM eyes, as has also been reported in chickens [46]. 
McBrien reviewed the role of TGF-β in myopia and high-
lighted it as a responsible factor for certain critical events 
in myopia development [48]. However, the levels of TGF-β 
are decreased in tree shrew scleras but are not significantly 
changed in the retina and choroid during myopia development 
[28,49]. Our study showed increased levels of TGF-β in the 
RPE-choroid complexes of FDM mouse eyes. The possible 
explanation is that the role of the RPE-choroid complex in 
myopia development might be due to RPE cells, possessing 
the ability to express and secrete TGF-β [50,51]. The choroid 
is the tissue adjacent to the inner sclera and could diffuse 
soluble proteins to the sclera, especially as the choroid 
becomes thinned during myopia development [52]. TGF-β is 
a family of small and soluble proteins. The choroid might 
play a role in the transportation of TGF-β to the sclera, thus 
effecting scleral chondrogenesis. This study showed that 
increased levels of TGF-β in the RPE-choroid complex might 
be associated with scleral chondrogenesis. Further work to 
define the origin of TGF-β secretion (i.e., from the RPE or 
choroid) is needed to elucidate the mechanisms.

From this study, we propose a novel potential mechanism 
for myopia development. The blurred image imposed on the 
retina results in a signal transmitted through the choroid to 
induce choroid thinning and constriction. In conjunction 
with or following choroidal thinning, the TGF-β expression 
increases in the RPE-choroid complex and diffuses to the 
sclera. The SSPCs inside the sclera initiate chondrogenic 
differentiation induced by TGF-β from the choroid. Then, the 
scleral changes including collagen type I decrease, and extra-
cellular matrix (ECM) remodeling and chondrogenesis occur 
in the sclera followed by myopia development (Figure 8). The 
connective tissue of the sclera is composed by ECM secreted 
by scleral cells (SSPCs or fibroblasts). ECM molecules previ-
ously believed unique to cartilage, such as aggrecan and 
PRELP, have been identified in human scleras [34,53,54]. 
Cartilaginous components have been retained in the sclera 
through evolution and might serve important biochemical and 
biomechanical functions [12]. Increased aggrecan (cartilage 
proteoglycan) production in the scleras of myopic chicks 
and guinea pigs has been reported [44,55]. Therefore, this 
suggests chondrogenesis in the sclera would result in extra-
cellular matrix changes of scleral remodeling. However, to 
identify the signaling pathways and the causal relationship, 
further studies are necessary.

In conclusion, the concept of SSPCs having multipo-
tent differentiation potentials infers scleral chondrogen-
esis may play a role in myopia development. Increased 

cartilage-associated proteins, such as Col2 and α-SMA, 
have the potential to be representative markers in the sclera 
during myopia development. In addition, increased levels 
of TGF-β in the RPE-choroid complex might be associated 
with the chondrogenic change in the sclera during myopia 
development.
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