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Abstract

Epithelial cells line the surfaces of the body, and are on the front lines of defense against microbial 

infection. Like many other metazoans, the nematode C. elegans lacks known professional immune 

cells and relies heavily on defense mediated by epithelial cells. New results indicate that epithelial 

defense in C. elegans can be triggered through detection of pathogen-induced perturbation of core 

physiology within host cells and through autophagic defense against intracellular and extracellular 

pathogens. Recent studies have also illuminated a diverse array of pathogenic attack strategies 

used against C. elegans. These findings are providing insight into the underpinnings of host/

pathogen interactions in a simple animal host that can inform studies of infectious diseases in 

humans.

Introduction

Epithelial cells cover the internal and external body surfaces and thus are often the first 

responders to pathogenic attack by microbes [1,2]. The significance of epithelial cells for 

immunity in humans is increasingly appreciated, and epithelial cells are now realized to be 

key players in defense against infection of the lung, skin and intestine. Furthermore, 

inappropriate activation of epithelial cell immune pathways can lead to inflammatory 

diseases, and thus understanding the immune pathways in these cells is of critical 

importance for human health. Epithelial cells, especially those of the intestine, are in regular 

contact with a wide array of microbes that include pathogenic microbes that cause disease, 

as well as innocuous or even beneficial microbial species. Therefore, epithelial cells have 

the challenge not just of how to discriminate self from non-self (a classic question in 

immunology), but also how to discriminate pathogen from non-pathogen. Canonical innate 

immune pathways triggered by pattern-recognition receptors (PRRs) are not sufficient to 

provide this distinction [3]. PRRs detect molecules associated with broad classes of 

microbes – these molecules were originally called pathogen-associated molecular patterns, 

or PAMPs, but they are now commonly called microbe-associated molecular patterns, or 
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MAMPs, in keeping with the idea that they can be found in both pathogenic and non-

pathogenic microbes [4,5] (Figure 1). Understanding how hosts distinguish pathogens from 

other microbes is a rapidly developing field within the area of infection and innate 

immunity, and is particularly relevant for epithelial cell defense [5,6].

Background on C. elegans infections and host defense

Many animal species lack professional immune cells, and yet thrive in a diverse microbial 

world by relying on defense by epithelial cells. The nematode Caenorhabditis elegans is one 

such species, and indeed nematodes are among the most numerous animals on the planet [7]. 

Many different microbial pathogens have been shown to attack and induce a defense 

response in the epithelial cells of C. elegans [8-16]. Pseudomonas aeruginosa is an 

opportunistic bacterial pathogen of humans and the most commonly studied pathogen in C. 

elegans, where it causes a lethal infection of intestinal epithelial cells [17]. In addition, 

several other bacterial, fungal and viral pathogens can infect the C. elegans intestine, and 

penetrating fungal species can infect epithelial cells of the epidermis. C. elegans has no 

known dedicated, migratory immune cells like macrophages to aid in defense against 

infection of the intestine or epidermis, and does not appear to have canonical cytokine and 

chemokine signaling pathways used to recruit those cells. However, C. elegans does use 

system-wide signaling to respond to stress and infection by upregulating defense pathways 

in epithelial cells, which is a topic that has been covered in other reviews [9,12,18-21].

C. elegans provides a powerful model system to address questions about innate immune 

pathways that are independent of classic PRR/MAMP signaling: C. elegans lacks 

components of some of the PRR pathways used by other metazoans, and it has yet to be 

shown to respond to MAMPs. In particular, C. elegans does not have an obvious NFκB 

ortholog, nor does it have Nod-like receptors (NLRs), and its single Toll-like receptor (TLR) 

does not play a substantial role in defense [14,22]. Interestingly, these signaling components 

are found in cnidaria, a clade that includes coral, jellyfish and hydra. Like C. elegans, these 

animals have outer and inner epithelial layers without known dedicated immune cells [23], 

so the presence of these immune signaling components does not correlate with the presence 

of a professional immune system. Given the evolutionary relationships among these animals, 

C. elegans most likely lost these genes during evolution, and presumably other pathways 

have been able to compensate for their role. Importantly, C. elegans does have a robust 

inducible defense system. In response to both intestinal and epidermal infection, C. elegans 

epithelial cells upregulate secreted antimicrobial peptides, detoxifying enzymes and efflux 

pumps, with distinct responses to distinct pathogens [24]. While some of this transcriptional 

response might be due to MAMP detection in C. elegans [25-27], it is clear that other 

signals from pathogens trigger a substantial part of the C. elegans transcriptional response to 

infection [28-30]. Previous studies of the inducible transcriptional response to infection have 

indicated that several signaling pathways control these responses, but one central pathway is 

a p38 MAP kinase (MAPK) pathway that includes a p38 MAPK called PMK-1 [31]. The 

PMK-1 p38 kinase cascade is an evolutionarily conserved pathway and is important for 

defense against microbial attack of both the C. elegans intestine and the epidermis. Several 

transcription factors have been shown to act downstream of PMK-1 in different contexts to 

control inducible defenses upon infection [32]. Other defense pathways operate in parallel to 
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the p38 kinase cascade, including one regulated by the bZIP transcription factor ZIP-2 [8]. 

The upstream activators of these pathways, both pathogen-derived and host-derived, are just 

now being elucidated as described below.

Mechanisms of microbial pathogenesis and host defense in C. elegans have been reviewed 

previously [8-16]. Here we describe major developments from the last two years with a 

focus on bacterial infections, but also mention infections by other microbes when relevant. 

An emerging body of data suggests that nematodes monitor disruptions in cellular 

homeostasis as a means to detect pathogen infection and mount protective host responses. 

New data implicate these signals in the activation of conserved immune pathways, including 

the p38 pathway. In addition, several studies have implicated a conserved role for epithelial 

autophagy in C. elegans host defense against a broad array of pathogens. Finally, studies of 

bacterial pathogens have yielded insights both into the strategies employed by microbes to 

establish infection and the pathogen-encoded factors that lead to C. elegans immune 

pathway activation.

Surveillance or "effector-triggered" immunity induces host defense by 

monitoring core processes perturbed by pathogens

One feature that distinguishes pathogens from other microbes is their delivery of toxins and 

other effector molecules into host cells to disable core processes and pathways that might 

otherwise aid in defense. The immune responses to these attacks have been termed 

“effector-triggered” immunity or surveillance immunity, which is a concept that has been 

pioneered in plant immunity and more recently been appreciated in animal hosts, including 

C. elegans [4,5,33] (Figure 1).

A common mode of bacterial attack is to disable the process of host mRNA translation, 

which can prevent production of anti-microbial molecules and therefore improve bacterial 

survival. An effector-triggered immune pathway activated by inhibition of translation 

elongation was discovered in C. elegans through analysis of the transcriptional response to 

P. aeruginosa infection. Previous studies indicated that P. aeruginosa pathogenicity induced 

protective transcriptional responses mediated by the p38 pathway as well as by the ZIP-2 

transcription factor [34]. More recently, it has been shown that a trigger for these pathways 

is inhibition of translation by the P. aeruginosa secreted Exotoxin A [35]. Studies by 

McEwan et al demonstrated that C. elegans detects the translation-blocking effects of this 

toxin, instead of directly detecting Exotoxin A molecular structure [36]. Furthermore, they 

showed that ZIP-2, as well as the p38 pathway and the G-protein-coupled receptor FSHR-1 

provide defense against its toxic effects. In a parallel study, Dunbar et al used an RNAi 

screen and found that translational inhibition as well as perturbation of several other core 

processes, such as mitochondrial pathways and transcription-related pathways, could trigger 

ZIP-2-mediated defense gene expression [37]. They found that host endocytosis of Exotoxin 

A appeared to block translation specifically in the intestine, which then led to a paradoxical 

increase in levels of ZIP-2 protein via an upstream open reading frame that controls ZIP-2 

expression. In mammals and flies, perturbation of translation has been shown to upregulate 

cytokine expression, demonstrating a broadly conserved link between surveillance of 

translation and immune responses [38,39]. In a related study, Melo and Ruvkun knocked 
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down genes in core processes in C. elegans and observed induction of infection response 

genes and avoidance of normally attractant food, which is a characteristic behavioral 

response to infection that allows animals to avoid pathogenic microbes [40]. They found that 

inhibition of many core processes, such as translation, ATP synthesis, proteasome function, 

in the hypodermis and/or the intestine (common sites of infection) was sufficient to induce 

avoidance, and expression of defense genes. Altogether, these three studies indicated that C. 

elegans can sense perturbations of core processes as a method to detect pathogenic attack, 

and provided insight to a specific mechanism by which blockade of mRNA translation by 

the pathogen P. aeruginosa can induce host defense gene expression (Table 1, Figure 1).

Mitochondrial function is essential for the organismal health, and there are many genera of 

bacteria found in the C. elegans natural habitat that induce mitochondria stress upon 

infection. As mentioned above, perturbation of mitochondrial pathways was able to induce 

aversive behavioral responses, as well as infection response gene expression [37,40]. Two 

new studies provide mechanistic insight about how mitochondrial surveillance pathways 

trigger this defense gene expression [41,42]. Pellegrino et al found an immune role for the 

bZIP transcription factor ATFS-1, as well as ZIP-2, in mitochondrial stress [42]. Previously, 

these authors had shown that during mitochondrial stress, ATFS-1 is prevented from 

trafficking to mitochondria, where it normally localizes, and instead moves to the nucleus 

where it induces the mitochondrial unfolded protein response [43]. More recently, these 

authors have shown that this ATFS-1 nuclear localization also occurs upon P. aeruginosa 

infection, and ATFS-1 can induce expression of anti-microbial peptides and secreted 

lysozyme as part of the innate immune response, acting together with the ZIP-2 transcription 

factor [42]. Liu et al showed that ceramide and mevalonate biosynthetic pathways are 

involved in mitochondrial surveillance responses, and ceramide appears to act upstream of 

ATFS-1. In addition, they demonstrated that certain bacterial species block the induction of 

defense gene expression triggered by mitochondrial surveillance. Thus, C. elegans uses 

ATFS-1, ZIP-2, ceramide and mevalonate surveillance pathways to detect disruption of 

mitochondrial function and induce immune responses.

Another core host system recently shown to be involved in the inducible response to 

infection in C. elegans is the ubiquitin proteasome system, which targets proteins for 

degradation. Two intracellular pathogens of C. elegans shown to infect worms in the natural 

environment are the Orsay virus and the fungal-like microsporidian pathogen Nematocida 

parisii. Surprisingly, these very distinct pathogens were found to induce very similar 

transcriptional responses in C. elegans, which were distinct from responses to other 

pathogens and were characterized by an upregulation of ubiquitin ligase components 

[44,45]. These ubiquitin ligase components provided defense against infection, and 

interestingly, their expression could also be induced by inhibition of proteasome function, 

suggesting that detection of these intracellular pathogens is related to surveillance of the 

core cellular process of proteasomal degradation [40,44].
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Upstream activators of the p38 MAPK immune pathway are diverse and 

damage-associated

In plant defense, effector-triggered immunity can detect pathogen-induced changes to host 

cells before there is overt damage, and the same may hold true in animal defense (Figure 1). 

In addition, prolonged or extensive damage can also trigger defense against infection, 

through so-called "damage-associated molecular patterns" or DAMPs [46]. DAMPs in 

mammalian immunity include a diverse range of molecules, including ATP, interleukin 1α, 

uric acid, S100 cytoplasmic proteins, the nuclear protein HMGB1 and the extracellular 

matrix molecule hyaluronan. Key insights into DAMP-mediated activation of p38 signaling 

in C. elegans have come from recent studies of fungal infection, which previously had been 

shown to trigger a G-protein signaling cascade upstream of p38 in epidermal cells [32,47]. 

These signaling events can be activated by infection with the fungus Drechmeria 

coniospora, which penetrates the C. elegans cuticle outside the epidermis, and by sterile 

wounding of the epidermis, indicating that damage to the epidermis elicits an immune 

response. Zugasti et al used RNAi screening to identify a G-protein coupled receptor called 

DCAR-1 to be responsible for activating p38 signaling in both cases [47]. Furthermore, they 

identified an endogenous ligand called HPLA, which is a tyrosine derivative generated by 

infection, and likely also by wounding. Thus, HPLA can be considered a DAMP, and 

together with DCAR-1 provide the first-described ligand/receptor pair that induce immune 

responses in C. elegans. Future studies will likely investigate the mechanism by which 

HPLA is induced, and whether a similar signaling pathway exists in mammals.

Although less is known about the upstream activators of p38 in response to bacterial 

infection in C. elegans, a recent study indicated that this pathway can be activated by an 

exogenous compound to promote resistance against infection [48]. An earlier high-

throughput screen for anti-infectives yielded several compounds that appeared to act on the 

host, instead of the pathogen [49]. Pukkila-Worley et al characterized one of these 

compounds and demonstrated that it provided protection against killing by P. aeruginosa 

infection. Although its exact molecular target is unknown, they demonstrated that this small 

molecule could activate genes that are also induced by P. aeruginosa infection and the p38 

pathway, and that its effects on pathogen resistance were partially dependent on this 

pathway. Further studies by these authors identified the conserved Mediator subunit 

MDT-15/ MED15 to play a role in compound-mediated resistance through the p38 pathway 

[50]. Given that this compound is toxic to worms, these studies suggest bacterial activation 

of the intestinal p38 pathway may be due to pathogen-induced damage or perturbation of 

core physiology. Indeed, a wide variety of bacterial-associated stimuli appear to induce the 

p38 pathway. Recent discoveries indicate that the translation-blocking Shiga toxin from 

pathogenic E. coli (which has the same mechanism of action as Exotoxin A from P. 

aeruginosa) can induce the p38 pathway [51]. Furthermore, non-pathogenic soil-associated 

bacteria have been shown to induce immune responses via p38 signaling [52]. It is still 

unclear in these contexts the exact pathogenic triggers and how they are detected by C. 

elegans.
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Autophagy mediates defense against a broad range of pathogenic 

microbes

Another form of immunity that can be triggered by damage is the cellular process of 

autophagy, or self-eating, and several recent studies in C. elegans have demonstrated a role 

for autophagy in defense against infection. Autophagy is the process of de novo membrane 

formation to engulf large, damaged cellular components for digestion and recycling. This 

process has gained attention for having a key role in defense against intracellular pathogens 

in professional immune cells as well as in epithelial cells [53]. Targeting intracellular 

pathogens for degradation via the autophagy pathway has been deemed 'xenophagy', and can 

be triggered by damage to intracellular membranes. In C. elegans, autophagy was first 

shown to have a role in defense against infection by the human bacterial pathogen 

Salmonella enterica, which is a facultative intracellular pathogen [54]. In these studies, 

Salmonella was only found intracellular in the C. elegans intestine if autophagy was 

compromised, indicating that C. elegans autophagy prevents invasion or replication within 

intestinal cells. However, a subsequent study did not confirm that inhibition of autophagy 

leads to intracellular Salmonella in the intestine, although it did show that autophagy was 

required in the intestine to promote survival upon infection [55]. Direct localization of C. 

elegans autophagy machinery was recently shown for the intracellular pathogen N. parisii, 

and autophagy played a role in controlling levels of this pathogen [44].

In addition to promoting defense against intracellular microbes, autophagy has recently been 

shown to promote defense against bacteria that are predominantly extracellular. In 

particular, Visvikis et al demonstrated that the conserved autophagy transcription factor 

TFEB-1 activated cytoprotective and anti-microbial gene expression in response to infection 

with the Gram-positive pathogen Staphylococcus aureus and promoted survival [56]. These 

authors found a similar role for TFEB-1 in response to S. aureus infections in mammalian 

cells. An unusual role for autophagy in defense was shown by Zou et al, who demonstrated 

that autophagy activation prevents necrosis, and provides defense against P. aeruginosa 

infection [57]. Interestingly, autophagy did not reduce pathogen load (i.e. increase 

resistance) in S. aureus or P. aeruginosa infections, but rather improved tolerance of 

pathogen infection [58]. Thus, these new findings indicate that autophagy promotes 

tolerance against extracellular pathogens by inducing defense gene expression and 

preventing infection-induced damage, in addition to promoting resistance by directly 

targeting intracellular pathogens for destruction (xenophagy) and lowering pathogen load.

New insights into strategies of pathogenic attack in C. elegans infections

Pathogens often rely on an extensive arsenal of virulence factors to attack their hosts, and 

they can deploy different factors under different conditions. One pathogen in particular that 

has a large number of virulence factors is P. aeruginosa, which can cause a range of 

different infections in humans. To explore the variety of virulence strategies used by P. 

aeruginosa, several pathogenesis models have been developed in C. elegans. All the studies 

mentioned above used the most common pathogenesis model for P. aeruginosa, which is the 

slow-killing model, where bacteria are grown on minimal media plates and fed to C. 

elegans. Under these conditions, killing of C. elegans requires the bacteria to be alive and 
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involves accumulation of bacteria in the intestinal lumen of C. elegans. A recently described 

genome-wide screen with this model identified 170 genes required for virulence, although it 

did not identify secretion systems or obvious individual effector molecules [59]. This study 

together with others mentioned above indicate that individual virulence factors such as 

Exotoxin A are not required for gene induction or for killing, but are sufficient to induce 

gene expression and cause damage, implying there is extensive redundancy in the toxins 

deployed by P. aeruginosa under these slow-killing conditions [36,37].

Two other models for P. aeruginosa pathogenesis have been developed in C. elegans. One 

model is the "fast-killing" model, where growth of P. aeruginosa on nutrient-rich, high 

osmolarity plates leads to rapid killing of C. elegans. This killing does not require P. 

aeruginosa to be alive during exposure, does not involve accumulation of P. aeruginosa 

cells within the intestine, and appears to be caused by diffusible toxins. Previous work had 

implicated host oxidative stress responses and bacterial-derived phenazines as key factors in 

this infection model [60], and Cezairliyan et al used a combination of mutant, biochemical 

and metabolomic studies to demonstrate that the predominant toxin in this model is 

phenazine-1-carboxylic acid [61]. A new model for P. aeruginosa pathogenicity in C. 

elegans is the "liquid-killing" format, which identified a separate set of factors important for 

pathogenicity [62]. Kirienko et al showed that iron-scavenging by P. aeruginosa-derived 

pyoverdin is a virulence strategy, and can lead to a hypoxic crisis in C. elegans. The C. 

elegans ortholog of hypoxia-inducible factor (HIF-1) promoted survival upon infection in 

this model; HIF-1 has also been shown to regulate host resistance in other infection models 

[63,64]. Given that pyoverdin and phenazines have been implicated in P. aeruginosa killing 

in mammals, further analysis of these pathogenesis strategies in medically relevant 

infections is warranted.

In addition to toxin-based killing, a visually dramatic form of pathogenic attack was 

described by Hodgkin et al, who showed how Leucobacter bacteria attack the epidermal 

surface of C. elegans and use a trapping strategy to create "worm-stars", which are structures 

of dozens of worms captured by their tails radiating outward, preventing their mobility and 

leading to their early demise [65]. These studies focused on natural epidermal pathogens and 

found that C. elegans resistance to one strain caused by changes in surface glycosylation led 

to susceptibility to a second strain, and a sub-lethal infection with the second strain induced 

resistance to the first strain. Thus, they demonstrated the trade-offs that are often found in 

host defense against microbial infection, and also identified a novel mechanism by which 

bacterial pathogens can attack their hosts.

Conclusion

Discoveries in recent years have shown how C. elegans can detect pathogens not simply 

through the identification of their physical presence, but through detecting the common 

perturbations they cause in core processes to upregulate defense. Studies have also indicated 

that host autophagy serves to increase pathogen tolerance against extracellular pathogens, as 

well as pathogen resistance against intracellular pathogens. Recent findings have also 

highlighted the diversity of pathogenic strategies that bacteria use to attack C. elegans. This 

animal host provides a powerful model for further investigating pathogen attack and 
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damage-triggered or effector-triggered immunity in epithelial cells, because it appears to be 

the foundation of defense for C. elegans.
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Highlights

• C. elegans detects infection with surveillance or "effector-triggered" immunity

• Multiple upstream inputs activate the p38 MAPK pathway

• Autophagy provides defense against intracellular and extracellular pathogens

• Pathogen attack involves toxins, as well as physical trapping of the host
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Figure 1. Model for diverse triggers of defense gene expression in response to infection
C. elegans uses effector-triggered immunity, as well as DAMP-triggered immunity, to 

upregulate defense gene expression in response to infection. MAMP-triggered immunity is 

well-described for other hosts, but has not yet been described for C. elegans.
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Table 1

Recent discoveries about microbial pathogens, their virulence factors, and the immune pathways they activate 

in C. elegans.

Infection

Virulence
Factor
/Attack

Immunity
Triggers

C. elegans innate
immune pathways References

P. aeruginosa
(Slow killing

model)

Exotoxin A Translational
inhibition

ZIP-2, PMK-1, FSHR-1
dependent pathways

[36,37,40]

unknown Mitochondrial
stress

ATFS-1, ZIP-2, and
ceramide/mevalonate

pathways

[37,40-42]

P. aeruginosa
(Liquid killing

model)

Pyoverdin (iron
scavenging)

Hypoxia HIF-1 associated
defense response

[62]

P. aeruginosa
(Fast killing

model)

Phenazine-1-
carboxylic acid

Oxidative
stress

AGE-1 PI3K pathway [60,61]

N. parisii unknown Proteasomal
inhibition

Ubiquitylation-related
pathways

[44]

D. coniospora Wounding of the
cuticle

HPLA DCAR-1 receptor
activation of PMK-1

pathway

[47]

S. aureus,
P. aeruginosa
(Slow killing

model), S.
enterica, N.

parisii

unknown unknown Autophagy-mediated
defense response

(TFEB-1 mediated for
S. aureus)

[44,56,57]
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