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Abstract

Persistent homology is a relatively new tool often used for qualitative analysis of intrinsic 

topological features in images and data originated from scientific and engineering applications. In 

this paper, we report novel quantitative predictions of the energy and stability of fullerene 

molecules, the very first attempt in employing persistent homology in this context. The ground-

state structures of a series of small fullerene molecules are first investigated with the standard 

Vietoris-Rips complex. We decipher all the barcodes, including both short-lived local bars and 

long-lived global bars arising from topological invariants, and associate them with fullerene 

structural details. By using accumulated bar lengths, we build quantitative models to correlate 

local and global Betti-2 bars respectively with the heat of formation and total curvature energies of 

fullerenes. It is found that the heat of formation energy is related to the local hexagonal cavities of 

small fullerenes, while the total curvature energies of fullerene isomers are associated with their 

sphericities, which are measured by the lengths of their long-lived Betti-2 bars. Excellent 

correlation coefficients (> 0.94) between persistent homology predictions and those of quantum or 

curvature analysis have been observed. A correlation matrix based filtration is introduced to 

further verify our findings.
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1 Introduction

Persistent homology, a method for studying topological features over changing scales, has 

received tremendous attention in the past decade.14, 59 The basic idea is to measure the life 

cycle of topological features within a filtration, i.e., a nested family of abstract simplicial 

complexes, such as Vietoris-Rips complexes, Čech complexes, or alpha complexes.15 Thus, 

long-lived topological characteristics, which are often the intrinsic invariants of the 

underlying system, can be extracted; while short-lived features are filtered out. The essential 

topological characteristics of three-dimensional (3D) objects typically include connected 

*Corresponding author. ytong@msu.edu. †Corresponding author. wei@math.msu.edu. 

NIH Public Access
Author Manuscript
J Comput Chem. Author manuscript; available in PMC 2016 March 05.

Published in final edited form as:
J Comput Chem. 2015 March 5; 36(6): 408–422. doi:10.1002/jcc.23816.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



components, tunnels or rings, and cavities or voids, which are invariant under the non-

degenerate deformation of the structure. Homology characterizes such structures as groups, 

whose generators can be considered independent components, tunnels, cavities, etc. Their 

times of “birth” and “death” can be measured by a function associated with the filtration, 

calculated with ever more efficient computational procedures,11–13, 37 and further visualized 

through barcodes,23 a series of horizontal line segments with the x-axis representing the 

changing scale and the y-axis representing the index of the homology generators. Numerous 

software packages, such as Perseus, Dionysus, and Javaplex,47 based on various algorithms 

have been developed and made available in the public domain. As an efficient tool to unveil 

topological invariants, persistent homology has been applied to various fields, such as image 

analysis,5, 40, 45 chaotic dynamics verification,30, 36 sensor network,44 complex 

network,29, 34 data analysis,4 geometric processing,16 and computational biology.10, 22, 31, 55 

Based on persistent homology analysis, we have proposed molecular topological fingerprints 

and utilized them to reveal the topology-function relationship of biomolecules.54 In general, 

persistent homology is devised as a robust but qualitative topological tool and has been 

hardly employed as a precise quantitative predictive tool.1, 3

To the best of our knowledge, persistent homology has not been applied to the study of 

fullerenes, special molecules comprised of only carbon atoms. The fullerene family shares 

the same closed carbon-cage structure, which contains only pentagonal and hexagonal rings. 

In 1985, Kroto et al.33 proposed the first structure of C60, which was then confirmed in 1990 

by Krätschmer et al.32 in synthesizing macroscopic quantities of C60. Enormous interest has 

been aroused by these interesting discoveries. However, there are many challenges. Among 

them, finding the ground-state structure has been a primary target.

In general, two types of approaches are commonly used.2, 7, 18, 20, 35, 56 The first method is 

based on the geometric and topological symmetries of fullerene.18, 20, 35 In this approach, 

one first constructs all possible isomers, and then chooses the best possible candidate based 

on the analysis of the highest-occupied molecular orbital (HOMO) energy and the lowest-

unoccupied molecular orbital (LUMO) energy.35 In real applications, to generate all 

possible isomers for a fullerene with a given atom count is nontrivial until the introduction 

of Coxeter’s construction method9, 18 and the ring spiral method.35 In Coxeter’s method, the 

icosahedral triangulations of the sphere are analyzed to evaluate the possible isomer 

structures. This method is mathematically rigorous. However, practical applications run into 

issues with low-symmetry structures. On the other hand, based on the spiral conjecture20, 

the ring spiral method simply lists all possible spiral sequences of pentagons and hexagons, 

and then winds them up into fullerenes. When a consistent structure is found, an isomer is 

generated; otherwise, the sequence is skipped. Although the conjecture breaks down for 

fullerenes with 380 or more atoms, the spiral method proves to be quite efficient.20

For each isomer, its electronic structure can be modeled simply by the Hückel molecular 

orbital theory,46 which is known to work well for planar aromatic hydrocarbons using 

standard C-C and C-H σ bond energies. Similarly, the bonding connectivities in fullerene 

structures are used to evaluate orbital energies. The stability of the isomers, according to 

Manolopoulus,35 can then be directly related to the calculated HOMO-LUMO energy gap. 

However, this model falls short for large fullerene molecules. Even for small structures, its 
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prediction tends to be inaccurate. One possible reason is fullerene’s special cage structures. 

Instead of a planar shape, the structure usually has local curvatures, which jeopardizes the σ-

π orbital separation.17, 20 To account for curvature contributions, a strain energy is 

considered. It is found that the stain energy reaches its minimum when pentagonal faces are 

as far away as possible from each other. This is highly consistent with the isolated pentagon 

rule (IPR) — the most stable fullerenes are those in which all the pentagons are isolated.20

Another approach to obtain ground-state structures for fullerene molecules is through 

simulated annealing.2, 7, 56 This global optimization method works well for some structures. 

However, if large energy barriers exist in the potential, the whole system is prone to be 

trapped into metastable high-energy state. This happens as breaking the carbon bonds and 

rearranging the structure need a huge amount of energy. A revised method is to start the 

system from a special face-dual network and then employ the tight-binding potential 

model.56, 57 This modified algorithm manages to generate the C60 structure of Ih symmetry 

that has the HOMO-LUMO energy gap of 1.61 eV, in contrast to 1.71 eV obtained by using 

the ab initio local-density approximation.

In this paper, persistent homology is, for the first time, employed to quantitatively predict 

the stability of the fullerene molecules. The ground-state structures of a few small fullerene 

molecules are first studied using a distance based filtration process. Essentially, we associate 

each carbon atom of a fullerene with an ever-increasing radius and thus define a Vietoris-

Rips complex. The calculated Betti numbers (i.e., ranks of homology groups), including β0, 

β1 and β2, are provided in the barcode representation. To further exploit the persistent 

homology, we carefully discriminate between the local short-lived and global long-lived 

bars in the barcodes. We define an average accumulated bar length as the negative 

arithmetic mean of β2 bars. As the local β2 bars represent the number of cavities of the 

structure, when β2 becomes larger, interconnectedness (and thus stability) tends to increase, 

and relative energy tends to drop. Therefore, the average accumulated bar length indicates 

the level of a relative energy. We validate this hypothesis with a series of ground-state 

structures of small fullerenes. It is found that our average accumulated bar length can 

capture the energy behavior remarkably well, including an anomaly in fullerene C60 energy. 

Additionally, we explore the relative stability of fullerene isomers. The persistence of the 

Betti numbers is calculated and analyzed. Our results are validated with the total curvature 

energies of two fullerene families. It is observed that the total curvature energies of fullerene 

isomers can be well represented with their lengths of the long-lived Betti-2 bars, which 

indicates the sphericity of fullerene isomers. For fullerenes C40 and C44, correlation 

coefficients up to 0.956 and 0.948 are attained in the distance based filtration. Based on the 

flexibility-rigidity index (FRI),51–53 a correlation matrix based filtration process is proposed 

to validate our findings.

The rest of this paper is organized as follows. In Section 2, we discuss the basic persistent 

homology concepts, including Simplices and simplicial complexes, chains, homology, and 

filtration. Section 3 is devoted to the description of algorithms. The alpha complex and 

Vietoris-Rips complex are discussed in some detail, including filtration construction, metric 

space design, and persistence evaluation. In Section 4, persistent homology is employed in 

the analysis of fullerene structure and stability. After a brief discussion of fullerene 
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structural properties, we elaborate on their barcode representation. The average accumulated 

bar length is introduced and applied to the energy estimate of the small fullerene series. By 

validating with total curvature energies, our persistent homology based quantitative 

predictions are shown to be accurate. Fullerene isomer stability is also analyzed by using the 

new correlation matrix based filtration. This paper ends with a conclusion.

2 Rudiments of Persistent Homology

As representations of topological features, the homology groups are abstract abelian groups, 

which may not be robust or able to provide continuous measurements. Thus, practical 

treatments of noisy data require the theory of persistent homology, which provides 

continuous measurements for the persistence of topological structures, allowing both 

quantitative comparison and noise removal in topological analyses. The concept was 

introduced by Frosini and Landi21 and Robins,42 and in the general form by Zomorodian 

and Carlsson.59 Computationally, the first efficient algorithm for Z/2 coefficient situation 

was proposed by Edelsbrunner et al.14 in 2002.

2.1 Simplex and Simplicial Complex

For discrete surfaces, i.e., meshes, the commonly used homology is called simplicial 

homology. To describe this notion, we first present a formal description of the meshes, the 

common discrete representation of surfaces and volumes. Essentially, meshing is a process 

in which a geometric shape is decomposed into elementary pieces called cells, the simplest 

of which are called Simplices.

Simplex—Simplices are the simplest polytopes in a given dimension, as described below. 

Let v0, v1, ..vp be p+1 affinely independent points in a linear space. A p-simplex σp is the 

convex hull of those p+1 vertices, denoted as σp = convex < v0, v1, …, vp > or shorten as σp 

=< v0, v1, …, vp >. A formal definition can be given as,

(1)

The most commonly used simplices in R3 are 0-simplex (vertex), 1-simplex (edge), 2-

simplex (triangle) and 3-simplex (tetrahedron) as illustrated in Fig. 1.

An m-face of σp is them-dimensional subset of m+1 vertices, where 0 ≤ m ≤ p. For example, 

an edge has two vertices as its 0-faces and one edge as its 1-face. Since the number of 

subsets of a set with p+ 1 vertices is 2p+1, there are a total of 2p+1 - 1 faces in σp. All the 

faces are proper except for σp itself. Note that polytope shapes can be decomposed into cells 

other than simplices, such as hexahedron and pyramid. However, as non-simplicial cells can 

be further decomposed, we can, without loss of generality, restrict our discussion to shapes 

decomposed to simplices as we describe next.

Simplicial Complex—With simplices as the basic building blocks, we define a simplicial 

complex K as a finite collection of simplices that meet the following two requirements,
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• Containment: Any face of a simplex from K also belongs to K.

• Proper intersection: The intersection of any two simplices σi and σj from K is either 

empty or a face of both σi and σj.

Two p-simplices σi and σj are adjacent to each other if they share a common face. The 

boundary of σp, denoted as ∂σp, is the union (which can be written as a formal sum) of its 

(p-1)-faces. Its interior is defined as the set containing all non-boundary points, denoted as σ 

- ∂σp. We define a boundary operator for each p-simplex spanned by vertices v0 through vP 

as

(2)

where  indicates that vi is omitted and Z/2 coefficient set is employed. It is the boundary 

operator that creates the nested topological structures and the homomorphism among them 

as described in the next section.

If the vertex positions in the ambient linear space can be ignored or do not exist, the 

containment relation among the simplices (as finite point sets) defines an abstract simplicial 

complex.

2.2 Homology

A powerful tool in topological analysis is homology, which represents certain structures in 

the meshes by algebraic groups to describe their topology. For regular objects in 3D space, 

essential topological features are connected components, tunnels and handles, and cavities, 

which are exactly described by the 0th, 1st, and 2nd homology groups, respectively.

Chains—The shapes to be mapped to homology groups are constructed from chains 

defined below. Given a simplicial complex (e.g., a tetrahedral mesh) K, which, roughly 

speaking, is a concatenation of p-Simplices, we define a p-chain  as a formal 

linear combination of all p-Simplices in K, where ai ∈ Z/2 is 0 or 1 and σi is a p-simplex. 

Under such a definition, a 0-chain is a set of vertices, a 1-chain is a set of line segments 

which link vertices, a 2-chain is a set of triangles which are enclosed by line segments, and a 

2-chain is a set of tetrahedrons which are enclosed by triangle surfaces.

We extend the boundary operator ∂p for each p-simplex to a linear operator applied to 

chains, i.e., the extended operator meet following two conditions for linearity,

(3)

where ci and cj are both chains and λ is a constant, and all arithmetic is for modulo-2 

integers, in which 1 + 1 = 0.
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An important property of the boundary operator is that the following composite operation is 

the zero map,

(4)

which immediately follows from the definition. Take the 2-chain c = f1 + f2 as an example, 

which represents a membrane formed by two triangles, f1 =< v1, v2, v3 > and f2 =< v3, v2, v4 

>. The boundary of c is a 1-chain, which turns out to be a loop,

(5)

The boundary of this loop is thus

(6)

Simplicial homology—Simplicial homology is built on the chain complex associated to 

the simplicial complex. A chain complex is a sequence of abelian groups (C1, C2, … , Cn) 

connected by the homomorphism (linear operators) ∂p, such that ∂p ⚬ ∂p+1 = 0 as in Eq.(4).

(7)

The chain complex in the definition of simplicial homology is formed by Cp, the space of all 

p-chains, and ∂p, the boundary operator on p-chains. Since ∂p ⚬ ∂p+1 = 0, the kernel of the 

boundary operator p-chains is a subset of the image of the boundary operator of p + 1-

chains. The p-chains in the kernel of the boundary homomorphisms ∂p are called p-cycles 

(p-chains without boundary) and the p-chains in the image of the boundary homomorphisms 

∂p+1 are called p-boundaries. The p-cycles form an abelian group (with group operation 

being the addition of chains) called cycle group, denoted as Zp = Ker ∂p. The p-boundaries 

form another abelian group called boundary group, denoted as Bp = Im ∂p+1.

Thus, p-boundaries are also p-cycles as shown in Fig. 2. As p-boundaries form a subgroup 

of the cycles group, the quotient group can be constructed through cosets of p-cycles, i.e., by 

equivalence classes of cycles. The p-th homology, denoted as Hp, is defined as a quotient 

group,

(8)

where Ker ∂p is the collection of p-chains with empty boundary and Im ∂p+1 is the collection 

of p-chains that are boundaries of p + 1-chains.
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Noticing that all groups with p > 3 cannot be generated from meshes in R3, we only need 

chains, cycles and boundaries of dimension p with 0 ≤ p ≤ 3. See Fig. 2 for an illustration.

We illustrate simplexes and cycles including 0-cycle, 1-cycle, and 2-cycle in Fig. 1. 

Basically, an element in the p-th homology group is an equivalence class of p-cycles. One of 

these cycles c can represent any other p-cycle that can be "deformed" through the mesh to c, 

because any other p-cycle in the same equivalence class differ with c by a p-boundary b = ∂

(∂1+∂2 + …),where each ∂i is a p+l-simplex. Adding the boundary of ∂i has the effect of 

deforming c to c + ∂σi by sweeping through ∂i. For instance, a 0-cycle vi is equivalent to vj if 

there is a path < vi,vk1 > + < vk1,vk2 > + · · · + < vkn,vj >. Thus each generator of 0th-

homology, (like a basis vector in a basis of the linear space of 0th-homology) represents one 

connected component. Similarly, 1-cycles are loops, and 1st-homology generators represent 

independent nontrivial loops, i.e., separate tunnels; 2-homology generators are independent 

membranes, each enclosing one cavity of the 3D object.

Define βp = rank(Hp) to be the p-th Betti number. For a simplicial complex in 3D, β0 is the 

number of connected components; β1 is the number of tunnels; and β2 is the number of 

cavities. As Hp is the quotient group between Zp and Bp, we can also compute Betti numbers 

through,

(9)

Note, however, Hp is usually of much lower rank than either Zp or Bp.

2.3 Persistent Homology

Homology generators identify the tunnels, cavities, etc., in the shape, but as topological 

invariants, they omit the metric measurements by definition. However, in practice, one often 

needs to compare the sizes of tunnels, for instance, to find the narrowest tunnel, or to 

remove tiny tunnels as topological noises. Persistent homology is a method of reintroducing 

metric measurements to the topological structures.14, 59

The measurement is introduced as an index ito a sequence of nested topological spaces {Xi}. 

Such a sequence is called a filtration,

(10)

Since each inclusion induces a mapping of chains, it induces a linear map for homology,

(11)

The above sequence describes the evolution of the homology generators. We follow the 

exposition in Ref.38 and define by a composition mapping from 

. . A new homology class c is created 

(born) in  if it is not in the image of . It dies in Xj if it becomes trivial or is merged 
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to an “older” (born before i) homology class, i.e., its image in  is in the image of , 

unlike its image under .

As shown in Fig. 3, if we associate with each space  a value hi denoting “time” or 

“length”, we can define the duration, or the persistence length of the each homology 

generator c as

(12)

This measurement hi is usually readily available when analyzing the topological feature 

changes. For instance, when the filtration arises from the level sets of a height function.

3 Algorithms for persistent homology

In computational topology, intrinsic features of point cloud data, i.e., a point set S ⊂ Rn 

without additional structure, are common subjects of investigation. For such data, a standard 

way to construct the filtration is to grow a solid ball centered at each point with an ever-

increasing radius. If the differences between points can generally be ignored, as is the case 

for fullerenes, a common radius r can be used for all points. In this setting, the radius r is 

used as the parameter for the family of spaces in the filtration. As the value of r increases, 

the solid balls will grow and Simplices can be defined through the overlaps among the set of 

balls. In Figure 4, fullerene C60 is used to demonstrate this process. There are various ways 

of constructing abstract simplicial complexes from the intersection patterns of the set of 

expanding balls, such as Čech complex, Vietoris-Rips complex and alpha complex. The 

corresponding topological invariants, e.g., the Betti numbers, are in general different due to 

different definitions of simplicial complexes. In this section, we discuss computational 

algorithms for the design of filtrations, the construction of abstract simplicial complexes, 

and the calculation of Betti numbers.

Alpha complex

One possible filtration that can be derived from the unions of the balls with a given radius 

around the data points (as shown in Figure 4) is the family of d-dependent Čech complexes, 

each of them is defined to be a simplicial complex, whose k-Simplices are determined by (k 

+ 1)-tuples of points, such that the corresponding d/2-balls have a non-empty intersection. 

However, it may contain many Simplices for a large d. A variant called the alpha complex 

can be defined by replacing the d/2-ball in the above definition by the intersection of the 

d/2-ball with the Voronoi cells for these data points. In both cases, they are homotopic to the 

simple unions of balls, and thus produce the same persistent homology. Interested readers 

are referred to the nerve theorem for details.58

Vietoris-Rips complex

The Vietoris-Rips complex, which is also known as Vietoris complex or Rips complex, is 

another type of abstract simplicial complex derived from the union of balls. In this case, for 

a k-simplex to be included, instead of requiring that the (k + 1) d/2-balls to have a common 

intersection, one only needs them to intersect pairwise. The Čech complex is a subcomplex 
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of the Rips complex for any given d, however, the latter is much easier to compute and is 

also a subcomplex of the former at the filtration parameter of .

Euclidean-distance based filtration

It is straightforward to use the metric defined by the Euclidean space in which the data 

points are embedded. The pairwise distance can be stored in a symmetric distance matrix 

(dij), with each entry dij denoting the distance between point i and point j. Each diagonal 

term of the matrix is the distance from a certain point to itself, and thus is always 0. The 

family of Rips complexes is parameterized by d, a threshold on the distance. For a certain 

value of d, the Vietoris-Rips complex can be calculated. In 3D, more specifically, for a pair 

of points whose distance is below the threshold d, they form a 1-simplex in the Rips 

complex; for a triplet of points, if the distance between every pair is smaller than d, the 2-

simplex formed by the triplet is in the Rips complex; whether a 3-simplex is in the Rips 

complex can be similarly determined. The Euclidean-distance based Vietoris-Rips 

complexes are widely used in persistent homology due to their simplicity and efficiency.

Correlation matrix based filtration

Another way to construct the metric space is through a certain correlation matrix, which can 

be built, e.g., from theoretical predictions and experimental observations. From a previous 

study on protein stability, flexibility-rigidity index (FRI) theory has been proven accurate 

and efficient.51 The reason for its success is that the geometric information is harnessed 

properly through the special transformation to a correlation matrix. The key to this 

transformation is the geometric to topological mapping. Instead of direct geometric 

information of the embedding in the Euclidean space, a mapping through certain kernel 

functions is able to interpret spatial locations of atoms in a particular way that reveals the 

atom stability quantitatively. We believe that this functional characterization is of 

importance to the study of not only proteins, but also other molecules.

Here, we present a special correlation matrix based Vietoris complex on the FRI method. In 

order to define the metric used, we briefly review the concepts of the FRI theory. First, we 

introduce the geometry to topology mapping.51–53 We denote the coordinates of atoms in 

the molecule we study as r1, r2, · · · , rj , · · · , rN, where rj ∈ R3 is the position vector of the 

jth atom. The Euclidean distance between ith and jth atoms rij can then be calculated. Based 

on these distances, topological connectivity matrix can be constructed with monotonically 

decreasing radial basis functions. A general form for a connectivity matrix is,

(13)

where wj is associated with atomic types, parameter ηj > 0 is the atom-type related 

characteristic distance, and Φ(rij; ηj) is a radial basis correlation kernel.

The choice of kernel is of significance to the FRI model. It has been shown that highly 

predictive results can be obtained by the exponential type and Lorentz type of kernels.51–53 

Exponential type of kernels is
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(14)

and the Lorentz type of kernels is

(15)

The parameters κ and υ are adjustable.

We define the atomic rigidity index µi for ith atom as

(16)

A related atomic flexibility index can be defined as the inverse of the atomic rigidity index.

(17)

The FRI theory has been intensively validated by comparing with the experimental data, 

especially the Debye-Waller factor (commonly known as the B-factor).51 While simple to 

evaluate, their applications in B-factor prediction yield decent results. The predicted results 

are proved to be highly accurate while the procedure remains efficient. FRI is also used to 

analyze the protein folding behavior.53

To construct an FRI-based metric space, we need to design a special distance matrix, in 

which the functional correlation is measured. If we directly employ the correlation matrix in 

Eq. (13) for the filtration, atoms with less functional relation form more Simplices, resulting 

in a counter-intuitive persistent homology. However, this problem can be easily remedied by 

defining a new correlation matrix as Mij = 1 − Cij, i.e.,

(18)

Thus a kernel function induces a metric space under this definition. Figure 5(a) demonstrates 

such a metric space based filtration of fullerene C60, in which we assume wj = 1 since only 

one type of atom exists in this system. The generalized exponential kernel in Eq. (14) is used 

with parameters κ = 2.0 and η = 6.0ÅA.

With the correlation matrix based filtration, the corresponding Vietoris-Rips complexes can 

be straight-forwardly constructed. Specifically, given a certain filtration parameter h0, if the 

matrix entry Mij ≤ h0, an edge formed between ith and jth atoms, and a simplex is formed if 

all of its edges are present. The complexes are built incrementally as the filtration parameter 

grows. Figures 5(b), (c) and (d) illustrate this process with three filtration threshold values h 

= 0.1Å, 0.3Å and 0.5Å, respectively. We use the blue color to indicate formed edges. It can 
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be seen that simplicial complexes keep growing with the increase of filtration parameter h. 

The diagonal terms are always equal to zero, which means that N atom centers (0-Simplices) 

form the first complex in the filtration.

4 Application to fullerene structure analysis and stability prediction

In this section, the theory and algorithms of persistent homology are employed to study the 

structure and stability of fullerene molecules. The ground-state structural data of fullerene 

molecules used in our tests are downloaded from the CCL webpage and fullerene isomer 

data and corresponding total curvature energies24 are adopted from David Tomanek’s 

carbon fullerene webpage. In these structural data, coordinates of fullerene carbon atoms are 

given. The collection of atom center locations of each molecule forms a point cloud in R3. 

With only one type of atom, the minor heterogeneity of atoms due to their chemical 

environments in these point clouds can be ignored in general. We examined both distance 

based and correlation matrix based metric spaces in our study. The filtration based on the 

FRI theory is shown to predict the stability very well.

Before we discuss the more informative persistent homology of fullerenes, we discuss the 

basic structural properties simply based on their Euler characteristics (vertex number minus 

edge number plus polygon number). The Euler characteristic, as a topological property, is 

invariant under non-degenerate shape deformation. For a fullerene cage composed of only 

pentagons and hexagons, the exact numbers of these two types of polygons can be derived 

from the Euler characteristic. For instance, if we have np pentagon and nh hexagons in a CN 

fullerene cage, the corresponding numbers of vertices, edges and faces are (5np + 6nh)/3, 

(5np + 6nh)/2 and np + nh, respectively, since each vertex is shared by three faces, and each 

edge is shared by two faces. As the fullerene cage is treated as a two dimensional surface, 

we have the Euler characteristic (5np + 6nh)/3 − (5np + 6nh)/2 + (np + nh) = 2, according to 

Euler’s polyhedron formula, since it is a topological sphere. Thus, we have np = 12, which 

means a fullerene cage structure must have 12 pentagons and correspondingly N/2 − 10 

hexagons. Therefore, for a CN fullerene cage, we have N vertices, 3N/2 edges and N/2 + 2 

faces.

4.1 Barcode representation of fullerene structures and nanotube

Barcodes for fullerene molecule—In Fig. 6, we demonstrate the persistent homology 

analysis of fullerene C20 and C60 using the barcode representation generated by Javaplex.47 

The x-axis represents the filtration parameter h. If the distance between two vertices is 

below or equal to certain h0, they will form an edge (1-simplex) at h0. Stated differently, the 

simplical complex generated is equivalent to the raidus filtration with radius parameter h/2. 

In the barcode, the persistence of a certain Betti number is represented by an interval (also 

known as bar), denoted as . Here j ∈ {0, 1, 2} as we only consider 

the first three Betti numbers in this work. From top to bottom, the behaviors of β0, β1, and β2 

are depicted in three individual panels. It is seen that as h grows, isolated atoms initialized as 

points will gradually grow into solid spheres with an ever-increasing radius. This 

phenomenon is represented by the bars in the β0 panel. Once two spheres overlap with each 

other, one β0 bar is terminated. Therefore, the bar length for the independent 0-th homology 
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generator (connected component) , denoted as , indicates the bond length 

information of the molecule. As can be seen from Fig. 6, for fullerene C20, all β0 bar lengths 

are around 1.45Å and the total number of components equals exactly to 20. On the other 

hand, fullerene C60 has two different kinds of bars with lengths around 1.37Å and 1.45Å, 

respectively, indicating its two types of bond lengths.

More structure information is revealed as β1 bars, which represent independent 

noncontractible 1-cycles (loops), emerge. It is seen in the fullerene C20 figure, that there are 

11 equal-length β1 bars persisting from l.45Å to 2.34Å. As fullerene C20 has 12 pentagonal 

rings, the Euler characteristics for a 1D simplicial subcomplex (1-skeleton) can be evaluated 

from the Betti numbers,

(19)

Here β0, nvertice, and nedge are 1, 20, and 30, respectively. Therefore, it is easy to obtain that 

β1 = 11 for fullerene C20, as demonstrated in Fig. 6. It should be noticed that all β1 bars end 

at filtration value h = 2.34Å, when five balls in each pentagon with their ever-increasing 

radii begin to overlap to form a pentagon surface.

Even more structur al information can be derived from fullerene C60’s β1 barcodes. First, 

there are 31 bars for β1. This is consistent with the Euler characteristics in Eq. (19), as we 

have 12 pentagons and 20 hexagons. Secondly, two kinds of bars correspond to the 

coexistence of pentagonal rings and hexagonal rings. They persist from 1.45Å to 2.35Å and 

from 1.45Å to 2.44Å , respectively.

As the filtration progresses, β2 bars (membranes enclosing cavities) tend to appear. In 

fullerene C20, there is only one β2 bar, which corresponds to the void structure in the center 

of the cage. For fullerene C60, we have 20 β2 bars persisting from 2.44Å to 2.82Å, which 

corresponds to hexagonal cavities as indicated in the last chart of Fig .1. Basically, as the 

filtration goes, each node in the hexagon ring joins its four nearest neighbors, and fills in the 

relevant 2-simplices, yielding a simplical complex whose geometric realization is exactly 

the octahedron. There is another β2 bar due to the center void as indicated in the last chart of 

Fig.6, which persists until the complex forms a solid block. Note that two kinds of β2 bars 

represent entirely different physical properties. The short-lived bars are related to local 

behaviors and fine structure details, while the long-lived bar is associated with the global 

feature, namely, the large cavity.

Barcodes for nanotube—Another example of nanotube is demonstrated in Fig. 7. The 

nanotube structure is const ructed using the software TubeApplet webpage . We set tube 

indices to (6,6), the number of unit cell to 10, tube radius to 4.05888, and lattice constant to 

2.454Å. We extract a segment of 3 unit cells from the nanotube and employ the persistent 

homology analysis to generate it barcodes. Our results are demonstrated in Fig. 7. Different 

from fullerene molecules, the nanotube has a long β1 bar representing the tube circle. It 

should also be noticed that β2 barcodes are concentrated in two different regions. The first 

region is when x is around 2.5 to 2.7. The β2 barcodes in this domain are generated by 
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hexagonal rings on the nanotube. The other region appears when x is slightly larger than 7.0. 

The corresponding β2 barcodes are representation of the void formed between different layer 

of carbons.

Unlike commonly used topological methods20, persistent homology is able to provide a 

multiscale representation of the topological features. Usually, global behavior is of major 

concern. Therefore, the importance of the topological features is typically measured by their 

persistence length. In our analysis, we have observed that except for discretization errors, 

topological invariants of all scales can be equally important in revealing various structural 

features of the system of interest. In this work, we demonstrate that both local and global 

topological invariants play important roles in quantitative physical modeling.

4.2 Stability analysis of small fullerene molecules

From the above analysis, it can be seen that detailed structural information has been 

incorporated into the corresponding barcodes. On the other hand, molecular structures 

determine molecular functions.51–53 Therefore, persistent homology can be used to predict 

molecular functions of fullerenes. To this end, we analyze the barcode information. For each 

Betti number βj, we define an accumulated bar length Aj as the summation of barcode 

lengths,

(20)

where  is the length of the ith bar in the j-th-homology barcode. Sometimes, we may only 

sum over certain types of barcodes. We define an average accumulated bar length as 

, where N is the total number of atoms in the molecule.

Zhang et al.56, 57 found that for small fullerene molecule series C20 to C70, their ground-

state heat of formation energies gradually decrease with the increase of the number of atoms, 

except for C60 and C70. The decreasing rate, however, slows down with the increase of the 

number of atoms. With data adopted from Ref.,56 Fig. 8 demonstrates this phenomenon. 

This type of behavior is also found in the total energy (STO-3G/SCF at MM3) per atom,39 

and in average binding energy of fullerene C2n which can be broken down to n dimmers 

(C2).6

To understand this behavior, many theories have been proposed. Zhang et al.57 postulate that 

the fullerene stability is related to the ratio between the number of pentagons and the number 

of atoms for a fullerene molecule. Higher percentage of pentagon structures results in 

relatively higher levels of the heat of formation. On the other hand, a rather straightforward 

isolated pentagon rule (IPR) states that the most stable fullerenes are those in which all the 

pentagons are isolated. The IPR explains why C60 and C70 are relatively stable as both have 

only isolated pentagons. Raghavachari’s neighbour index41 provides another approach to 

quantitatively characterize the relative stability. For example, in C60 of In symmetry, all 12 

pentagons have neighbour index 0, thus the In C60 structure is very stable.
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In this work, we hypothesize that fullerene stability depends on the average number of 

hexagons per atom. The larger number of hexagons is in a given fullerene structure, the 

more stable it is. We utilize persistent homology to verify our hypothesis. As stated in 

Section 4.1, there are two types of β2 bars, namely, the one due to hexagon-structure-related 

holes and that due to the central void. Their contributions to the heat of formation energy are 

dramatically different. Based on our hypothesis, we only need to include those β2 bars that 

are due to hexagon-structure-related holes in our calculation of the average accumulated bar 

length B2. As depicted in the right chart of Fig. 8, the profile of the average accumulated bar 

length closely resembles that of the heat of formation energy. Instead of a linear decrease, 

both profiles exhibit a quick drop at first, then the decreasing rate slows down gradually. 

Although our predictions for C30 and C32 fullerenes do not match the corresponding energy 

profile precisely, which may be due to the fact that the data used in our calculation may not 

be exactly the same ground-state data as those in the literature,57 the basic characteristics 

and the relative relations in the energy profile are still well preserved. In fact, the jump at the 

C60 fullerene is captured and stands out more obviously than the energy profile. This may be 

due to the fact that our method distinguishes not only pentagon and hexagon structures, but 

also the size differences within each of them. We are not able to present the full set of 

energy data in Ref.56 because we are limited by the availability of the ground-state structure 

data.

To quantitatively validate our prediction, the least squares method is employed to fit our 

prediction with the heat of formation energy, and a correlation coefficient is defined,51

(21)

where  represents the heat of formation energy of the ith fullerene molecule, and  is our 

theoretical prediction. The parameter  and  are the corresponding mean values. The 

fitting result is demonstrated in Fig. 9. The correlation coefficient is close to unity (0.985), 

which indicates the soundness of our model and the power of persistent homology for 

quantitative predictions.

4.3 Total curvature energy analysis of fullerene isomers

Having demonstrated the ability of persistent homology for the prediction of the relative 

stability of fullerene molecules, we further illustrate the effectiveness of persistent 

homology for analyzing the total curvature energies of fullerene isomers. Fullerene 

molecules CN are well-known to admit various isomers,19 especially when the number (N) 

of atoms is large. In order to identify all of the possible isomers for a given N, many elegant 

mathematical algorithms have been proposed. Coxeter’s construction method9, 18 and the 

ring spiral method35 are two popular choices. Before discussing the details of these two 

methods, we need to introduce the concept of fullerene dual. Mathematically, a dual means 
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dimension-reversing dual. From Euler’s polyhedron theorem, if a spherical polyhedron is 

composed of nvertice vertices , nedge edges and nface faces, we have the relation nvertice − 

nedges + nface = 2. Keeping the nedge unchanged while swapping the other two counts, we 

have its dual, which has nvertice faces and nface vertices. For example, the cube and the 

octahedron form a dual pair, the dodecahedron and the icosahedron form another dual pair, 

and the tetrahedron is its self-dual. This duality is akin to the duality between the Delaunay 

triangulation and the corresponding Voronoi diagram in computational geometry.

In fullerenes, each vertex is shared by three faces (each of them is either a pentagon or a 

hexagon). Therefore, fullerene dual can be represented as a triangulation of the topological 

sphere. Based on this fact, Coxeter is able to analyze the icosahedral triangulations of the 

sphere and predict the associated isomers. This method, although mathematically rigorous, 

is difficult to implement for structures with low symmetry, thus is inefficient in practical 

applications.20 On the other hand, in the Schlegel diagram,43 each fullerene structure can be 

projected into a planar graph made of pentagons and hexagons. The ring spiral method is 

developed based on the spiral conjecture,20 which states “The surface of a fullerene 

polyhedron may be unwound in a continuous spiral strip of edge-sharing pentagons and 

hexagons such that each new face in the spiral after the second shares an edge with both (a) 

its immediate predecessor in the spiral and (b) the first face in the preceding spiral that still 

has an open edge.” Basically, for fullerenes of N atoms, one can list all possible spiral 

sequences of pentagons and hexagons, and then wind them up into fullerenes. If no conflict 

happens during the process, an isomer is generated. Otherwise, we neglect the spiral 

sequence. Table 1 lists the numbers of isomers for different fullerenes,20 when enantiomers 

are regarded as equivalent 1. It is seen that the number of isomers increases dramatically as 

N increases. Total curvature energies of many fullerene isomers are available at the carbon 

fullerene webpage.

In 1935, Hakon defined sphericity as a measure of how spherical (round) an object is.26 By 

assuming particles having the same volume but differing in surface areas, Hakon came up 

with a sphericity function,26

(22)

where Vp and Ap are the volume and the surface area of the particle. Obviously, a sphere has 

sphericity 1, while the sphericity of non-spherical particles is less than 1. Let us assume that 

fullerene isomers have the same surface area as the perfect sphere Ap = 4πR2, we define a 

sphericity measure as

(23)

where Vs is the volume of a sphere with radius R. By the isoperimetric inequality, among all 

simple closed surfaces with given surface area Ap, the sphere encloses a region of maximal 

volume. Thus, the sphericity of non-spherical fullerene isomers is less than 1. Consequently, 
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in a distance based filtration process, the smaller sphericity a fullerene isomer is, the shorter 

its global β2 bar will be.

On fullerene surface, the local curvature characterizes the bond bending away from the 

plane structure required by the sp2 hybrid orbitals.28 Therefore, the relation between 

fullerene curvature and stability can be established and confirmed by using ab initio density 

functional calculations.24 However, such an analysis favors fullerenes with infinitely many 

atoms. Let us keep the assumption that for a given fullerene CN, all its isomers have the 

same surface area. We also assume that the most stable fullerene isomer CN is the one that 

has a near perfect spherical shape. Therefore, each fullerene isomer is subject to a (relative) 

total curvature energy Ec per unit area due to its accumulated deviations from a perfect 

sphere,

(24)

(25)

where Γ is the surface, µ is bending rigidity, κ1 and κ2 are the two principal curvatures, and 

κ0 = 1/R is the constant curvature of the sphere with radius R. Here, H and K are the mean 

and Gaussian curvature of the fullerene surface, respectively. Therefore, a fullerene isomer 

with a smaller sphericity will have a higher total curvature energy. Based on the above 

discussions, we establish the inverse correlation between fullerene isomer global β2 bar 

lengths and fullerene isomer total curvature energies.

Obviously, the present fullerene curvature energy (24) is a special case of the Helfrich 

energy functional for elasticity of cell membranes27

(26)

where, C0 is the spontaneous curvature, and KC and KG are the bending modulus and 

Gaussian saddle-splay modulus, respectively. The Gauss - Bonnet theorem states that for a 

compact two-dimensional Riemannian manifold without boundary, the surface integral of 

the Gaussian curvature is 2πχ, where χ is the Euler characteristic. Therefore, the curvature 

energy admits a jump whenever there is a change in topology which leads to a change in the 

Euler characteristic. A problem with this discontinuity in the curvature energy is that the 

topological change may be induced by an infinitesimal change in the geometry associated 

with just an infinitesimal physical energy, which implies that the Gaussian curvature energy 

functional is unphysical. Similarly, Hadwiger type of energy functionals, which make use of 

a linear combination of the surface area, surfaced enclosed volume, and surface integral of 

mean curvature and surface integral of Gaussian curvature,25 may be unphysical as well for 

systems involving topological changes. However, this is not a problem for differential 

geometry based multiscale models which utilize only surface area and surface enclosed 
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volume terms,8, 48–50 as we employ the Eulerian representation and the proposed 

generalized mean curvature terms but not Gaussian curvature terms. Moreover, in the 

present model for fullerene isomers, there is no topological change.

To verify our assumptions, we consider a family of isomers for fullerene C40. It has a total 

of 40 isomers. We compute the global β2 bar lengths of all isomers by Euclidean distance 

filtration and fit their values with their total curvature energies with a negative sign. Figure 

10 (right chart) shows an excellent correlation between the fullerene total curvature energies 

and our persistent homology based predictions. The correlation coefficient is 0.956, which 

indicates that the proposed persistent homology analysis of non-sphericity and our 

assumption of a constant surface area for all fullerene isomers are sound. In reality, fullerene 

isomers may not have an exactly constant surface area because some distorted bonds may 

have a longer bond length. However, the high correlation coefficient found in our persistent 

homology analysis implies that either the average bond lengths for all isomers are similar or 

the error due to non-constant surface area is offset by other errors.

To further validate our persistent homology based method for the prediction of fullerene 

total curvature energies, we consider a case with significantly more isomers, namely, 

fullerene C44, which has 89 isomers. In this study, we have again found an excellent 

correlation between the fullerene total curvature energies and our persistent homology based 

predictions as depicted in the right chart of Fig. 11. The correlation coefficient for this case 

is 0.948. In fact, we have checked more fullerene isomer systems and obtained similar 

predictions.

Finally, we explore the utility of our correlation matrix based filtration process for analysis 

of fullerene total curvature energies. In place of Euclidean distance based filtration, the 

correlation matrix based filtration is employed. To demonstrate the basic principle, Eq. (18) 

with the generalized exponential kernel in Eq. (14) is used in the filtration. We assume wij = 

1 as fullerene molecules have only carbon atoms. To understand the correlation matrix based 

filtration method, the fullerene C60 is employed again. We fixed the power κ = 2, and adjust 

the value of characteristic distance η. Figure 12 gives the calculated barcodes with η = 2 and 

η = 20. It can be seen that these barcodes share a great similarity with the Euclidean distance 

based filtration results depicted in the right chart of Figure 6. All of topological features, 

namely, two kinds of bonds in β0, the pentagonal rings and the hexagonal rings in β1, and 

also the hexagonal cavities and the central void in β2 are clearly demonstrated. However, it 

should be noticed that, unlike the distance based filtration, the matrix filtration does not 

generate linear Euclidean distance relations. However, relative correspondences within the 

structure are kept. For instances, in β2 bars, the bar length ratio between the central void part 

and the hexagonal hole part in Fig. 12 is drastically different from its counterpart in Fig. 6. 

From our previous experience in flexibility and rigidity analysis,51–53 these rescaled 

distance relations have a great potential in capturing the essential physical properties, such 

as, flexibility, rigidity, stability, and compressibility of the underlying system.

Similarly, the global β2 bar lengths obtained from the correlation matrix based filtration are 

utilized to fit with the total curvature energies of fullerene isomers. The correlation 

coefficients for the correlation distance matrix filtration are 0.959 and 0.952, respectively for 
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C40 and C44 fullerene isomers. The corresponding results are demonstrated in the right 

charts of Figs. 10 and 11, respectively. It can be seen that the correlation matrix filtration is 

able to capture the essential stability behavior of fullerene isomers. In fact, results from 

correlation matrix based filtrations are slightly better than those of Euclidean distance based 

filtrations. In correlation matrix based filtrations, the generalized exponential kernel is used 

with parameter η = 4 and κ = 2. These parameters are chosen based on our previous 

flexibility and rigidity analysis of protein molecules. Overall, best prediction is obtained 

when the characteristic distance is about 2 to 3 times of the bond length and power index κ 

is around 2 to 3. Fine tuning of the parameters for each single case may yield even better 

result. However, this aspect is beyond the scope of the present work.

5 Conclusion

Persistent homology is an efficient tool for the qualitative analysis of topological features 

that last over scales. In the present work, for the first time, persistent homology is introduced 

for the quantitative prediction of fullerene energy and stability. We briefly review the 

principal concepts and algorithms in persistent homology, including simplex, simplicial 

complex, chain, filtration, persistence, and paring algorithms. Euler characteristics analysis 

is employed to decipher the barcode representation of fullerene C20 and C60. A thorough 

understanding of fullerene barcode origins enables us to construct physical models based on 

local and/or global topological invariants and their accumulated persistent lengths. By 

means of an average accumulated bar length of the second Betti number that corresponds to 

fullerene hexagons, we are able to accurately predict the relative energies of a series of small 

fullerenes. To analyze the total curvature energies of fullerene isomers, we propose to use 

sphericity to quantify the non-spherical fullerene isomers and correlate the sphericity with 

fullerene isomer total curvature energies, which are defined as a special case of the Helfrich 

energy functional for elasticity. Topologically, the sphericity of a fullerene isomer is 

measured by its global 2nd homology bar length in the barcode, which in turn gives rise to 

the prediction of fullerene isomer total curvature energies. We demonstrate an excellent 

agreement between total curvature energies and our persistent homology predictions for the 

isomers of fullerene C4 and C44. Finally, a new filtration based on the correlation matrix of 

the flexibility and rigidity index is proposed and found to provide even more accurate 

predictions of fullerene isomer total curvature energies.
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Figure 1. 
Illustration of 0-simplex, 1-simplex, and 2-simplex in the first row. The second row is 

simple 0-cycle, 1-cycle and 2-cycle.
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Figure 2. 
Illustration of boundary operators, and chain, cycle and boundary groups in R3 • Red dots 

stand for empty sets.
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Figure 3. 
Illustration of the birth and death of a homology generator c
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Figure 4. 
Illustration of filtrations built on fullerene C60. Each point or atom in the point cloud data 

(i.e., coordinates) of the C50 is associated with a common radius r which increases 

gradually. As the value of r increases, the solid balls centered at given coordinates grow. 

These balls eventually overlap with their neighbors at certain r values. Simplices indicating 

such neighborhood information can be defined through abstract r-dependent simplicial 

complexes, e.g., alpha complexes and Rips complexes. Note that in the last chart, we have 

removed some atoms to reveal the central void.
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Figure 5. 
Correlation matrix based filtration of fullerene C60 (labels on both axes are atomic 

numbers). A correlation matrix is constructed from the FRI theory. As the filtration 

parameter increases, the Rips complex based on this matrix expands accordingly. (a) The 

correlation based matrix for fullerene C60; (b), (c) and (d) demonstrate the connectivity 

between atoms at the filtration threshold d = 0.lA, 0.3A, and 0.5A, respectively. The blue 

color entries represent the pairs already forming simplices.
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Figure 6. 
Illustration of the barcodes for fullerene C20(left chart) and C60 (right chart) filtration on 

associated Rips complexes. Each chart contains three panels corresponding to the Betti 

number sequences β0, β1 and β2, from top to bottom.
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Figure 7. 
Illustr ation of persistent homology analysis for a nanotube. (a) The generated nanotube 

structure with 10 unit layers. (b) and (c) A 3 unit layer segment extracted from the nanotube 

molecule in a. (d) Barcodes representation of the topology of the nanotub e segment.
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Figure 8. 
Comparison between the heat of formation energies computed using a quantum theory56 

(left chart) and average accumulated bar length (right chart) for fullerenes. The units for the 

heat of formation energy and average accumulated bar length are eV/atom and Å/atom, 

respectively Although the profile of average accumulated bar length of fullerenes does not 

perfectly match the fullerene energy profile, they bear a close resemblance in their basic 

characteristics.

Xia et al. Page 29

J Comput Chem. Author manuscript; available in PMC 2016 March 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 9. 
The comparison between quantum mechanical simulation results56 and persistent homology 

prediction of the heat of formation energy (eV/atom). Only local β2 bars that are due to 

hexagon structures are included in our average accumulated bar length B2. The correlation 

coefficient from the least-squares fitting is near perfect (Cc = 0.985).
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Figure 10. 
Comparison between the distance filtration (left chart) and the correlation matrix filtration 

(right chart) in fullerene C40 stability analysis. Fullerene C40 has 40 isomers. Each of them 

has an associated total curvature energy (eV). We calculate our average accumulated bar 

lengths from both distance filtration and the correlation matrix based filtration, and further 

fit them with total curvature energies. The correlation coefficients for our fitting are 0.956 

and 0.959, respectively. It should be noticed that only the central void related β2 bars (i.e., 

the long-lived bars) are considered. The exponential kernel is used in matrix filtration with 

parameter η = 4 and κ = 2.
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Figure 11. 
Further validation of our method with 89 isomers for fullerene C44. The correlation 

coefficients for distance filtration (left chart) and correlation matrix based filtration (right 

chart) are 0.948 and 0.952, respectively. In the latter method, the exponential kernel is used 

with parameter η = 4 and κ = 2.
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Figure 12. 
Illustration of the persistent barcodes generated by using correlation matrix based filtrations 

with different characteristic distances. The exponential kernel model with power κ = 2 is 

used. The characteristic distances in the left and right charts are respectively η = 2 and η = 

20.
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