1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny Yd-HIN

> % NIH Public Access
éf}}‘ Author Manuscript

2 Hepst

NATIG,

O

Published in final edited form as:
Twin Res Hum Genet. 2015 February ; 18(1): 19-27. doi:10.1017/thg.2014.81.

Operating characteristics of statistical methods for detecting
gene-by- measured environment interaction in the presence of
gene-environment correlation under violations of distributional
assumptions

Carol A. Van Hullel? and Paul J. Rathouz?
Iwaisman Center, University of Wisconsin-Madison, Madison, WI, USA

2Department of Biostatistics & Medical Informatics, University of Wisconsin School of Medicine &
Public Health, Madison, Wisconsin, USA

Abstract

Accurately identifying interactions between genetic vulnerabilities and environmental factors is of
critical importance for genetic research on health and behavior. In previous work (Van Hulle et al.
2013) we explored the operating characteristics for a set of biometric (e.g., twin) models (Rathouz
et al. 2008) for testing gene-by-measured environment interaction (GxM) in the presence of gene-
by-measured environment correlation (rgp) where data followed the assumed distributional
structure. Here we explore the effects that violating distributional assumptions have on the
operating characteristics of these same models even when structural model assumptions are
correct. We simulated N=2000 replicates of n=1000 twin pairs under a number of conditions.
Non-normality was imposed on either the putative moderator or on the ultimate outcome by
ordinalizing or censoring the data. We examined the empirical type | error rates and compared
BIC values. In general, non-normality in the putative moderator had little impact on the type |
error rates or BIC comparisons. In contrast, non-normality in the outcome was often mistaken for
or masked GxM, especially when the outcome data were censored.

In the past few decades it has become increasingly clear that any inquiry into the roots of
psychopathology such as anxiety or depression, as well as other complex behaviors, requires
accounting for possible interactions and correlations between genetic vulnerabilities and
environmental factors. Historically, genetically informative models assumed that genetic and
environmental influences on a particular trait were static across the population. But growing
evidence points both to differential effects of the same environmental exposure across
genotypes (gene-by-environment interaction) and to differential environmental exposures
across genotypes (gene-by-environment correlation). Several methods have been proposed
to model these more complex relationships, particularly within the context of twin and
family studies (Eaves & Erkanli, 2003; Price & Jaffee, 2008; Purcell, 2002; Rathouz, Van
Hulle, Rodgers, Waldman, & Lahey, 2008).
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An important methodological consideration with the models proposed by ourselves and
others in this recent literature is that these are full probability, non-linear structural equations
models (SEM). As such, they are based on distributional assumptions, such as multivariate
normality of latent genetic and latent environmental factors. In practice, many phenotypes of
interest are not normally distributed. Data may be ordinal (e.g. behavior ratings of
impulsivity), skewed (e.g. symptom counts of depression) or censored (e.g. age-of-onset). In
contrast to recent work, classical twin and adoption study data analysis methods—which do
not posit any interaction effects—rely on linear SEMs. Whereas normality may be a useful
working assumption in these models, valid inferences are often based only on assumptions
about the first two moments (mean, variance and covariance) of the data. Violations of
normality have a negligible effect on parameter estimates in such models, and methods are
available to adjust standard errors for bias due to non-normality. In the presence of gene-by-
environment interactions, however, because they involve the product or square of latent
normal quantities, the manifest variables will be non-normal by construction. Alternatively,
when the latent factors are normal and do not interact, but the latent errors or measurement
errors are non-normal, the manifest variables will also be non-normal. Therefore, when the
scale of measurement of the variable(s) of interest is inherently non-normal, it is
questionable as to whether the data can distinguish between these two fundamentally
different scenarios. The issue of robustness of current GxM analysis methods to violation of
distributional assumptions is therefore critical to behavior genetic designs being used in
investigations of psychopathology, in particular where many phenotypes are measured with
highly skewed distributions (e.g. symptom counts), and requires thorough exploration before
any of these methods can be reliably used in such studies.

The goal of the current paper is to explore the existence and severity of consequences of
such violations of distributional assumptions on statistical tests and estimators. We consider
bivariate behavior genetic designs involving a measured environment M and its potential
moderating effects (GxM) on variance components impacting on a phenotype of interest P.
The models allow for correlation between M and variance components of P (rGM). The
specific question is whether, in the context of the set of models laid out in Purcell (2002)
and in Rathouz et al. (2008), the data are able to distinguish between non-normality in
manifest variables due to GxM versus that due to measurement properties of the phenotype.

In our previous work (Van Hulle, Lahey, & Rathouz, 2013), we evaluated the Type | error
rates, power, and performance of the Bayesian Information Criterion (BIC) for testing and
comparing a subset of the models proposed in Rathouz et al. (2008), equations for which are
shown in Table 1. In that paper, data were simulated under a variety of conditions both with
and without GxM interactions. To briefly summarize, we found that: (i) when comparing the
Cholesky with GxM model with the various submodels, the false positive rates consistently
fell short of the nominal Type I error rates (a =.10, .05, .01); (ii) with larger sample sizes
(N=2000),in nearly all cases the correct model had the lowest BIC value across all possible
models; (iii) with lower sample sizes (N=500), models specifying non-linear main effects
were more difficult to distinguish from models containing interaction effects. In that paper,
all simulated latent quantities and error variables were normally distributed, thus matching
the distributional assumptions of the models. For the current study, we examined Type |
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Methods

error rates and performance of the Bayesian Information Criterion (BIC) for nested and non-
nested models under similar data generating mechanisms as in VVan Hulle et al. (2013), but
where violations of normality in the measurement process were imposed on either the
moderator (M) or the phenotype (P).

Model specification and data generation

For the purposes of the current study M refers to a putative moderator and P to an outcome
of interest. We chose M rather than E to highlight that the moderator may not be strictly
environmental in nature. GxM refers to generic interaction effects that encompass
interactions between the moderator and latent additive genetic (A) or latent shared (C) or
non-shared (E) environmental influences. We refer in the same generic sense to correlations
between A, C, or E, and the moderator as rgy. Further details on notation and interpretation
are given in Van Hulle et al. (2013).

Jointly, the classical twin model and the bivariate Cholesky model, (1) and (2) in Table 1,
allow for rg)y in the form of genetic (ac), shared (cc), and non-shared (ec) environmental
influences common to M and P (denoted here by the subscript “C”). Corresponding
influences unique to P (denoted by the subscript “U”) are given by ay, ¢y, and ey in (2).
The remaining models are variations on (2) that together with (1) allow for both rgy and
GxM. Model (3) is the “Cholesky GxM” model proposed by Purcell (2002), and model (4)
is a special case of (3) proposed by Rathouz et al. (2008) that replaces the common effects
on P with direct (or “main”) effects of M on P. The remaining two are: a non-linear main
effects model that drops GxM in the unique influences on P (4*), and a model that further
drops the non-linear effect of M on P (41).

To address the aims of this study, data were simulated for M under the classical twin model
(1) and for P under models (2), (3), (4), (4*), and (41). We simulated data using code written
in Stata 12.1 (StataCorp, 2011) under the multiple specifications for each model shown in
Table 2. To introduce violations of distributional assumptions, we either censored or
ordinalized the manifest measures M or P. For censoring, scores in the bottom 30% of the
distribution were given the value of the 30t percentile (e.g. -0.6 in Figure 1) to simulate a
floor effect. For ordinalizing, the data were assigned a score from 0 to 5, with the bottom
30% assigned a score of 0, the top 2% assigned a score of 5, and the remaining data evenly
distributed between scores of 2, 3, and 4 (see Figure 1). For each DGM in Table 2, non-
normality was imposed on either M or P (but not both simultaneously) resulting in a total of
44 distinct data generating mechanisms (DGMs). Note that for DGMs where P contained
interaction effects and non-normality was imposed on M, P was generated after M was
censored or ordinalized. We wanted to approximate a situation where the underlying
mechanisms giving rise to the phenotype of interest were truly non-normal in nature.

Data were simulated such that a high gene-moderator correlation (rapn) was paired with low
environment moderator correlation (rgp) and vice versa, and a high gene-by-moderator
interaction (AxM) was paired with low environment-by-moderator interaction (ExM) and
vice versa, with the exception of DGM (4). For DGM's that included rap, high correlations
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were set at 0.5 and low correlations were set at 0.1, with the same values assigned to high
and low rgp. For DGM (3), high AxM was defined as interactions with the common (a¢)
and unique (ay) influences on P set to one half of the main effect of common (ac) and
unique (ay) genetic influences on P. Low AxM was defined as one quarter of the main
effect of common or unique genetic influences. Doing so ensured that the effect of Ay, or
Ay on P would be either absent (high AxM) or reduced by half (low AxM) when M is two
standard deviations below its mean. An analogous definition was used to specify high and
low ExM (&¢, &y). Similarly, for DGMs (4) and (4*), the quadratic main effect of M on P
(%), was set such that the effect of M on P was absent (large) or reduced by half (small)
when M was two standard deviations below its mean. Note that for simplification, shared
environment correlations and interactions with M, c¢, xc, and rq, were set to .01 where
applicable and were not considered further. All values are collected and presented in Table
2.

For each of the 44 scenarios, we simulated sample sizes of n=1000 pairs (500 each of MZ
and DZ pairs). All simulations were performed with 2000 replicates.

Data analysis

We used the structural equation modeling software Mplus 6.1 (Muthén & Muthén, 2011) to
fit the models (2), (3), (4), (4%), and (41) to each set of replicates. In our analysis, we treated
ordinal and censored data as continuous because the integration algorithm needed to
calculate the log-likelihood is not available for categorical or censored data in Mplus and
because treating the data as continuous reflects the lack of concordance between the data
generation and the modeling assumptions. We calculated the empirical Type 1 error rates for
nominal rates of 0.1, 0.05, and 0.01 for nested models. These analyses evaluate the ability of
the maximum likelihood statistical procedure to detect when non-linear (latent or manifest)
model terms are needed. GxM interactions were tested by comparing the Cholesky with
GxM model (3) to the non-linear main effects with GxM model (4), and to the non-linear
main effects only model (4*) and the classical bivariate Cholesky (2). The non-linear main
effects with GxM model (4) was compared to the non-linear main effects only model (4*).
Finally, the non-linear main effects model (4*) and the Cholesky (2) were compared to a
linear effects only model (i.e. 5% = 0). We also empirically assessed the degree to which BIC
could differentiate nested or non-nested models when neither model reflected the true DGM.
A BIC difference of 10 corresponds to a Bayesian odds of 150:1 that the model with the
more negative value is the better fitting model (Raftery, 1995). Thus, a difference of 10
should be considered “very strong” evidence in favor of the model with the more negative
value. We computed the difference in BIC for each pair of models and indicate how often
one model was chosen over the other. We interpreted BIC differences between -10 and 10 as
indicating that the models were equivocal (i.e. described the data equally well). For each
DGM, we determined the best model among all the alternatives according to lowest BIC,
allowing us to see how often the correct model was chosen and, when it was not, which
other models were chosen.
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Results

Type | error rate for comparing nested models

For each hypothesis test, when data were generated under the null model, we present the
empirical (i.e., simulated) Type | error rates for nominal rates of 0.1, 0.05, and 0.01 in
Tables 3 (ordinalized) and 4 (censored). The first column lists the alternative model, Hp,
and the second column lists the null model used to generate the data, Hg. For example, the
first row in Table 3 indicates that when data are generated under the Non-linear main effects
model (4) with large p, and M is ordinalized, the number of false positives (4.9%) is about
half the expected rate for alpha=.10 when comparing the Cholesky with GxM model (3) to
Non-linear main effects with GxM model (4). In general, when M is ordinalized the Type I
error rates, though not perfect, are close to or lower than the nominal values and in line with
the results reported in Van Hulle et al. (2013). Tests of the common GxM influences (model
(4) vs model (3), for example, were underpowered. Tests of the unique GxM influences (e.g.
model (4*) vs model (4) or the non-linear main effect (model (4*) vs model (41)) were well
calibrated. When P is ordinalized, the error rates tend to be lower than expected (in keeping
with our earlier findings) when comparing two models with interaction effects (e.g. (3) vs
(4)), However, empirical Type | error rates are higher than expected when the true model
does not contain GxM (or GxM was weak) but the alternative model does. That is, when
GxM is present, the LRT is underpowered. However, in the absence of true GxM, non-
normality in the phenotype P is mistaken for interaction effects. We found similar results
when M or P are censored (Table 5). The empirical Type | error rates are lower than
expected when M is censored but generally in keeping with our earlier findings with
normally distributed data. A notable exception occurred when comparing the Cholesky
GxM model (3) with the Cholesky model (2) when M is censored. In this case, Type | error
rates were much higher than expected. We cannot at this time fully explain this discrepancy.
When P is censored, the true model is overwhelmingly rejected in favor of a model
containing GxM in cases where DGM's had weak or no GxM effects. When 5 in model (4)
was large, the magnitude of the non-linear main effect overwhelmed the violation of
assumptions and led to good performance in the Type | error rates.

As shown in Figure 1, we imposed rather severe deviations from normality on the data. To
see if LRT improved with less severe deviations from normality we simulated data (2000
replicates) under models (2) and (4t) without GxM. We again imposed two types of non-
normality on P: censored (bottom 10% and top 5%) and ordinalized, such that distribution of
P was roughly bell-shaped with scores divided into groups of size 12%, 20%, 30%, 20%,
10%, and 8% and assigned a value from 0 to 5 (See Supplemenatary Figure 1). Type | error
rates were reduced modestly (by 2-4%) when P was ordinalized, but the empirical error rates
were still higher than expected. When we imposed a less severe censoring scheme on P, the
empirical error rates were reduced dramatically (see Supplementary Table 1) and were
generally in line with the empirical error rates reported in our paper on normally distributed
data (Van Hulle et al., 2013).
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BIC for general model comparison

The Bayesian Information Criterion (BIC) is often used to choose one best-fitting among
two or more nested or non-nested models. It imposes a greater penalty on complexity than
the likelihood ratio test. We generated data under a variety of models (2), (3), (4) and (4*),
and calculated the BIC difference for every pairwise model comparison, nested and non-
nested. For each pair of model comparisons, the percentage of replicates for which BIC
differences indicated that one model is favored over the other is given in Table 5 (ordinal
data) and Table 6 (censored data). The results largely mirror the LRT's. That is, when the
data are ordinalized the correct model (or the model that most closely approximates the
correct model) is favored over the incorrect model the majority of the time and the correct
model nearly always has the lowest BIC among the 5 alternatives, with one notable
exception. When data are generated under the Cholesky with GxM model (3), the non-linear
main effects with GxM (4) is equivocal to or preferred over the true model (3) in the
majority of cases, regardless of whether M or P was ordinalized. In many cases (38 to 95%),
model (4) has the lowest BIC among the five alternatives. When P is censored (Table 6),
models that include GxM are preferred to models that do not even when the DGM does not
include GxM, such as models (2) and (4*). For instance, when P is censored and the DGM
is the non-linear main effects model (4*), a model with GxM effects is preferred over the
true model in a majority of replicates. In fact, model (4) had the lowest BIC in 80%-100% of
replicates when the DGM was model (4*). As with ordinalized data, non-linear main effects
with GxM model (4) is consistently preferred over or equivocal to the Cholesky GxM model
(3) when data were generated under the latter. In our previous work we showed that with
smaller samples sizes, it is difficult to detect significant differences among ac, xc, and &c
and we replicated that finding here with data distributions that deviate from normality.

Discussion

Our goal was to follow-up our earlier work describing the operating characteristics of
alternative models testing for GxM by extending that work to some commonly occurring
deviations from normality. In our previous work, we showed that deviations from expected
Type | error rates were mild to moderate. In this study, we show that when data fail to meet
distributional assumptions, deviations from expected Type | error rates are unpredictable
and in some cases quite extreme.

In general, violations of normality in the moderator M have little impact on the operating
characteristics of the models. Tests of non-linear main effects vs common GxM are
somewhat underpowered, whereas tests of unique GxM or non-linear main effects are
calibrated as expected, in keeping with our earlier work. In contrast, when the ultimate
phenotype P violates assumptions of normality, GxM may be detected when it does not
exist. In addition, it is difficult to distinguish among GxM interactions that involve latent
factors that are common to the putative moderator M and outcome variable P when the data
are non-normally distributed. In cases where P was ordinalized, tests of GxM were
underpowered when the data generating model and alternative models both contained unique
GxM and/or strong non-linear main effects. The true model was rejected in favor of a model
with GxM effects more often than expected when the data generating model lacked GxM
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effects or such effects were small. These issues were exacerbated when P was censored.
Under the censoring scheme imposed here, the null model was rejected in favor of a model
containing GxM effects or non-linear main effects the vast majority of the time when the
data generating model lacked or had only weak GxM effects or non-linear main effects.

These results were generally supported by BIC comparisons. BIC differences were largely in
the expected direction when P was ordinalized. However, when P was censored, BIC tests
led to favoring models with GxM or non-linear effects over those that do not even when the
true model does not include any GxM or non-linear effects. For instance, when the data
were generated under the Cholesky with high rgy, and P was censored, the non-linear main
effects with GxM model had the lowest BIC value in 85% of replicates. Perhaps more
troubling is the failure to detect GXM when it does exist. In particular, it was difficult to
distinguish between moderation of the genetic and environmental influences common to M
and P and non-linear main effects. This was true whether M or P were ordinalized or
censored. However, when data were censored, common GxM effects were mistaken for non-
linear main effects in the majority of replicates under most conditions. Unfortunately, these
problems cannot be solved with transformation “to normality” before analysis because such
transformation may then serve to eliminate GxM should it actually exist.

This study shows that violations of normality, particularly in the phenotype of interest, result
in problems in both distinguishing non-linearity from GxM and in detecting moderation of
the common factors influencing both the moderator and the phenotype. Underlying GxM
effects themselves may lead to mild deviations from normality in the phenotype. Therefore,
researchers should interpret model fitting results with caution when the phenotypic data may
deviate from distributional assumptions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Example of distribution of simulated data after ordinalizing (left panel) or censoring (right
panel). Data were ordinalized by grouping the top 2%, the bottom 30%, and evenly dividing
the remaining scores. Data were censored by replacing scores in the bottom 30% with the

value of the 30t percentile.

Note: For left panel Mean = 1.8, SD = 1.6, Skew = 0.2, Kurtosis = -1.3; for right panel Mean

=0.4,SD = 1.2, Skew = 1.6, Kurtosis = 3.2.
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