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Abstract

Objective—Multilevel and latent growth models are frequently used interchangeably to examine 

differences between groups in trajectories of outcomes from controlled clinical trials. The 

unstandardized coefficient for the effect from group to slope (the treatment effect) from such 

models can be converted to a standardized mean difference (Cohen's d) between the treatment and 

control groups at end of study. This article addresses the confidence interval (CI) for this effect 

size.

Method—Two sets of equations for estimating the CI for the treatment effect size in multilevel 

models were derived and their usage was illustrated with data from the National Youth Study. 

Validity of the CIs was examined with a Monte Carlo simulation study that manipulated effect 

potency and sample size.

Results—The equivalence of the two new CI estimation methods was demonstrated and the 

Monte Carlo study found that bias in the CI for the effect size were not appreciably larger than 

bias in the CI for the widely used unstandardized coefficient.

Conclusions—Investigators reporting this increasingly popular effect size can estimate its CI 

with equations presented in this article.

Keywords

clinical trials; effect sizes; confidence intervals; multilevel analysis; latent growth models; 
hierarchical linear models

Studies of intervention efficacy have historically used classical analysis, especially analysis 

of variance (ANOVA) and multiple regression analysis (Cohen, Cohen, West, & Aiken, 

2003), to compare changes between treatment and control groups. However, the well-worn 

methods based on the general linear model and ordinary least squares are being supplanted 

by growth modeling analysis (GMA), which typically uses the EM algorithm (Dempster, 

Laird, & Rubin, 1977) and maximum likelihood estimation. The GMA family includes 

multilevel modeling/hierarchical linear models (MLM/HLM; Hedeker & Gibbons, 2006; 

Raudenbush & Bryk, 2002) and latent growth modeling (LGM; Bollen & Curran, 2006; 

Singer & Willett, 2003), which are often used interchangeably to evaluate interventions by 
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comparing trajectories of outcomes between the treatment and control groups over the 

course of a randomized clinical trial (Feingold, 2009; Gueorguieva & Krystal, 2004).

The differences between MLM and LGM are more conceptual than mathematical (Curran, 

2003; Preacher, Wichman, MacCallum, & Briggs, 2008) and non-parallel slopes in a 

correctly specified linear GMA obtained with either latent variable approach indicate that 

the model predicts that the two groups that were expected to be comparable at study onset 

(baseline) because of randomization differ on the outcome at the end of the study. The 

treatment effect from a GMA is conventionally defined as the difference in rate of growth 

between the groups (i.e., the effect from group to slope) and power assessments for planned 

GMA studies examine the power to detect this difference (e.g., Muthén & Muthén, 2002; 

Raudenbush & Liu, 2001).

Although the importance of effect sizes has long been recognized (Cumming, 2013; Grissom 

& Kim, 2012; Olejnik & Algina, 2000), the first studies that used GMA typically reported 

only null hypothesis significance tests because of a lack of consensus regarding both the 

conceptualization and calculation of effect sizes from a GMA (APA Publications and 

Communications Board Working Group on Journal Article Reporting Standards, 2008; 

APA, 2009). Feingold (2009) reviewed 43 controlled clinical trials that used GMA and were 

published in Journal of Consulting and Clinical Psychology (JCCP) from 2003 through 

2006 inclusive and found that only 30% of them reported model-based effect sizes for the 

intervention effects. Moreover, the equations used to calculate effect sizes were not 

conceptually or mathematically equivalent across studies.

However, Feingold (2009) used the term effect size to refer to a standardized statistic. 

Although effect sizes need not be standardized (Baguley, 2009; Kelley & Rausch, 2011), 

standardized effect sizes are often invaluable-- particularly in research synthesis--because of 

the arbitrary metrics used in psychology (Blanton & Jaccard, 2006). If, for instance, two 

scales that operationalize the identical construct differ in number of items, the scale with the 

larger number of items will generally have a larger variance in the same sample (Nunnally, 

1978). In addition, the mean difference between two groups will typically be greater on the 

scale with the larger variance when the groups are compared on both measures. Such 

measurement artifacts make research synthesis of findings from independent studies 

problematical because different studies generally operationalize the same construct with 

scales that vary in numbers and types of items. Thus, d was a central statistic for Glass 

(1976) when he introduced meta-analysis and used it to examine the efficacy of 

psychotherapy (Glass, McGaw, & Smith, 1981).

Standardized Effect Sizes for Multilevel and Latent Growth Models

Drawing on ideas in Raudenbush and Liu (2001), Feingold (2009) formulated an equation 

for an effect size for the difference between the treatment and control groups in linear slopes 

from a GMA (MLM or LGM) that transforms the coefficient for the slope difference into a 

standardized mean difference (Cohen's d) between groups at the end of the study,

(1)
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where (a) b is the unstandardized coefficient for the effect of group (treatment vs. control, 

dummy coded) that is the difference in rate of change between conditions on a continuous 

outcome per unit of time (e.g., per week, given weekly assessments that are coded to differ 

by one point between them, such as 0, 1, 2, and 3), (b) duration (number of time points 

minus one when time codes differ by one point) is the length of the study based on units 

associated with the regression coefficient (e.g., number of weeks if b represents the 

difference in rate of change per week), and (c) SD is the pooled within-group standard 

deviation of the outcome measure (Y).

Equation 1 may appear to be radically different than the formula for Cohen's (1988) classical 

d, defined as the difference between the means of two independent groups at the end of the 

study divided by the pooled within-group SD,

(2)

where MT is the mean of the treatment group and MC is the mean of the control group. 

However, the difference between the two equations, which has a denominator that should 

estimate the same parameter, is more apparent than real. The means of two independent 

groups measured at a single time can be compared with a multiple regression analysis, 

which is mathematically equivalent to both the t test for independent groups and the 

between-subjects ANOVA with two groups (Cohen et al., 2003) with which the classical d 

is most often associated. In regression analysis, group would be a dichotomous independent 

variable captured by codes differing by one point (e.g., 0 and 1, or -.5 and .5) and the 

unstandardized regression coefficient (b) would then equal the mean difference between the 

two groups at the end of the study. Thus, given a regression analysis of data from two 

independent groups,

(3)

which is mathematically equivalent to the d calculated with Equation 2.

In addition, the product forming the numerator in the Equation 1 is the model-based estimate 

of the difference in means between the two groups at the end of the study, which has the 

same expected value as that of the difference between the means of the two groups at the 

final time point (given random assignment to conditions and a correctly specified linear 

GMA). Moreover, the GMA effect size is independent of the intercorrelations among the 

repeated measures over time, which meta-analysts have shown to be an important criterion 

for the d from classical analysis of repeated-measures data to be expressed in the same 

metric as the d calculated from independent (completely randomized) groups designs 

(Becker, 1988; Dunlap, Cortina, Vaslow, & Burke, 1996; Morris, 2008; Morris & DeShon, 

2002). The GMA d, as calculated with Equation 1, is now frequently found in studies of 

intervention efficacy, particularly in JCCP (e.g., Aderka, Gillihan, McLean, & Foa, 2013; 

Arch, Eifert, Davies, Vilardaga, Rose, & Craske, 2012; Chaffin, Funderburk, Bard, Valle, & 

Gurwitch, 2011; Kerr, DeGarmo, Leve, & Chamberlain, 2014; Ljótsson et al., 2013; Safren, 

O'Cleirigh, Bullis, Otto, Stein, & Pollack, 2012; Twohig, Hayes, Plumb, Pruitt, Collins, 

Hazlett-Stevens, & Woidneck, 2010).
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Confidence Intervals for Effect Sizes for Multilevel and Latent Growth 

Models

Current publishing practices in psychology require reports of confidence intervals (CIs) for 

effect sizes (APA, 2009; Kelley & Preacher, 2012). Indeed, JCCP recently published a 

review on CIs for clinical findings to facilitate compliance with this mandate (Odgaard & 

Fowler, 2010) but its authors noted that it could not address CIs for effect sizes from GMA 

because methods for their estimation were not yet available. For example, equations for the 

CI for the GMA d did not accompany the introduction of the effect size (Feingold, 2009).

The traditional approach to the calculation of the CI of a statistic entails the multiplication of 

the statistic's standard error (SE) by a critical t or z value (e.g., 1.96 for the 95% CI) and then 

adding and subtracting the product to the point estimate to yield lower and upper confidence 

limits (CLs). This approach assumes a normal distribution of the effect size and a 

symmetrical CI, i.e., the difference between the lower CL (LCL) and the point estimate 

equals the difference between the upper CL (UCL) and the point estimate. An example of 

this approach is found in estimation of the 95% CI for classical d (i.e., d calculated with 

Equation 2 or 3) presented in Borenstein, Hedges, Higgins, and Rothstein's (2009) text on 

meta-analysis,

(4)

and

(5)

where SE is the square root of the estimate of the variance (v) of d that can be obtained with 

Equation 6,

(6)

n1 is the sample size of group 1, n2 is the sample size of group 2, and N is the total sample 

size (i.e., n1 + n2).

Borenstein et al. (2009) noted that Equations 4 and 5 provide only an approximate CI for d 

but contend that the CI estimates obtained with them are accurate enough to warrant their 

adaptations for use in meta-analysis. Some methodologists, however, favor use of more 

precise CIs for effect sizes (e.g., Steiger, 2004). CI estimation may also use bootstrap or 

bias-corrected bootstrap methods (Efron & Tibshirani, 1993; Goldstein, 2011). Although 

Mplus (Muthén & Muthén, 2012), for example, uses the SE as the default method for CI 

estimation, the program can also produce bootstrap (and corrected bootstrap) CIs using case 

sampling with replacement. Specialized programs have been developed to estimate the CI 

for the unstandardized difference between groups in slopes from GMA (Kelley & Rausch, 

2011). The nonparametric approaches, which produce asymmetrical CIs, use noncentrality 

parameters associated with the t distribution to obtain CIs for standardized mean differences 

(see review by Odgaard & Fowler, 2010, which includes equations in the appendix).
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However, GMA is typically conducted with large samples and treatment effects are typically 

modest, especially in large samples. These are the conditions under which CIs for effect 

sizes are most accurately assessed with commonly used approximation procedures based on 

their SEs (Algina & Kesselman, 2003; Hedges & Olkin, 1985; Odgaard & Fowler, 2010). 

This article presents and validates two new sets of mathematically equivalent equations for 

the estimation of the CI for the GMA d, the first of which can subsume CI estimation 

methods for the GMA d that do not rely on the SE of b (SEb).

Transformation of CI for b to CI for GMA d

The CI for the unstandardized coefficient (b)for the slope difference can be obtained by 

extant GMA software. The respective CI for the GMA d can be estimated simply by 

substituting the reported LCL and UCL of b for b in the numerator of Equation 1, thus 

converting the CI for b to the CI for d,

(7)

and

(8)

An apparent disadvantage of this approach is that the SE of the GMA d is not generated or 

used directly but is nonetheless needed for examination of bias in the CI for d, and for d to 

be included in a meta-analysis. However, given the calculation of a symmetrical CI for d, 

the SE of d can be determined from its UCL by rearranging the terms in Equation 5 to solve 

for SE,

(9)

and v = SE2.

Variance-calculation alternative for CI estimation for GMA d

An alternative approach for CI estimation uses the SE of d and a critical z value (i.e., 

Equations 4 and 5). The terms in Equation 1 can be rearranged to define the GMA d as the 

product of the coefficient for the group difference in slopes (b) and a standardizing factor 

(duration/SD). Statistical theory dictates that the multiplication of a random variable (e.g., 

the sampling distribution of b for the effect of group on slope) by a constant produces a 

random variable that is a linear transformation of the original variable and has a variance 

that is the product of the variance of the original variable multiplied by the square of the 

constant (Hodges & Lehmann, 2005). Because the variance of b outputted by statistical 

software is the square of SEb, v* (the sample variance of d when σ is known) for the GMA d 

can be calculated from,

(10)

Because σ is ordinarily unknown, however, it has to be estimated from SD,
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(11)

The CI for the GMA effect size can then be estimated with Equations 4 and 5 and the SE 

calculated as the square root of v obtained with Equation 11. (Whereas σ is often used in 

GMA methods' expositions to denote the Level-1 residual variance, σ in Equation 10 is the 

parameter for the pooled within-group standard deviation of Y.)

Note that v can be a good estimator of v* only when the sample size is large and SD is an 

accurate estimate of σ. With small samples, SD of the outcome would vary notably across 

GMA samples drawn from the same population. Thus, duration/SD is not a constant over the 

sampling distribution of b but a random variable with a variance that decreases (and 

approaches zero) as sample size per replication increases.

Illustration of CI Estimation for the GMA d with Two Equivalent Methods

Descriptive statistics from MLM study

Raudenbush (1995; Raudenbush & Liu, 2001) examined longitudinal data from the National 

Youth Study (Elliot, Huizinga, & Menard, 1989) to illustrate the use of MLM. The 

participants were 122 boys and 117 girls whose attitude towards deviance was measured five 

times over a four-year period at ages 11, 12, 13, 14, and 15. Time was mean centered by 

Raudenbush (1995) with codes of -2, -1, 0, 1, and 2, respectively. Gender was a 

dichotomous time-invariant covariate (men vs. women) like treatment condition 

(intervention vs. control) in a randomized clinical trial.

The MLM found b = .0112 (SEb = .0100). The within-group SD of the attitudinal measure, 

based on observed data at age 15, was .30 (Raudenbush & Lui, 2001).

The GMA d is calculated with Equation 1,

The CLs for b for the slope difference are:

and

Transformation of CI for GMA b to CI for GMA d

The CLs for the effect size are calculated with the Equations 7 and 8,
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and

SE is calculated from the CI using Equation 9,

and

Variance-calculation alternative for CI estimation for GMA d

The v is calculated with Equation 11,

and

Next, the CLs for d are calculated using Equations 4 and 5,

and

Most important, the d and v obtained with each set of equations were calculated from 

published statistics rather than from analysis of raw data, thereby demonstrating the utility 

of the equations in meta-analytic applications (for use of d and v in meta-analysis, see 

Borenstein et al., 2009; Cooper, Hedges, & Valentine, 2009; Lipsey & Wilson, 2001; 

Shadish & Haddock, 2009).

The Current Work

The proposed equations for the CI for GMA d yield only approximations because the CI for 

the unstandardized coefficient itself is an estimate in smaller samples, and the 

transformation of CI for b to CI for d imparts additional imprecision when σ is not known 

and estimated by SD. Errors in statistics obtained with approximations are manifested as 

bias that can be assessed with Monte Carlo simulation studies (e.g., Cheung. 2009; Hedges, 
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Pustejovskya, & Shadish, 2012; Lau & Cheung, 2012; MacKinnon, Lockwood, & Williams, 

2004).

To obtain preliminary validation for the new equations, Monte Carlo analyses were 

conducted to examine biases in the SE and CI in both unstandardized coefficients and 

respective effect sizes as function of sample size and treatment potency, both of which were 

expected to affect CI bias. Subtracting the bias from the effect sizes from those for the 

respective unstandardized coefficients indicate bias added from the transformation process. 

Finally, although equations for CI estimation are presented for GMAs comparing two groups 

on a continuous outcome, extensions to randomized clinical trials conducted with multiple 

groups, multiple sites, additional covariates, binary outcomes, and cluster randomization are 

discussed.

Method

Muthén and Muthén (2002) illustrated the use of Mplus to conduct Monte Carlo simulations 

to evaluate biases in point estimates and SEs of coefficients for small (.10) and medium (.20) 

slope differences between two groups in linear LGMs with random intercepts and random 

slopes. Each model included a single dichotomous time-invariant covariate (e.g., group) as 

the (Level 2) predictor of variations in intercepts and slopes with a continuous outcome. 

Because the first phase of the current work could be accomplished with these Monte Carlo 

models, the Mplus input statements--which were reported in their entirety in Muthén and 

Muthén (2002)--were adapted for use in assessing biases in both the unstandardized 

coefficients and respective effect sizes. However, whereas their tutorial used a single N for 

each model, this study manipulated sample size, specifying Ns of 50, 100, 150, 250, and 500 

for each of the two coefficients for slope differences. The 10 models used 4-equidistant time 

points coded to differ by one unit between measurement occasions, and residual variances 

specified were also taken from Muthén and Muthén: .25 for the intercepts, .09 for the slopes, 

and .50 for model residuals (i.e., Level-1 variances, homogeneous across time). The current 

simulations also used 10,000 replications per analysis.

Biases in the point estimates and SEs for the unstandardized coefficients and effect sizes 

were examined following the steps outlined in Muthén and Muthén (2002), which also 

provided guidelines for acceptable degrees of bias: 5% or less for point estimates and 10% 

or less for SEs. Mplus evaluates CI accuracy with the coverage coefficient: the proportion of 

the replications for which the CI contains the true parameter value (Muthén & Muthén, 

2012). Perfect coverage for the 95% CI is .95, and acceptable values were said to be in the .

91 to .98 range. Bias in each CI can thus be estimated by subtracting the coverage 

coefficient from .95, with acceptable values in the −.03 to .04 range.

Calculating Pooled σ of Y4 from the Monte Carlo Population Model

Before Monte Carlo analyses could be conducted to examine biases in effect sizes, δ and σ 

associated with Monte Carlo model parameters for the unstandardized coefficients and 

residual variances had to be defined, with σ determined first because it was needed to obtain 

δ. The residual variance of .25 specified for the intercept (the within-group σ2 of a latent 

"true score" of Y at the occasion for which time is coded 0) was added to the Level-1 
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residual variance of .50 to obtain the within-group σ2 of .75. Thus, σ is the square root of .75 

= .866, which is the pooled within-group σ when time = 0. Because the Mplus Monte Carlo 

procedure generates growth data for this model with within-group σ2s for Y that are 

generally heterogeneous across time, the within-group σ2 at the final time point (i.e., for Y4) 

was needed to obtain a GMA d equivalent to classical d, as the latter is determined using 

outcome dispersion measured at the final (only) time. Therefore, the current Monte Carlo 

studies used end-centering of the time variable (Muthén & Muthén, 2000) by assigning 

codes of -3, -2, -1, and 0 for time for T1 (Y1), T2 (Y2), T3 (Y3), and T4 (Y4), respectively 

(see Appendix A for one of the input statements used in the Monte Carlo study). Note that 

different parameterizations (centerings of time) do not have any impact on effects involving 

slopes (Muthén & Muthén, 2000) but determine whether the within-group σ2 is for Y1 or Y4 

(unless the within-group σ2 s are homogeneous over time and σ2 of Y1 = σ2 of Y4).

Calculating δ for Y4 from Monte Carlo Parameter Specifications

Given specification in the statements for each Monte Carlo model of 4 time points differing 

by 1 unit, duration = 3 for all models. Therefore, using a population equivalent of Equation 

1,

(12)

where β is the parameter for the coefficient for the slope difference. Thus,

for the five models with β = .10, and

for the five models with β = .20.

Validation of δ and σ in the Monte Carlo Models

To verify that the calculated parameters for δ and σ were correct for the population from 

which the Monte Carlo analyses drew replications, a Monte Carlo analysis was run with the 

same commands used in the bias evaluation phase for a small slope difference, except for 

specifications of a single replication and a sample size sufficiently large (N = 100,000) that 

the manufactured data set could be considered the population from which Monte Carlo 

replications were drawn. Thus, the initial simulation study was an ordinary LGM analysis of 

single artificial data set--which was requested and stored as a separate output file--that 

generated statistics that could be interpreted as parameters. Thus, GMA δ =.3464, or .35 

after conventional averaging of the effect size to two decimal places. The single-replication 

Monte Carlo study yielded a b for the slope difference of .1012; the residual variance of the 

intercept was .2539; and the Level-1 variances were .5002, .5010, .4980, and .4959 for Y1, 

Y2, Y3, and Y4 (M = .4988), respectively. Thus, for this dataset, GMA d = (.1012*3)/(.2539 

+ .4988)1/2 = .3499 = .35.
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Next, a between-subjects ANOVA was used to compare the means of the two groups in the 

Monte-Carlo generated raw data at the final point (Y4), and to obtain the MSE that is the 

square of the within-groups SD used to compute classical d. Classical d = (.3043 - −.0019)/.

7511/2 = .3532 =.35. Note that the MSE of .751 (calculated from homogeneous variances of .

750 and .752 for the two groups) from the ANOVA of end-of-study generated observations 

was virtually identical to the .750 parameter calculated by summing the Monte-Carlo 

specifications for the residual variance of the intercept (.25) and the model (Level-1) 

residual variance (.50). Most important, after the rounding of effect sizes to two decimal 

places, GMA δ = GMA d = classical d =.35 in the manufactured data set.

Monte Carlo Analysis of GMA ds for Treatment Effects

To examine biases in the SE and CI for the GMA d, each of the 10 input statements used to 

generate the Monte Carlo analyses included a command to output an ASCII file containing 

the results of 27 model parameters from the 10,000 replications generated by each model. 

Next, these ASCII files were converted to SPSS data files for analyses with newly created 

SPSS macros for calculating, for each replication, the (a) GMA d with Equation 1, (b) the 

estimated CI for GMA d with Equations 7 and 8 (the CI transformation approach), and (c) 

SE (square root of v) of GMA d with Equations 9 (see Appendix B for SPSS syntax used for 

the 5 Monte Carlo analysis of effect sizes for the smaller treatment effect). As in the single-

replication Monte Carlos study, the SD used to compute GMA d in each replication was the 

square root of the sum of the residual variance of the intercept and the mean of the four 

observed Level-1 residual variances, which is the model-based estimate of σ for Y4, as 

b*duration is the model-based estimate of the population mean difference between groups at 

that time point.

Coverage for the GMA d from each method was calculated with the procedure used in Maas 

and Hox (2005): a new variable was created in which a score of "1" indicated that a CI for a 

GMA d from a given replication included the effect size specified in the simulations and a 

score of "0" indicated the estimate was not included in the CI. Then the cumulative 

frequency distributions of these variables were determined. Coverage was calculated as the 

percentage of "1"s in the dichotomous distribution, which is the same method Mplus used to 

calculate coverage for b.

Results

Bias in the Unstandardized Coefficient (b)

The findings from the 10 Monte Carlo analyses of the unstandardized coefficients (bs) 

obtained from Mplus are reported in Table 1, with the sample size and the b specified for 

each simulation given in the first two columns.

Estimates—Column 3 (Estimates Avg) reports the mean of the 10,000 bs for each Monte 

Carlo analysis. The differences between the means in this column and the respective 

parameters of .10 or .20 (reported in column 2) indicate the absolute biases in b (see column 

7). As noted in Muthén and Muthén (2002), relative bias is calculated by dividing the 

absolute bias by the respective parameter (column 2) and multiplying by 100 to convert the 
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proportion to a percentage (see column 8). Absolute bias in b never exceeded .0006, and 

relative biases were always less than 1.0%.

Standard errors and CIs—Column 4 in Table 1 reports the Estimates SD, which is the 

standard deviation of the 10,000 bs generated by each Monte Carlo simulation, and Column 

5 (SE Avg) reports the mean of the 10,000 SEbs. Absolute bias in SEb was estimated by 

subtracting the statistics in column 5 from the respective Estimates SD in column 4. These 

differences (reported in column 9) are divided by the Estimates SD and multiplied by 100 to 

determine the relative bias in SEb (reported in the penultimate column). CI bias was 

calculated from subtracting the coverage values (column 6) from .95 (and reported in the last 

column).

The absolute bias in SEb was .0042 in the smallest sample size (N = 50) but was no greater 

than .0012 at Ns of 100 or 150. Almost perfect estimates of the coefficients were observed 

when N > 250. Relative bias was largest (3.3%) in the smallest sample size but was well 

below 10%. The relative biases were between 1.0% and 2.0% at Ns of 100 and 150, and 

about 1.0% or less when N was at least 250. Thus, both absolute and relative biases in the 

SEb decreased with sample size, and were particularly small when N was at least 250. 

Coverage for the CI was always in the .937–.947 range, and was nearly perfect (.945–.947) 

at Ns of 250–500, with CI biases of .003 to .013 (see last column in Table 1).

Bias in the Effect Size (GMA d)

Estimates—Table 2 reports the parallel Monte Carlo analyses for the GMA ds conducted 

with SPSS using the Monte Carlo results files exported by Mplus. The first column in Table 

2 specifies the simulation sample size and column 2 reports the effect size parameter (δ) 

corresponding to unstandardized coefficients in Table 1. Column 3 (Estimates SD) reports 

the mean of the 10,000 GMA ds for each simulation analysis. The absolute biases in d 

(differences between respective values in columns 2 and 3 in Table 2) are reported in 

column 7, with relative biases given in column 8. The absolute biases were consistently 

larger for GMA ds than for respective bs in part because the parameters for the former were 

much larger than the latter.

Relative biases in GMA d and b were comparable (and less than 1.0%) when N was at least 

250. However, although relative bias in b was always less than 1.0%, the relative bias in d 

was 2.3–2.6% at N = 50 and 1.7–2.0% at N = 100–150. Thus, biases in GMA d decreased 

with sample size but never exceeded 5%.

Standard errors and CIs—Column 4 in Table 2 reports the standard deviation of the 

10,000 GMA ds generated for each simulation analysis, and column 5 reports the means of 

the 10,000 SEs of the GMA ds. The absolute biases in SEs are the differences between 

respective values in columns 4 and 5 in Table 2, which are reported in column 9; relative 

biases are reported in the penultimate column. Whereas relative biases in SEb were in the .

7% to 3.3% range, the corresponding biases in the SE of GMA d were slightly greater, 

ranging from 1.2% to 4.7% (with medium effects consistently evincing greater relative bias 

than small effects for GMA d).
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The coverage proportions for GMA d are reported in column 6 of Table 2 and were virtually 

identical to respective values for b, with differences in the .000–.003 range across effect 

sizes and sample sizes. CI biases were in the .003 to .014 range (see last column in Table 2), 

which is nearly the same as the range reported for the biases in the CI for SEb (Table 1). 

Thus, the CIs were about as accurate for GMA ds as for the respective unstandardized 

coefficients from which they were derived--and coverage was consistently close to .95, 

particularly when N > 250.

Equivalence of Two CI Estimation Approaches in the Monte Carlo Study

That the variance-calculation method (using Equations 4, 5, and 11) yields a CI for GMA d 

that is mathematically equivalent to the SE obtained with the direct CI transformation 

approach (Equations 7 and 8) was demonstrated previously with summary statistics from a 

GMA of sex differences in antisocial attitude in the NYS. The equivalence of the two 

methods was also demonstrated in the Monte Carlo study, with the added benefit of 

verifying the accuracy of the findings from the simulations. For example, in the Monte Carlo 

run with 500 subjects, SEb was .0390 (see column 5 in last row in Table 1). The SD of .865, 

calculated by taking the square root of the mean of the 10,000 sums of intercept residual 

variance and the model residual variance from each replication, was a very good estimation 

of σ (.866) calculated from residuals. Thus, using the equations for the variance-calculation 

approach, GMA v = (.0390)2 (3/.866)2 = .0183, and SE = .01831/2 = .1351. The mean of the 

SE from the 10,000 replications in the Monte Carlo analysis with model with 500 subjects 

was .1353 (see column 5 in last row of Table 2), which is the same (after sampling and 

round-off errors).

Discussion

This article introduced two sets of equivalent equations that estimate the CI of the GMA d 

by either transforming the CI for the unstandardized coefficient (b) for the treatment effect 

to the CI for GMA d, or by calculating the variance for the GMA d and applying traditional 

formulas for CI calculation. A key advantage to these all-purpose methods is they can be 

used in conjunction with outputs from different software programs for GMA. Options 

specific to individual programs (or different versions within statistical packages) may be 

configurable to produce the GMA d and its CI without the need for post hoc analysis of 

customary statistics. However, the use of program-specific options would not necessarily be 

simpler to implement or produce different (i.e., more accurate) CIs than would be obtained 

with the presented equations.

The Monte Carlo simulation analyses found essentially no bias in the point estimates of the 

coefficient for the slope difference (b). However, large samples (i.e., N > 150) were needed 

for bias in the point estimates of GMA d to also be negligible, although the bias was always 

below the 5% problematical level.

The biases in the estimated CI for d were determined by: (a) small-sample bias in the CI for 

b, and (b) bias from use of an estimate rather than a parameter for the standard deviation of 

Y in the CI transformation equation. When σ of Y is known, the sampling distribution of 

GMA d is a linear transformation of the sampling distribution of b because each b in its 

Feingold Page 12

J Consult Clin Psychol. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



sampling distribution is multiplied by a constant (duration/σ) to yield the respective GMA d. 

The relative bias in the CI would then be identical for b and d. However, when σ must be 

estimated from the data, each b in its distribution is multiplied by a slightly different value 

because the SD in the replication yielding each b is not the same across the replications 

defining the sampling distribution of b. As the N for each replication increases, the variance 

of the SD across replications decreases, reaching zero when sample size is infinite, and SD = 

σ.

However, irrespective of sample size examined, use of SD instead of σ was found to have 

minimal detrimental consequences for the CI estimation for the GMA d because bias was 

about the same for the CI for b and the CI for d for the treatment effect. The best explanation 

for this finding is that standard deviation of Y was accurately estimated in the replications. 

Thus, the bias in CI of GMA d were largely the result of bias in the CI unstandardized 

coefficient when calculated from SEb when sample size was not very large. The findings 

from the Monte Carlo analyses that used N > 250 of coverage values of .945–.947 for the CI 

for b and .944–.947 for the CI for GMA d suggest the CIs based on SEs are valid for both 

standardized and unstandardized coefficients for treatment effects from GMAs conducted 

with reasonably large samples.

Extensions of the CI Estimation Equations to Complex GMA

The new equations are nominally of use only when comparing two independent groups in 

growth rate on a continuous outcome, which is the simplest form of GMA of data from 

randomized clinical trials. Most GMAs of clinical data, however, are more complex than the 

textbook case. For example, three or more groups, or two or more sites, may be used; 

randomization to conditions may occur at the cluster instead of at the individual level (i.e., 

clinic or school rather than patient or student); subject-characteristic covariates (e.g., gender 

or risk status) may be included in the model; the effects of unobserved heterogeneity may be 

examined with latent class or cluster analysis; and outcomes may be categorical (e.g., 

binary) rather than continuous.

Feingold (2013) introduced an integrative regression framework based on generalized linear 

mixed models/hierarchical generalized linear models (McCulloch, & Searle, 2001; 

Raudenbush & Bryk, 2002) for the conceptualization and calculation of GMA d for more 

complex GMAs but did not address CI estimation. However, the vs and CIs of the GMA ds 

derived from unstandardized coefficients for treatment effects obtained in the full range of 

GMA designs subsumed by the regression framework can be estimated with relatively 

simple extensions of the new equations.

Binary outcomes—Randomized clinical trials often use binary outcome variables. In 

evaluations of treatments for addiction, for example, abstinence is a commonly used 

dichotomous dependent variable (e.g., Feingold, Oliveto, Schottenfeld, & Kosten, 2002). In 

addition, continuous outcome measures may be dichotomized prior to analysis because their 

distributions are not normally distributed (e.g., when there is a preponderance of zeros), thus 

violating the assumption of a normality of the dependent variable required for GMA (see 
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first part in 2-part growth modeling for examples of such dichotomization; Olsen & Schafer, 

2001).

With binary outcome data, the structural model for the GMA shifts from a linear regression 

to a logistic regression framework that models probabilities rather than scores (Hosmer & 

Lemeshow, 2000). The effect size is then an odds ratio (OR; Agresti, 2002; Feingold, 

Tiberio, & Capaldi, 2014) conveying the difference between the two groups in proportions 

(e.g., of clients who achieve or maintain abstinence), and there are guidelines for its 

practical significance (Chen, Cohen, & Chen, 2010; Rosenthal, 1996).

Effect sizes for group differences in binary outcomes in GMA, although not in the d metric, 

are computed almost exactly as for continuous ones. However, with such categorical data, 

GMA--like logistic regression--models logits (transformed probabilities) instead of raw 

scores (Raudenbush & Bryk, 2002). The regression coefficient for the treatment effect (b) 

thus represents the difference between the groups in rate of change per unit of time in logits. 

The b for is multiplied by duration to yield the model-derived estimates for the difference 

between groups in means of the logits at the end of the study, which can be exponentiated to 

yield the GMA OR (Feingold, 2013; Hosmer & Lemeshow, 2000). The estimation of CI for 

the GMA OR entails a slightly different transformation process than that used for GMA d. 

Each of the CLs of b is multiplied by duration, and the CI for GMA OR is estimated by 

exponeniating each of these two products.

More than two groups—A priori comparisons or contrasts (Rosenthal, Rosnow, Rubin, 

2000) can be used to obtain separate coefficients in a GMA for the end of study difference in 

slopes for each planned comparison. In a randomized clinical trial with three groups, for 

example, one contrast might compare the trajectories of patients receiving two different 

treatments and a second contrast could compare the trajectory of participants receiving any 

treatment with that of the control group. Thus, instead of a single coefficient for the group 

effect, multiple coefficients for treatment effects would be obtained in each model (one per 

contrast). A separate GMA d (along with a contrast-specific CI and v) can be estimated from 

the unstandardized coefficient associated with each contrast.

Cluster-randomized designs—In some randomized clinical trials, groups or dyads of 

individuals (clinics, therapy groups) are randomly assigned to conditions and every 

participant in the group (called a cluster) either receives or does not receive the treatment. 

The lack of independence among subjects within clusters requires use of a cluster-

randomized design (Hedges, 2007, 2009), which may include repeated measures collected 

over the course of study that can be examined with GMA. The data then take on a 

hierarchical structure in which the repeated measures are nested within individuals who are 

nested within clusters, which can be examined with a 3-Level MLM model (Raudenbush & 

Bryk, 2002). In a cluster-randomized repeated-measures design, the intervention is 

administered to Level-3 units (clusters) in a 3-Level model rather than to Level-2 units (the 

individuals). The calculation of GMA d, and its v and CI, would use the same equations but 

the coefficient associated with the treatment effect (and its SE) would be obtained at Level 3 

rather than Level 2 (for more details, see Feingold, in 2013; see Hedges, 2007, 2009, for 

calculation of the appropriate SD for cluster-randomized designs).
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Multi-site studies—Multi-site studies are similar to cluster-randomized studies in that 

multiple independent data sets are used in both designs but participants are randomized to 

conditions within clusters in the former. Data from multi-site GMA studies would also be 

examined with a 3-Level GMA model but the treatment effect would be observed at Level 2. 

The treatment effect is the mean regression coefficient (i.e., averaged across sites) and its 

transformed GMA d is the average effect size. This design is conceptually similar to meta-

analysis, except that meta-analysts typically work with independently conducted studies and 

convert findings to standardized effect sizes before rather than after synthesizing them 

because of typical variations in measurement of outcomes across independent studies.

Moderation of treatment effects—The treatment effect may be moderated by observed 

or latent factors. When interactions of treatment with moderating categorical variables (e.g., 

gender, race) are observed, GMA ds (and their associated vs and CIs) that are the equivalent 

of simple effects in ANOVA can be determined (see Feingold, 2013, for equations).

Limitation and Directions for Future Research

The Monte Carlo study manipulated only factors (sample size and effect size) that were 

predicted to affect bias in the CI for the GMA d. Future simulation studies might examine 

generalizability of the accuracy of the new equations by considering other potential sources 

of bias, including nonnormality, violation of missing data assumptions (Little & Rubin, 

2002), unbalanced designs, heterogeneity of within-person variances across time, 

heterogeneity of variance across treatment conditions (Feingold, 1995; Grissom, 2000), and 

robustness to model misspecification--all of which may interact with effect size and sample 

size in influencing accuracy of CI estimation for the GMA d.

Approaches for the CI estimation for effect sizes for nonlinear models also need to be 

developed and validated. For example, Feingold (2013) suggested the calculations of effect 

sizes at different time points based on GMA models with linear and quadratic slopes to 

communicate the practical important of treatment effects at different phases of a study. Yet, 

CI estimation for such GMA ds would require the SEs of the coefficients for both linear and 

quadratic terms.

Finally, although the equivalence of the two methods of CI estimation was demonstrated, a 

formal mathematical proof of the equivalence of the two sets of equations would be of 

interest, particularly to methodologists.

Summary and Conclusions

Monte Carlo studies demonstrated that estimates of an increasingly used effect size (GMA 

d) for the difference between two independent groups at the end of a study examined with 

GMA (LGM or MLM/HLM) exhibited ignorable bias that did not differ practically from the 

bias observed in the commonly used unstandardized coefficient (b)--from which the GMA d 

is a simple and approximately linear transformation. Bias in the CI for d was essentially 

nonexistent in the relatively large samples typically used in GMA and thus the new 

equations provide interval estimates for the GMA d that can be reported by investigators 
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conducting GMA to address increasing demands by reviewers, editors, and publishers for 

CIs for effect sizes.

Acknowledgments

This work was supported by National Institutes of Health grants: RC1DA028344 from the National Institute on 
Drug Abuse and R01AA018669 from the National Institute on Alcohol Abuse and Alcoholism. The content is 
solely the responsibility of the author and does not necessarily represent the official views of the National Institutes 
of Health

References

Aderka IM, Gillihan SJ, McLean CP, Foa EB. The relationship between posttraumatic and depressive 
symptoms during prolonged exposure with and without cognitive restructuring for the treatment of 
posttraumatic stress disorder. Journal of Consulting and Clinical Psychology. 2013; 81:375–382. 
[PubMed: 23339538] 

Agresti, A. Categorical data analysis. 2nd ed.. New York: Wiley; 2002. 

Algina J, Kesselman HJ. Approximate confidence intervals for effect sizes. Educational and 
Psychological Measurement. 2003; 68:233–244.

American Psychological Association. Publication manual of the American Psychological Association. 
6th ed.. Washington, DC: Author; 2009. 

APA Publications and Communications Board Working Group on Journal Article Reporting 
Standards. Reporting standards for research in psychology: Why do we need them? What might 
they be? American Psychologist. 2008; 63:839–851. [PubMed: 19086746] 

Arch JJ, Eifert GH, Davies C, Vilardaga JCP, Rose RD, Craske MG. Randomized clinical trial of 
cognitive behavioral therapy (CBT) versus acceptance and commitment therapy (ACT) for mixed 
anxiety disorders. Journal of Consulting and Clinical Psychology. 2012; 80:750–765. [PubMed: 
22563639] 

Baguley T. Standardized or simple effect size: What should be reported? British Journal of 
Psychology. 2009; 100:603–617. [PubMed: 19017432] 

Becker BJ. Synthesizing standardized mean-change scores. British Journal of Mathematical and 
Statistical Psychology. 1988; 41:257–278.

Blanton H, Jaccard J. Arbitrary metrics in psychology. American Psychologist. 2006; 61:27–41. 
[PubMed: 16435974] 

Bollen, KA.; Curran, PJ. Latent curve models: A structural equation perspective. Hoboken, NJ: Wiley; 
2006. 

Borenstein, M.; Hedges, LV.; Higgins, JPT.; Rothstein, HR. Introduction to meta-analysis. New York: 
Wiley; 2009. 

Chaffin M, Funderburk B, Bard D, Valle LA, Gurwitch R. A combined motivation and parent-child 
interaction therapy package reduces child welfare recidivism in a randomized dismantling field 
trial. Journal of Consulting and Clinical Psychology. 2011; 79:84–95. [PubMed: 21171738] 

Chen H, Cohen P, Chen S. How big is a big odds ratio? Interpreting the magnitudes of odds ratios in 
epidemiological studies. Communications in Statistics—Simulation and Computation. 2010; 
39:860–864.

Cheung MW. Comparison of methods for constructing confidence intervals of standardized indirect 
effects. Behavior Research Methods. 2009; 41:425–438. [PubMed: 19363183] 

Cohen, J. Statistical power analysis for the behavioral sciences. 2nd ed.. Hillsdale, NJ: Erlbaum; 1988. 

Cohen, J.; Cohen, P.; West, SG.; Aiken, LS. Applied multiple regression/correlation analysis for the 
behavioral analysis. 3rd ed.. Mahwah, NJ: Erlbaum; 2003. 

Cooper, H.; Hedges, LV.; Valentine, JC., editors. The handbook of research synthesis. 2nd ed.. New 
York: Russell Sage; 2009. 

Curran PJ. Have multilevel models been structural equation models all along? Multivariate Behavioral 
Research. 2003; 38:529–569.

Feingold Page 16

J Consult Clin Psychol. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Cumming, G. Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. 
New York: Routledge; 2013. 

Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM 
algorithm. Journal of the Royal Statistical Society, Series B. 1977; 39:1–38.

Dunlap WP, Cortina JM, Vaslow JB, Burke MJ. Meta-analysis of experiments with matched groups or 
repeated measures designs. Psychological Methods. 1996; 1:170–177.

Efron, B.; Tibshirani, R. An introduction to the bootstrap. Boca Raton, FL: Chapman & Hall; 1993. 

Elliott, DS.; Huizinga, D.; Menard, S. Multiple problem youth: Delinquency, substance use, and 
mental health problems. New York: Springer-Verlag; 1989. 

Feingold A. The additive effects of differences in central tendency and variability are important in 
comparisons between groups. American Psychologist. 1995; 50:5–13.

Feingold A. Effect sizes for growth-modeling analysis for controlled clinical trials in the same metric 
as for classical analysis. Psychological Methods. 2009; 14:43–53. [PubMed: 19271847] 

Feingold A. A regression framework for effect size assessments in longitudinal modeling of group 
differences. Review of General Psychology. 2013; 17:111–121. [PubMed: 23956615] 

Feingold A, Oliveto A, Schottenfeld R, Kosten TR. Utility of crossover designs in clinical trials: 
Efficacy of desipramine vs. placebo in opioid-dependent cocaine abusers. The American Journal 
on Addictions. 2002; 11:111–123. [PubMed: 12028741] 

Feingold A, Tiberio S, Capaldi DM. New approaches for examining associations with latent 
categorical variables: Applications to substance abuse and aggression. Psychology of Addictive 
Behaviors. 2014; 28:257–267. [PubMed: 23772759] 

Glass GV. Primary, secondary, and meta-analysis of research. Educational Researcher. 1976; 5(10):3–
8.

Glass, GV.; McGaw, B.; Smith, ML. Meta-analysis in social research. Thousand Oaks, CA: Sage; 
1981. 

Goldstein, H. Multilevel statistical models. 4th ed.. Hobokin, NJ: Wiley; 2011. 

Grissom RJ. Homogeneity of variance in clinical data. Journal of Consulting and Clinical Psychology. 
2000; 68:155–165. [PubMed: 10710850] 

Grissom, RJ.; Kim, JJ. Effect sizes for research: Univariate and multivariate applications. 2nd ed.. 
New York: Routledge; 2012. 

Gueorguieva R, Krystal JH. Move over ANOVA: Progress in analyzing repeated-measures data and its 
reflection in papers published in the. Archives of General Psychiatry. Archives of General 
Psychiatry. 2004; 61:310–317.

Hedeker, D.; Gibbons, RD. Longitudinal data analysis. Hoboken, NJ: Wiley; 2006. 

Hedges LV. Effect sizes in cluster-randomized designs. Journal of Educational and Behavioral 
Statistics. 2007; 32:341–370.

Hedges, LV. Effect sizes in nested designs. In: Cooper, H.; Hedges, LV.; Valentine, JC., editors. The 
handbook of research synthesis. 2nd ed.. New York: Russell Sage; 2009. p. 337-356.

Hedges, LV.; Olkin, L. Statistical methods for meta-analysis. Orlando, FL: Academic Press; 1985. 

Hedges LV, Pustejovskya JE, Shadish WR. A standardized mean difference effect size for single case 
designs. Research Synthesis Methods. 2012; 3:224–239.

Hodges, JL.; Lehmann, EL. Basic concepts of probability and statistics. 2nd ed.. Philadelphia, PA: 
Society for Industrial and Applied Mathematics; 2005. 

Hosmer, DW.; Lemeshow, S. Applied logistic regression. 2nd ed.. New York: Wiley; 2000. 

Kelley K, Preacher KJ. On effect size. Psychological Methods. 2012; 17:137–152. [PubMed: 
22545595] 

Kelley K, Rausch JR. Sample size planning for longitudinal models: Accuracy in parameter estimation 
for polynomial change parameters. Psychological Methods. 2011; 16:391–405. [PubMed: 
21744968] 

Kerr DCR, DeGarmo DS, Leve LD, Chamberlain P. Juvenile justice girls’ depressive symptoms and 
suicidal ideation 9 years after multidimensional treatment foster care. Journal of Consulting and 
Clinical Psychology. 2014 Advance online publication. 

Feingold Page 17

J Consult Clin Psychol. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Lau RS, Cheung GW. Estimating and comparing specific mediation models in complex latent variable 
models. Organizational Research Methods. 2012; 15:3–16.

Lipsey, MW.; Wilson, DB. Practical meta-analysis. Thousand Oaks, CA: Sage; 2001. 

Ljótsson B, Hesser H, Andersson E, Lindfors P, Hursti T, Rück C, Hedman E. Mechanisms of change 
in an exposure-based treatment for irritable bowel syndrome. Journal of Consulting and Clinical 
Psychology. 2013 Advance online publication. 

Maas CJM, Hox JJ. Sufficient sample sizes for multilevel modeling. Methodology. 2005; 1:86–92.

MacKinnon DP, Lockwood CM, Williams J. Confidence limits for the indirect effect: Distribution of 
the product and resampling methods. Multivariate Behavioral Behavioral Research. 2004; 39:99–
128.

McCulloch, CE.; Searle, SR. Generalized, linear, and mixed models. New York: Wiley; 2001. 

Morris SB. Estimating effect sizes from pretest-posttest-control group designs. Organizational 
Research Methods. 2008; 11:364–386.

Morris SB, DeShon RP. Combining effect size estimates in meta-analysis with repeated measures and 
independent-groups designs. Psychological Methods. 2002; 7:105–125. [PubMed: 11928886] 

Muthén BO, Muthén LK. The development of heavy drinking and alcohol-related problems from ages 
18 to 37 in a U.S. national sample. Journal of Studies on Alcohol. 2000; 61:290–300. [PubMed: 
10757140] 

Muthén LK, Muthén BO. How to use a Monte Carlo study to decide on sample size and determine 
power. Structural Equation Modeling. 2002; 4:599–620.

Muthén, LK.; Muthén, BO. Mplus user’s guide. 7th ed. Los Angeles, CA: Muthén and Muthén; 2012. 

Nunnally, J. Psychometric methods. New York: McGraw-Hill; 1978. 

Odgaard EC, Fowler RL. Confidence intervals for effect sizes: Compliance and clinical significance in 
the. Journal of Consulting and Clinical Psychology. Journal of Consulting and Clinical 
Psychology. 2010; 78:287–297.

Olejnik S, Algina J. Measures of effect size for comparative studies: Applications, interpretations, and 
limitations. Contemporary Educational Psychology. 2000; 25:241–286. [PubMed: 10873373] 

Olsen MK, Schafer JL. A two-part random-effects model for semicontinuous longitudinal data. Journal 
of the American Statistical Association. 2001; 96:730–745.

Preacher, KJ.; Wichman, AL.; MacCallum, RC.; Briggs, NE. Latent growth modeling. Los Angeles, 
CA: Sage; 2008. 

Raudenbush, SW. Hierarchical linear models to study the effects of social context on development. In: 
Gottman, JM., editor. The analysis of change. Mahwah, NJ: Erlbaum; 1995. p. 165-201.(1995).

Raudenbush, SW.; Bryk, AS. Hierarchical linear models: Applications and data analysis methods. 2nd 
ed. Thousand Oaks, CA: Sage; 2002. 

Raudenbush SW, Liu X. Effects of study duration, frequency of observation, and sample size on power 
in studies of group differences in polynomial change. Psychological Methods. 2001; 6:387–401. 
[PubMed: 11778679] 

Rosenthal JA. Qualitative descriptors of strength of association and effect size. Journal of Social 
Service Research. 1996; 21:37–59.

Rosenthal, R.; Rosnow, RL.; Rubin, DB. Contrasts and effect sizes in behavioral research: A 
correlational approach. Cambridge, England: Cambridge University Press; 2000. 

Little, RJA.; Rubin, DB. Statistical analysis with missing data. 2nd ed.. Hoboken, NJ: Wiley; 2002. 

Safren SA, O'Cleirigh CM, Bullis JR, Otto MW, Stein MD, Pollack MH. Cognitive behavioral therapy 
for adherence and depression (CBT-AD) in HIV-infected injection drug users: A randomized 
controlled trial. Journal of Consulting and Clinical Psychology. 2012; 80:404–415. [PubMed: 
22545737] 

Shadish, WR.; Haddock, CK. Combining estimates of effect sizes. In: Cooper, H.; Hedges, LV.; 
Valentine, JC., editors. The handbook of research synthesis. 2nd ed.. New York: Russell Sage; 
2009. p. 257-277.

Singer, JD.; Willett, JB. Applied longitudinal data analysis: Modeling change and event occurrence. 
New York: Oxford; 2003. 

Feingold Page 18

J Consult Clin Psychol. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Steiger H. Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of 
variance and contrast analysis. Psychological Methods. 2004; 9:164–182. [PubMed: 15137887] 

Twohig MP, Hayes SC, Plumb JC, Pruitt LD, Collins AB, Hazlett-Stevens H, Woidneck MR. A 
randomized clinical trial of acceptance and commitment therapy versus progressive relaxation 
training for obsessive-compulsive disorder. Journal of Consulting and Clinical Psychology. 2010; 
78:705–716. [PubMed: 20873905] 

Appendix A

Mplus Input Statement for a Monte Carlo Study with .10 for the Slope

Difference and n = 250

MONTECARLO: NAMES ARE y1–y4 x;

CUTPOINTS = x (0);

NOBSERVATIONS = 250;

NREPS = 10000;

SEED = 53487;

CLASSES = C(1);

GENCLASSES = C(1);

SAVE = CIM250.dat;

RESULTS = CIM250.sav;

ANALYSIS: TYPE = MIXTURE;

ESTIMATOR = ML;

MODEL MONTECARLO:

%OVERALL%

[x@0]; x@1;

i BY y1–y4@1;

s BY y1@–3 y2@-2 y3@-1 y4@0;

[y1–y4@0];

[i*0 s*.2];

i*.25;

s*.09;

i WITH s*0;

y1–y4*.5;

i ON x*.3;

s ON x*.1;

%C#1%

[i*0 s*.2];

MODEL:

%OVERALL%

i BY y1–y4@1;

s BY y1@–3 y2@-2 y3@-1 y4@0;

[y1–y4@0];

[i*0 s*.2];

i*.25;

s*.09;
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i WITH s*0;

y1–y4*.5;

i ON x*.3;

s ON x*.1;

%C#1%

[i*0 s*.2];

OUTPUT: TECH9;

Appendix B

SPSS Syntax for Transforming Unstandardized Coefficients from Mplus Monte

Carlo Output Files to GMA ds and Monte Carlo Analysis of GMA ds

compute b=v9.

compute seb=V20.

compute meanres=(v2+v3+v4+v5)/4.

compute sd=sqrt(meanres+v10).

compute gmad=b*(3/sd).

compute llci=(b − 1.96*seb)*(3/sd).

compute ulci=(b + 1.96*seb)*(3/sd).

compute cov=0.

Execute.

if(llci gt.3464 or ulci lt .3464)cov=1.

execute.

FREQUENCIES

VARIABLES=cov

/ORDER=ANALYSIS.

compute sed=(ulci-gmad)/1.96).

execute.

DESCRIPTIVES

VARIABLES=gmad sed

/STATISTICS=MEAN STDDEV.
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