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Relative Roles of CD90 and c-Kit to the Regenerative Efficacy of
Cardiosphere-Derived Cells in Humans and in a Mouse Model

of Myocardial Infarction
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Background—The regenerative potential of cardiosphere-derived cells (CDCs) for ischemic heart disease has been demonstrated in
mice, rats, pigs, and a recently completed clinical trial (CADUCEUS). CDCs are CD105" stromal cells of intrinsic cardiac origin, but
the antigenic characteristics of the active fraction remain to be defined. CDCs contain a small minority of c-kit™ cells, which have
been argued to be cardiac progenitors, and a variable fraction of CD90" cells whose bioactivity is unclear.

Methods—We performed a retrospective analysis of data from the CADUCEUS trial and a prospective mouse study to elucidate the
roles of c-kit" and CD90" cells in human CDCs. Here, we show, surprisingly, that c-kit expression has no relationship to CDCs’
therapeutic efficacy in humans, and depletion of c-kit™ cells does not undermine the structural and functional benefits of CDCs in a
mouse model of myocardial infarction (Ml). In contrast, CD90 expression negatively correlates with the therapeutic benefit of CDCs
in humans (ie, higher CD90 expression associated with lower efficacy). Depletion of CD90" cells augments the functional potency
of CDCs in murine MI. CD90~ CDCs secrete lower levels of inflammatory cytokines and can differentiate into cardiomyocytes in
vitro and in vivo.

Conclusion—The majority population of CDCs (CD105%/CD90 /c-kit™) constitutes the active fraction, both in terms of
therapeutic efficacy and in the ability to undergo cardiomyogenic differentiation. The c-kit™ fraction is neither necessary for, nor
contributory to, the regenerative efficacy of CDCs. (J/ Am Heart Assoc. 2014,;3:e001260 doi: 10.1161/JAHA.114.001260)

Key Words: cardiosphere-derived cells « CD90  ckit * myocardial infarction

umerous animal studies' ' and the first-in-human

CADUCEUS trial'""'? have demonstrated the regenera-
tive potential of cardiosphere-derived cells (CDCs) in ischemic
cardiomyopathy. CDCs are intrinsic to the heart'® and

uniformly express the transforming growth factor beta
receptor accessory subunit, CD105 (endoglin), but are
negative for the pan-hematopoietic marker, CD45.”'° CDCs
contain a small fraction of CD117 (c-kit)-positive cells, argued
to be cardiac stem cells,""® and a variable fraction of CD90
(Thy-1)-positive cells, which have not been characterized, but
may represent a mesenchymal subfraction.'® Thus, the
majority population is negative for both CD90 and c-kit, but
the active principle is, as yet, undefined. Purified c-kit" cells
from CDCs are not as potent as the original CDC mixture in
cardiac regeneration in a mouse model of myocardial
infarction (MI),” bringing into question the role of this
fraction.

Here, we have investigated the roles of the ckit™ and
CD90" fractions in 2 ways: First, we performed a retrospec-
tive analysis of multiple patient CDC lines used in the
CADUCEUS trial, correlating c-kit and CD90 expression with
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the major efficacy endpoint (scar size reduction) in the study.
Second, we depleted CD90" and/or c-kit" cells from CDCs
and examined whether the absence of 1 or both of these
subpopulations affects the functional benefit of CDCs in a
mouse model of MI.
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Methods

Derivation and Characterization of Human CDCs

Institutional review board (IRB) approval was obtained for all
procedures. Human CDCs were generated and expanded, as
previously described, from myocardial specimens.'®'" Unless
otherwise noted, IMDM basic medium (Gibco, Grand Island,
NY) supplemented with 10% FBS (Hyclone, Logan, UT) and
20 mg/mL of gentamycin were used to culture all CDCs.
Passage 2 CDCs were used for all in vitro and mouse
experiments. CDCs were characterized by flow cytometry
(FCM), as previously described.””'® Briefly, cells were incu-
bated with FITC-, PE-, or APC-conjugated antibodies (Abs;
from R&D Systems [Minneapolis, MN] or BD Biosciences [San
Jose, CA]) against CD105, CD45, CD90, and CD117 (c-kit) for
60 minutes. Isotype-identical Abs served as negative controls.
Quantitative analysis was performed using a CyAN flow
cytometer with FlowJo software (TreeStar, Inc., Ashland, OR).
In addition to FCM analysis, CDCs were seeded onto
fibronectin-coated chamber slides, after which cells were
fixed with 4% paraformaldehyde (PFA), blocked/permeabilized
with protein block solution (Dako, Carpinteria, CA) containing
1% saponin (Sigma-Aldrich, St. Louis, MO), and then stained
with chicken anti-CD105 (Sigma-Aldrich) and rabbit anti-c-kit
(Sigma-Aldrich) or rabbit anti-CD90 (Abcam, Cambridge, MA)
Abs. Magnetically activated cell sorting (MACS) was per-
formed using anti-CD90 and anti-CD 117 microbeads (Miltenyi
Biotec, Bergisch Gladbach, Germany). Cell viability was
assessed by trypan blue exclusion.

Human Scar Size Data

IRB approval was obtained for all procedures, and all study
subjects gave informed consent. Scar size, defined as scar
mass divided by total left ventricular (LV) mass, was quantified
by contrast-enhanced cardiac magnetic resonance imaging
(MRI), as previously described.'"'? Changes in scar size from
baseline study to the 12-month follow-up study were
quantified in each patient and correlated with the ckit" and
CD90" percentages in each corresponding autologous CDC
preparation.

Mouse MI Model and Cell Injection

All animal studies were performed in an American Association
for Accreditation of Laboratory Animal Care—accredited
facility with approval from the institutional animal care and
use committee of the Cedars-Sinai Health System. Acute M
was created in male severe combined immunodeficiency
(SCID)-beige mice (10 to 12 weeks old), as previously
described.””'® Briefly, immediately after ligation of the left
anterior descending artery with 9-0 prolene, hearts were

injected at 4 points in the infarct border zone with a total of
40 pL of one of the following interventions: PBS (control, n=6
mice); 1x10° unsorted CDCs (n=14 mice); 1x10° ckit®®"
CDCs (n=14 mice); 1x10° CD90PE” CDCs (n=15 mice); or
1x10° Double®®™ CDCs (n=12 mice). All animals were
analyzed for cardiac function (by echocardiography), but only
5 from each group were randomly selected for histological
analysis.

Heart Morphometry

For morphometric analysis, animals in each group were
euthanized 3 weeks post-MI| (after cardiac function assess-
ment) and hearts were harvested and frozen in OCT
compound. Cryosections every 100 pum (5 pm thick) were
prepared. Masson’s trichrome staining was performed on 3
heart sections (=600 pum between 2 sections) from the
same heart, as per the manufacturer’s instructions (HT15
Trichrome Staining [Masson] Kit; Sigma-Aldrich). Images
were acquired with a PathScan Enabler IV slide scanner
(Advanced Imaging Concepts, Princeton, NJ). From the
Masson’s trichrome-stained images, infarct wall thickness
was measured with Image) software (National Institutes of
Health [NIH], Bethesda, MD),”’'° and analyses of viable
tissue size were performed. Data from the 3 sections were
averaged for each individual animal before statistical
analysis.

Cardiac Function Assessment

Mice underwent echocardiography 4 hours (baseline) and
3 weeks post-MI using a Vevo 770™ Imaging System
(VisualSonics, Toronto, Ontario, Canada).”'® Hearts were
imaged 2D in long-axis views at the level of the greatest LV
diameter. LV ejection fraction (LVEF) was measured with
VisualSonics V1.3.8 software from views taken through the
infarcted area. Studies were read and analyzed by an
experienced echocardiographer who was blinded as to
study-group identity.

Cardiomyocyte Cycling Assay

Neonatal rat cardiomyocytes (NRCMs) were derived as
previously described'”"'® and plated onto fibronectin-coated
chamber slides, with or without CDCs at a 1:1 coculture ratio.
After 3 days, NRCMs were fixed and stained for cardiac
marker (o-sarcomeric actin [oSA]; Sigma-Aldrich), prolifera-
tion marker (Ki67; Abcam), and 4/,6-diamidino-2-phenylindole
(DAPI) for nuclei. Images were taken with a confocal
microscope. Ki67"/aSA™ cells per field were counted from
the images and quantified as the percentage of total
myocytes (aSA" cells).
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Cardiomyocyte Apoptosis Assay

NRCMs were incubated with 50 pmol/L of H,0, in the
medium for 24 hours, with or without CDCs at a 1:1 coculture
ratio. Afterward, cells were fixed and apoptotic cells were
detected by terminal deoxynucleotidyl transferase dUTP nick
end labeling (TUNEL) assay using the In Situ Cell Death
Detection Kit (Roche Diagnostics, Mannheim, Germany),
according to the manufacturer’s instructions. TUNEL" /aSA"
cells per field were counted from the images and quantified as
the percentage of total myocytes (aSA™ cells).

Paracrine Assay

To compare the production of various growth factors and
cytokines, CDCs were seeded in 6-well culture plates at
densities of 1x10° cells/mL in FBS-free IMDM media for
3 days. The supernatants (conditioned media) were collected
and the concentrations of vascular endothelial growth factor,
basic fibroblast growth factor, hepatocyte growth factor,
insulin-like growth factor 1, and stromal-derived factor 1
were measured with human-specific ELISA kits (R&D Sys-
tems), according to the manufacturer’s instructions. Matrix
metalloproteinase (MMP) activities of CDC-conditioned media
were measured by the InnoZyme™ MMP-2/MMP-9 Activity
Fluorogenic Assay kit (EMD Chemical Group, Temecula, CA).
Secretion of various inflammatory cytokines was visualized by
a semiquantitative Ab array (RayBiotech, Norcross, GA), and
intensity was determined using Image) software (NIH).

Cardiac Differentiation Assay and Heart Histology

CDCs were cultured in cardiomyocyte differentiation media
(Millipore, Billerica, MA), after which the cells were fixed with
4% PFA, blocked/permeabilized with protein block solution
(Dako) containing 1% saponin (Sigma-Aldrich), and then
stained with chicken anti-CD105 (Sigma-Aldrich) and mouse
anti-aSA (Sigma-Aldrich). FITC or Texas Red secondary Abs
were obtained from Abcam. For heart histology, all animals
were sacrificed at 3 weeks (after echocardiography study)
and excised hearts were cryosectioned (5-um thickness).
Heart cryosections were then fixed with 4% PFA, blocked/
permeabilized, and stained with mouse anti-human nuclear
antigen (HNA; Millipore) and rabbit anti-aSA (Abcam). Images
were taken with a confocal microscope. Detailed Ab informa-
tion is included in Table S1.

Statistical Analysis

Results are presented as mean4SD, unless specified other-
wise. Comparisons between any 2 groups were performed
using the 2-tailed unpaired Student t test. Comparisons
among more than 2 groups were performed using 1-way

ANOVA with post-hoc Bonferroni’s correction. Differences
were considered statistically significant when P<0.05. Corre-
lation analysis was performed by linear regression using the
GraphPad Prism 5 software (GraphPad Software Inc., San
Diego, CA).

Results

Therapeutic Efficacy of Human CDCs Is Not
Affected by c-Kit" Percentage but Undermined by
Abundant CD90" Cells in the CADUCEUS Trial

Seventeen patients received autologous CDCs in the CADU-
CEUS trial (ClinicalTrials.gov: NCT00893360""). As criteria for
identity, all patient CDC lines were examined by FCM for
CD105 and CD45 expression before final release. CDCs
uniformly express CD105 (Figure 1A; range, 93.0% to 99.8%;
mean+SD, 97.8+1.7%) and are negative for CD45 (Figure 1B;
range, 0.0% to 1.0%; mean+SD, 0.2+0.4%). After the clinical
trial was completed, we were able to examine 13 of the 17
patient-derived CDCs for c-kit and/or CD90 expression. (The
other cell products had been completely infused, leaving no
residual for banking.) Only a small fraction of the autologously
infused human CDCs express c-kit, although the relative
percentage varies greatly (>20-fold) from patient to patient
(Figure 1C; range, 0.3% to 7.2%; mean+SD, 2.9+2.0%). In
contrast, CD90 expression ranges broadly (0.2% to 94.6%;
Figure 1D; mean+SD, 25.14+26.9%). Scar size reduction,
assessed by contrast cardiac MRI, was the major efficacy
endpoint in the CADUCEUS trial. Linear regression analysis,
performed in the 10 (of 17) patients’ CDC lines for which all 3
relevant variables (c-kit expression, CD90 expression, and 12-
month scar size data) were available, revealed that c-kit
expression does not correlate with the scar-reducing ability of
CDCs (Figure 1E; R2=0.006, P=0.83). However, CD90 expres-
sion negatively correlated with scar reduction (Figure 1F;
R2=O.7863, P=0.0006; Table S2), that is, higher CD90
expression levels were associated with lower efficacy (less
scar reduction). These results hint that c-kit" cells are not an
important determinant of the therapeutic efficacy of CDCs,
whereas CD90" cells may undermine the overall benefit of
CDC therapy.

Generating c-Kit- and CD90-Depleted CDCs by
MACS

We further tested the roles of ckit”™ and CD90" cells by
performing selective depletion experiments using MACS
(Figures 2A and S1). The efficiency of cell sorting was
confirmed by fluorescent microscopy and FCM (Figure 2B and
2C). The ckit- and CD90-depleted CDCs are hereafter
referred to as c-kit®® and CD90P" CDCs. We also prepared
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Figure 1. Correlations of c-kit and CD90 expression with therapeutic efficacy of CDCs in the CADUCEUS
trial. A through C, Flow cytometry analysis of CD105, CD45, c-kit, and CD90 expression in the patient CDCs
used in the CADUCEUS trial. Each colored bar represents an individual patient’s CDC line. Black bars
represent an average from all the patients. E and F, Linear regression analysis is performed to reveal the
relationship between c-kit or CD90 expression and the changes in the patients’ cardiac scar size (ie, scar
mass divided by total left ventricular mass) by contrast-enhanced cardiac MRI over the 12 month follow-up.
Each dot represents an individual patient and its color matches that of the bars in C and D. Error bars=SDs.
CDCs indicates cardiosphere-derived cells; LV, left ventricular; MRI, magnetic resonance imaging.

CDCs depleted for both ckit” and CD90" fractions; these
cells are abbreviated as Double®®” CDCs. The MACS process
did not affect cell viability, as confirmed by trypan blue assay
(Figure 2D), nor did it affect the expression of other cell-
surface markers (eg, CD105 and CD45; Figure 2E).

Depleting CD90™ Cells Enhances the Functional
Benefit of CDCs

SCID mice underwent coronary ligation and were randomized
to receive intramyocardial injection of one of the following:
(1) control (PBS vehicle); (2) unsorted CDCs (“CDCs”); (3)
ckit°®" CDCs; (4) CD90PE” CDCs; or (5) Double® CDCs.
Heart morphometry at 3 weeks showed severe LV chamber
dilatation and infarct wall thinning in control hearts
(Figures 3A and S2). In contrast, all the CDC-treated groups
exhibited some degree of attenuated LV remodeling
(Figures 3A and S2). Compared to control (white bars,
Figures 3B, 3C, and S2), injection of CDCs (black
bars, Figures 3B, 3C, and S2) or ckit°®" CDCs (blue bars,

Figures 3B, 3C, and S2) increased infarct wall thickness
(Figure 3B) and viable tissue mass (Figures 3C and S2)
3 weeks after treatment. The salutary effects were even
greater in CD90P®" CDC- or DoublePE” CDC-treated hearts,
which had the thickest infarcted walls and the largest amount
of viable tissue among all groups (green and red bars,
Figures 3B, 3C, and S2). These findings confirm the notion
that CD90~ CDCs are superior to their CD90-containing
counterparts in attenuating LV remodeling and preserving
heart morphology in post-MI mice.

A consistent indicator of cell potency in this mouse model
is the ability to produce functional benefit after transplanta-
tion."”'% LVEF values at baseline (ie, 4 hours post-MI) were
comparable, indicating similar degrees of ischemic injury
among groups (Figure 3D; Table S3). Over the following
3 weeks, LVEF deteriorated in the control group (white bar,
Figure 3E; Table S3), but CDCs (consistent with previous
studies”"'°) or c-kit®®" CDCs preserved LVEF. CD90E” CDCs
and Double®® CDCs actually resulted in a sizable boost in
LVEF (P<0.05 vs. all other groups; Figure 3E; Table S3). Taken
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Figure 2. Generation of ckit®®", CD90°", and Double®®" cardiosphere-derived cells (CDCs) by magnetic-
activated cell sorting (MACS). A, Schematic diagram depicting the MACS process. B and C, Representative
fluorescent micrographs and flow cytometry plots showing the expression of c-kit and CD90 before and
after MACS. D, CDC viability was determined by trypan blue exclusion assay. E, MACS sorting of c-kit" and/
or CD90" cells did not affect other surface markers (eg, CD105, CD45). Data were obtained with 3 MACS
sorting experiments from a CDC sample with ~40% CD90 positivity. Bars=50 um. Error bars=SDs. DAPI

indicates 4’,6-diamidino-2-phenylindole.

together, these compound data sets show that depleting the
c-kit" fraction from CDCs does not affect cardioprotective/
regenerative potency, whereas depleting the CD90" fraction
enhances the structural and functional benefits of CDC
therapy. Consistent with the latter conclusion, in a separate
set of studies using the same mouse M| model, we found that
unsorted CDCs outperformed the CD90" fraction in augment-
ing cardiac function at 3 weeks (Figure S3).

Cardiomyocyte Proliferation and Apoptosis Assay

The in vivo therapeutic benefit of CDCs can be mimicked in
vitro by coculturing neonatal rat cardiomyocytes with CDCs.’

Our previous work indicates that CDC therapy promotes
cardiomyocyte cycling’ in vitro and in vivo. It is intriguing to
ask whether depleting CD90" cells increases the ability of
CDCs to promote cardiomyocyte proliferation. Consistent
with the previous findings, the percentage of NRCMs that
have undergone DNA replication (Ki67") is indeed higher
when NRCMs are cocultured with human CDCs than in
solitary NRCM culture (Figure 4A). However, depleting c-kit"
and/or CD90" cells had no effect on cardiomyocyte prolifer-
ation in vitro (Figure 4A) and in vivo (Figure S4). In contrast,
cardiomyocyte apoptosis was inhibited by the presence of
CDCs or c-kit®™ CDCs in the culture (Figure 4B, gray and
blue bars), an effect that was enhanced by the depletion of
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Figure 3. Therapeutic potencies of ckit”®F, CD90P®", and Double®®® CDCs in a mouse model of
myocardial infarction. A, Representative Masson’s trichrome-stained myocardial sections 3 weeks after
treatment with control (vehicle only), unsorted CDCs, ckit®®” CDCs, CD90PF" CDCs, and Double®®” CDCs.
Scar tissue and viable myocardium are identified by blue and red color, respectively. B and C, Quantitative
analysis of infarct thickness and viable tissue size from the Masson’s trichrome images (n=5 animals per
group). D and E, Left ventricular ejection fraction (LVEF) was measured by echocardiography at baseline
(4 hours post-MI) (D) and 3 weeks afterward (E). *P<0.05, when compared to control; **P<0.05, when
compared to any other group. Error bars=SDs. CDCs indicates cardiosphere-derived cells; MI, myocardial

infarction.

CD90+ cells (CD90PE” CDCs or Double®® CDCs; Figure 4B,
green and red bars). Furthermore, CD90°" CDCs themselves
are more resistant to oxidative stress than control CDCs
(Figure S5). These results indicate that CD90 depletion
enhances the antiapoptotic, but not the cardioproliferative,
activity of CDCs.

Paracrine Factor and Cytokine Secretion

Paracrine mechanisms underlie the majority of the bene-
ficial effects of CDC transplantation.”®'®  Consistent
with our previous findings, CDCs secreted various growth
factors (Figure S6A through E). Neither c-kit depletion nor
CD90 depletion changed the production of these factors.
Also, no differences in metalloproteinase activities (MMP2/
MMP9) were found among the 4 CDC groups (Figure S6F).
On the other hand, inflammatory cytokine array analysis
(Figure S7A) revealed that depleting CD90" cells reduced
the production of inflammatory cytokines (namely, interleu-
kins (ILs) 1-o and 1-B, monocyte chemotactic protein-3
[MCP], regulated on activation, normal T-cell expressed and

secreted [RANTES], granulocyte colony-stimulating factor
[G-CSF], granulocyte-macrophage colony-stimulating factor
[GM-CSF], and chemokine (C-C motif) ligand 1 [CCL-1]
by CDCs (Figure S7B). These results are consistent with
the notion that the CD90" fraction in CDCs is more
proinflammatory than the CD90™ fraction.

CD90™ CDCs Can Differentiate Into Mature
Cardiomyocytes

After 14 days of in vitro differentiation, both CDCs and
CD90PEP CDCs started to express the cardiac-specific marker,
oSA (Figure 5A, red). CD90PE” CDC-differentiated cardiomyo-
cytes exhibited clear sarcomeric structures (Figure 5B),
whereas most unsorted CDCs differentiated into an immature
cardiomyocyte phenotype. Overall, more aSA™ cells were
evident in CD90°® CDC or Double® CDC cultures than in
unsorted CDC or c-kit°®” CDC cultures (Figure 5C), suggest-
ing a superior cardiac differentiation potential from CD90
depletion. To confirm these results in vivo, SCID mice treated
with various CDC groups were sacrificed 3 weeks after
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Figure 4. Cardiomyocyte proliferation and apoptosis assays. A, Representative fluorescent micro-
graphs showing cycling (Ki67" nuclei, white) NRCMs (xSA", green). B, Representative fluorescent
micrographs showing apoptotic (TUNEL" nuclei, red) NRCMs (aSA*, green). *P<0.05, when compared to
“NRCM alone”; **P<0.05, when compared to any other group. Data were obtained from 3 different
CDC samples. Bars=10 pum. Error bars=SDs. CDCs indicates cardiosphere-derived cells; NRCM, neonatal
rat cardiomyocyte; SA, sarcomeric actin; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end

labeling.

treatment and heart sections were stained for aSA and HNA Discussion

(to identify engrafted cells; Figure 5D). More aSA™/HNA" The last decade witnessed a burst of cell therapy trials for
cells were detected in the CD90®" CDC- and Double®®” ischemic cardiomyopathy.”’ The CADUCEUS trial'" and the
CDCs-treated hearts (Figure 5E), indicating that the CD90™ SCIPIO trial'® have tested heart-derived cells in human
CDCs are more likely to undergo cardiac differentiation in the beings. The first study used unsorted CDCs from endomyo-

post-MI heart.

cardial biopsies and the second study used purified c-kit" cells
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Figure 5. Enhanced cardiac differentiation of CD90PF? cardiosphere-derived cells (CDCs). A, Represen-

tative confocal images showing unsorted CDCs and CD90PEP CDCs (expressing CD105; green) beginning to
express o-sarcomeric actin (aSA, red) after 14 days of differentiation. B, Magnified images of the
cardiomyocytes shown in A. CD90°®" CDC-differentiated cardiomyocytes exhibited clear sarcomeres. C,
Differentiation potential was quantified by counting numbers of aSA™ cells in the CDC culture. D,
Representative confocal images showing engrafted CD90PEF CDCs (positive for human nuclei antigen
[HNA]; green) differentiated into cardiomyocytes (aSA", red). E, Quantification of in vivo differentiation of
transplanted CDCs and CD90P¥F CDCs (aSA*/HNA* cells) in the peri-infarct area. *P<0.05, when
compared to CDC. Bars=10 um. In vitro data (C) were obtained with 6 experiments from 2 different CDC

lines. In vivo data (D) were obtained from 5 animals injected with CDCs. Error bars=SDs.

from surgical specimens (although concerns have been
expressed regarding the cells used in SCIPIO?"). CDCs
contain a small, but highly variable, fraction of c-kit" cells
(Figure 1C), which have been postulated to be cardiac stem
cells.?? Therefore, we had initially hypothesized that c-kit"
cells are the active principles in CDCs, whereas the remaining
cells function to support the c-kit" fraction and increase their
potency.'® Several years later, such a premise led to the
purposeful admixture of cardiac c-kit™ cells and marrow-
derived mesenchymal stem cells (MSCs) in a preclinical
study.”® However, the present results disprove our original
hypothesis: c-kit expression was irrelevant for the therapeutic
efficacy of CDCs in the CADUCEUS trial (Figure 1E), and c-kit
depletion did not affect functional or structural recovery in
murine MI (Figure 3). Consistent with these results, it has

been reported that unsorted human CDCs are functionally
superior to c-kit" purified cells.” Although the percentage of c-
kit" cells in CDCs is low, the absolute number of c-kit" cells
infused in a typical CDC treatment rivals the 1M that were
transplanted in SCIPIO'® (and in the preclinical c-kit"/MSCs
admixture study?®). Our results further support the conclusion
that ckit" cells are not important to the overall benefit of
CDCs.

The observed irrelevance of c-kit™ cells led us to test a
second hypothesis: The CD90" cells in CDCs are the active
principles and are indispensable. CD90 (well known as Thy-1)
was originally discovered as a thymocyte antigen.?* CD90 is
also widely used as a marker of a variety of stem cells (eg,
MSCs, hepatic stem cells, keratinocyte stem cells, putative
endometrial progenitor/stem cells, and hematopoietic stem
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cells).?>2® In humans, Thy-1 is also expressed by endothelial
cells, smooth muscle cells, a subset of CD34" bone marrow
cells, fibroblasts, and fetal liver-derived hematopoietic cells.
Strikingly, our results indicate that CD90 expression in CDCs
undermines the functional benefit. In CADUCEUS, higher
CD90 expression was associated with smaller therapeutic
benefit (Figure 1F). Moreover, depleting the CD90" fraction
enhanced the functional benefit of CDCs in mice with Ml
(Figure 3). These findings support the previous report that
CDCs are functionally superior to MSCs in a mouse model of
MI”: >99% of bone-marrow—derived MSCs and 85% of
adipose-derived MSCs expressed CD90, whereas only 18%
of CDCs did so in that particular study. We further confirmed
that the CD90" cell fraction of CDCs secretes more inflam-
matory cytokines than the CD90™ counterpart (Figure S4).
Elevation of these inflammatory cytokines (eg, IL-1) may lead
to cardiomyocyte death and cardiac dysfunction.?” In any
case, the overall benefit of CDCs is diminished by the
presence of CD90" cells. Our findings confirm and extend a
recent report that CD90~ CDCs are not only the majority
fraction, but also crucial for the benefits of CDCs.%8

Our study has several limitations. First, we did not include
a CD90" CDC group for direct comparison of its functional
benefit with that of the CD90~ subpopulation. However, we
did confirm that unsorted CDCs are functionally superior to
the CD90" subpopulation of CDCs (Figure S2). Second, our
data in support of enhanced in vivo cardiac differentiation by
CD90P* CDCs are limited in that we did not use confocal z-
stack imaging to confirm the location of HNA™ nuclei, nor did
we perform ex vivo analysis of enzymatically isolated cardio-
myocytes. However, the absolute number of HNA"/aSA™ cells
is small and unlikely to explain the observed benefits of cell
transplantation. Indeed, the overall differentiation rate in
CDCs is marginal in both in vitro and in vivo experiments,
consistent with the idea that the differential functional
performance of the various groups may be dominated by
indirect paracrine effects.” Another limitation of our study is
that a CDC-specific positive marker has yet to be discovered.
We have not found any markers unique to the CD90™
population that are not expressed on the CD90" population
(or vice versa). Studies are ongoing to profile the CD90™
CDCs using genomics approaches. Last, but not least, the
lack of significance for some our data sets may be a result of
low statistical power.

Nevertheless, our results point to a crucial, indispensable
role of the c-kit”/CD90~ population for the regenerative
potential of CDCs. In almost all CDC isolates from different
human donors, this is the majority cell population
(Figure 2).”"'° Future therapeutic trials of CDCs may benefit
from CD90 depletion to enhance efficacy or, in allogeneic
applications, selection of master cell banks that are naturally
low in CD90 expression. Further studies are needed to fully

elucidate the mechanisms for the observed benefit from
CD90 depletion.
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