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Abstract

Accurately identifying interactions between genetic vulnerabilities and environmental factors is of 

critical importance for genetic research on health and behavior. In previous work (Van Hulle et al. 

2013) we explored the operating characteristics for a set of biometric (e.g., twin) models (Rathouz 

et al. 2008) for testing gene-by-measured environment interaction (G×M) in the presence of gene-

by-measured environment correlation (rGM) where data followed the assumed distributional 

structure. Here we explore the effects that violating distributional assumptions have on the 

operating characteristics of these same models even when structural model assumptions are 

correct. We simulated N=2000 replicates of n=1000 twin pairs under a number of conditions. 

Non-normality was imposed on either the putative moderator or on the ultimate outcome by 

ordinalizing or censoring the data. We examined the empirical type I error rates and compared 

BIC values. In general, non-normality in the putative moderator had little impact on the type I 

error rates or BIC comparisons. In contrast, non-normality in the outcome was often mistaken for 

or masked G×M, especially when the outcome data were censored.

In the past few decades it has become increasingly clear that any inquiry into the roots of 

psychopathology such as anxiety or depression, as well as other complex behaviors, requires 

accounting for possible interactions and correlations between genetic vulnerabilities and 

environmental factors. Historically, genetically informative models assumed that genetic and 

environmental influences on a particular trait were static across the population. But growing 

evidence points both to differential effects of the same environmental exposure across 

genotypes (gene-by-environment interaction) and to differential environmental exposures 

across genotypes (gene-by-environment correlation). Several methods have been proposed 

to model these more complex relationships, particularly within the context of twin and 

family studies (Eaves & Erkanli, 2003; Price & Jaffee, 2008; Purcell, 2002; Rathouz, Van 

Hulle, Rodgers, Waldman, & Lahey, 2008).
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An important methodological consideration with the models proposed by ourselves and 

others in this recent literature is that these are full probability, non-linear structural equations 

models (SEM). As such, they are based on distributional assumptions, such as multivariate 

normality of latent genetic and latent environmental factors. In practice, many phenotypes of 

interest are not normally distributed. Data may be ordinal (e.g. behavior ratings of 

impulsivity), skewed (e.g. symptom counts of depression) or censored (e.g. age-of-onset). In 

contrast to recent work, classical twin and adoption study data analysis methods—which do 

not posit any interaction effects—rely on linear SEMs. Whereas normality may be a useful 

working assumption in these models, valid inferences are often based only on assumptions 

about the first two moments (mean, variance and covariance) of the data. Violations of 

normality have a negligible effect on parameter estimates in such models, and methods are 

available to adjust standard errors for bias due to non-normality. In the presence of gene-by-

environment interactions, however, because they involve the product or square of latent 

normal quantities, the manifest variables will be non-normal by construction. Alternatively, 

when the latent factors are normal and do not interact, but the latent errors or measurement 

errors are non-normal, the manifest variables will also be non-normal. Therefore, when the 

scale of measurement of the variable(s) of interest is inherently non-normal, it is 

questionable as to whether the data can distinguish between these two fundamentally 

different scenarios. The issue of robustness of current G×M analysis methods to violation of 

distributional assumptions is therefore critical to behavior genetic designs being used in 

investigations of psychopathology, in particular where many phenotypes are measured with 

highly skewed distributions (e.g. symptom counts), and requires thorough exploration before 

any of these methods can be reliably used in such studies.

The goal of the current paper is to explore the existence and severity of consequences of 

such violations of distributional assumptions on statistical tests and estimators. We consider 

bivariate behavior genetic designs involving a measured environment M and its potential 

moderating effects (G×M) on variance components impacting on a phenotype of interest P. 

The models allow for correlation between M and variance components of P (rGM). The 

specific question is whether, in the context of the set of models laid out in Purcell (2002) 

and in Rathouz et al. (2008), the data are able to distinguish between non-normality in 

manifest variables due to G×M versus that due to measurement properties of the phenotype.

In our previous work (Van Hulle, Lahey, & Rathouz, 2013), we evaluated the Type I error 

rates, power, and performance of the Bayesian Information Criterion (BIC) for testing and 

comparing a subset of the models proposed in Rathouz et al. (2008), equations for which are 

shown in Table 1. In that paper, data were simulated under a variety of conditions both with 

and without G×M interactions. To briefly summarize, we found that: (i) when comparing the 

Cholesky with G×M model with the various submodels, the false positive rates consistently 

fell short of the nominal Type I error rates (α =.10, .05, .01); (ii) with larger sample sizes 

(N=2000),in nearly all cases the correct model had the lowest BIC value across all possible 

models; (iii) with lower sample sizes (N=500), models specifying non-linear main effects 

were more difficult to distinguish from models containing interaction effects. In that paper, 

all simulated latent quantities and error variables were normally distributed, thus matching 

the distributional assumptions of the models. For the current study, we examined Type I 
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error rates and performance of the Bayesian Information Criterion (BIC) for nested and non-

nested models under similar data generating mechanisms as in Van Hulle et al. (2013), but 

where violations of normality in the measurement process were imposed on either the 

moderator (M) or the phenotype (P).

Methods

Model specification and data generation

For the purposes of the current study M refers to a putative moderator and P to an outcome 

of interest. We chose M rather than E to highlight that the moderator may not be strictly 

environmental in nature. G×M refers to generic interaction effects that encompass 

interactions between the moderator and latent additive genetic (A) or latent shared (C) or 

non-shared (E) environmental influences. We refer in the same generic sense to correlations 

between A, C, or E, and the moderator as rGM. Further details on notation and interpretation 

are given in Van Hulle et al. (2013).

Jointly, the classical twin model and the bivariate Cholesky model, (1) and (2) in Table 1, 

allow for rGM in the form of genetic (aC), shared (cC), and non-shared (eC) environmental 

influences common to M and P (denoted here by the subscript “C”). Corresponding 

influences unique to P (denoted by the subscript “U”) are given by aU, cU, and eU in (2). 

The remaining models are variations on (2) that together with (1) allow for both rGM and 

G×M. Model (3) is the “Cholesky G×M” model proposed by Purcell (2002), and model (4) 

is a special case of (3) proposed by Rathouz et al. (2008) that replaces the common effects 

on P with direct (or “main”) effects of M on P. The remaining two are: a non-linear main 

effects model that drops G×M in the unique influences on P (4*), and a model that further 

drops the non-linear effect of M on P (4†).

To address the aims of this study, data were simulated for M under the classical twin model 

(1) and for P under models (2), (3), (4), (4*), and (4†). We simulated data using code written 

in Stata 12.1 (StataCorp, 2011) under the multiple specifications for each model shown in 

Table 2. To introduce violations of distributional assumptions, we either censored or 

ordinalized the manifest measures M or P. For censoring, scores in the bottom 30% of the 

distribution were given the value of the 30th percentile (e.g. -0.6 in Figure 1) to simulate a 

floor effect. For ordinalizing, the data were assigned a score from 0 to 5, with the bottom 

30% assigned a score of 0, the top 2% assigned a score of 5, and the remaining data evenly 

distributed between scores of 2, 3, and 4 (see Figure 1). For each DGM in Table 2, non-

normality was imposed on either M or P (but not both simultaneously) resulting in a total of 

44 distinct data generating mechanisms (DGMs). Note that for DGMs where P contained 

interaction effects and non-normality was imposed on M, P was generated after M was 

censored or ordinalized. We wanted to approximate a situation where the underlying 

mechanisms giving rise to the phenotype of interest were truly non-normal in nature.

Data were simulated such that a high gene-moderator correlation (rAM) was paired with low 

environment moderator correlation (rEM) and vice versa, and a high gene-by-moderator 

interaction (A×M) was paired with low environment-by-moderator interaction (E×M) and 

vice versa, with the exception of DGM (4). For DGM's that included rAM, high correlations 
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were set at 0.5 and low correlations were set at 0.1, with the same values assigned to high 

and low rEM. For DGM (3), high A×M was defined as interactions with the common (αC) 

and unique (αU) influences on P set to one half of the main effect of common (aC) and 

unique (aU) genetic influences on P. Low A×M was defined as one quarter of the main 

effect of common or unique genetic influences. Doing so ensured that the effect of AM or 

AU on P would be either absent (high A×M) or reduced by half (low A×M) when M is two 

standard deviations below its mean. An analogous definition was used to specify high and 

low E×M (εC, εU). Similarly, for DGMs (4) and (4*), the quadratic main effect of M on P 

(β2), was set such that the effect of M on P was absent (large) or reduced by half (small) 

when M was two standard deviations below its mean. Note that for simplification, shared 

environment correlations and interactions with M, cC, κC, and κU, were set to .01 where 

applicable and were not considered further. All values are collected and presented in Table 

2.

For each of the 44 scenarios, we simulated sample sizes of n=1000 pairs (500 each of MZ 

and DZ pairs). All simulations were performed with 2000 replicates.

Data analysis

We used the structural equation modeling software Mplus 6.1 (Muthén & Muthén, 2011) to 

fit the models (2), (3), (4), (4*), and (4†) to each set of replicates. In our analysis, we treated 

ordinal and censored data as continuous because the integration algorithm needed to 

calculate the log-likelihood is not available for categorical or censored data in Mplus and 

because treating the data as continuous reflects the lack of concordance between the data 

generation and the modeling assumptions. We calculated the empirical Type 1 error rates for 

nominal rates of 0.1, 0.05, and 0.01 for nested models. These analyses evaluate the ability of 

the maximum likelihood statistical procedure to detect when non-linear (latent or manifest) 

model terms are needed. G×M interactions were tested by comparing the Cholesky with 

G×M model (3) to the non-linear main effects with G×M model (4), and to the non-linear 

main effects only model (4*) and the classical bivariate Cholesky (2). The non-linear main 

effects with G×M model (4) was compared to the non-linear main effects only model (4*). 

Finally, the non-linear main effects model (4*) and the Cholesky (2) were compared to a 

linear effects only model (i.e. β2 = 0). We also empirically assessed the degree to which BIC 

could differentiate nested or non-nested models when neither model reflected the true DGM. 

A BIC difference of 10 corresponds to a Bayesian odds of 150:1 that the model with the 

more negative value is the better fitting model (Raftery, 1995). Thus, a difference of 10 

should be considered “very strong” evidence in favor of the model with the more negative 

value. We computed the difference in BIC for each pair of models and indicate how often 

one model was chosen over the other. We interpreted BIC differences between -10 and 10 as 

indicating that the models were equivocal (i.e. described the data equally well). For each 

DGM, we determined the best model among all the alternatives according to lowest BIC, 

allowing us to see how often the correct model was chosen and, when it was not, which 

other models were chosen.
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Results

Type I error rate for comparing nested models

For each hypothesis test, when data were generated under the null model, we present the 

empirical (i.e., simulated) Type I error rates for nominal rates of 0.1, 0.05, and 0.01 in 

Tables 3 (ordinalized) and 4 (censored). The first column lists the alternative model, HA, 

and the second column lists the null model used to generate the data, H0. For example, the 

first row in Table 3 indicates that when data are generated under the Non-linear main effects 

model (4) with large β2 and M is ordinalized, the number of false positives (4.9%) is about 

half the expected rate for alpha=.10 when comparing the Cholesky with G×M model (3) to 

Non-linear main effects with G×M model (4). In general, when M is ordinalized the Type I 

error rates, though not perfect, are close to or lower than the nominal values and in line with 

the results reported in Van Hulle et al. (2013). Tests of the common G×M influences (model 

(4) vs model (3), for example, were underpowered. Tests of the unique G×M influences (e.g. 

model (4*) vs model (4) or the non-linear main effect (model (4*) vs model (4†)) were well 

calibrated. When P is ordinalized, the error rates tend to be lower than expected (in keeping 

with our earlier findings) when comparing two models with interaction effects (e.g. (3) vs 

(4)), However, empirical Type I error rates are higher than expected when the true model 

does not contain G×M (or G×M was weak) but the alternative model does. That is, when 

G×M is present, the LRT is underpowered. However, in the absence of true G×M, non-

normality in the phenotype P is mistaken for interaction effects. We found similar results 

when M or P are censored (Table 5). The empirical Type I error rates are lower than 

expected when M is censored but generally in keeping with our earlier findings with 

normally distributed data. A notable exception occurred when comparing the Cholesky 

G×M model (3) with the Cholesky model (2) when M is censored. In this case, Type I error 

rates were much higher than expected. We cannot at this time fully explain this discrepancy. 

When P is censored, the true model is overwhelmingly rejected in favor of a model 

containing G×M in cases where DGM's had weak or no G×M effects. When β2 in model (4) 

was large, the magnitude of the non-linear main effect overwhelmed the violation of 

assumptions and led to good performance in the Type I error rates.

As shown in Figure 1, we imposed rather severe deviations from normality on the data. To 

see if LRT improved with less severe deviations from normality we simulated data (2000 

replicates) under models (2) and (4†) without G×M. We again imposed two types of non-

normality on P: censored (bottom 10% and top 5%) and ordinalized, such that distribution of 

P was roughly bell-shaped with scores divided into groups of size 12%, 20%, 30%, 20%, 

10%, and 8% and assigned a value from 0 to 5 (See Supplemenatary Figure 1). Type I error 

rates were reduced modestly (by 2-4%) when P was ordinalized, but the empirical error rates 

were still higher than expected. When we imposed a less severe censoring scheme on P, the 

empirical error rates were reduced dramatically (see Supplementary Table 1) and were 

generally in line with the empirical error rates reported in our paper on normally distributed 

data (Van Hulle et al., 2013).
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BIC for general model comparison

The Bayesian Information Criterion (BIC) is often used to choose one best-fitting among 

two or more nested or non-nested models. It imposes a greater penalty on complexity than 

the likelihood ratio test. We generated data under a variety of models (2), (3), (4) and (4*), 

and calculated the BIC difference for every pairwise model comparison, nested and non-

nested. For each pair of model comparisons, the percentage of replicates for which BIC 

differences indicated that one model is favored over the other is given in Table 5 (ordinal 

data) and Table 6 (censored data). The results largely mirror the LRT's. That is, when the 

data are ordinalized the correct model (or the model that most closely approximates the 

correct model) is favored over the incorrect model the majority of the time and the correct 

model nearly always has the lowest BIC among the 5 alternatives, with one notable 

exception. When data are generated under the Cholesky with G×M model (3), the non-linear 

main effects with G×M (4) is equivocal to or preferred over the true model (3) in the 

majority of cases, regardless of whether M or P was ordinalized. In many cases (38 to 95%), 

model (4) has the lowest BIC among the five alternatives. When P is censored (Table 6), 

models that include G×M are preferred to models that do not even when the DGM does not 

include G×M, such as models (2) and (4*). For instance, when P is censored and the DGM 

is the non-linear main effects model (4*), a model with G×M effects is preferred over the 

true model in a majority of replicates. In fact, model (4) had the lowest BIC in 80%-100% of 

replicates when the DGM was model (4*). As with ordinalized data, non-linear main effects 

with G×M model (4) is consistently preferred over or equivocal to the Cholesky G×M model 

(3) when data were generated under the latter. In our previous work we showed that with 

smaller samples sizes, it is difficult to detect significant differences among αC, κC, and εC 

and we replicated that finding here with data distributions that deviate from normality.

Discussion

Our goal was to follow-up our earlier work describing the operating characteristics of 

alternative models testing for G×M by extending that work to some commonly occurring 

deviations from normality. In our previous work, we showed that deviations from expected 

Type I error rates were mild to moderate. In this study, we show that when data fail to meet 

distributional assumptions, deviations from expected Type I error rates are unpredictable 

and in some cases quite extreme.

In general, violations of normality in the moderator M have little impact on the operating 

characteristics of the models. Tests of non-linear main effects vs common G×M are 

somewhat underpowered, whereas tests of unique G×M or non-linear main effects are 

calibrated as expected, in keeping with our earlier work. In contrast, when the ultimate 

phenotype P violates assumptions of normality, G×M may be detected when it does not 

exist. In addition, it is difficult to distinguish among G×M interactions that involve latent 

factors that are common to the putative moderator M and outcome variable P when the data 

are non-normally distributed. In cases where P was ordinalized, tests of G×M were 

underpowered when the data generating model and alternative models both contained unique 

G×M and/or strong non-linear main effects. The true model was rejected in favor of a model 

with G×M effects more often than expected when the data generating model lacked G×M 
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effects or such effects were small. These issues were exacerbated when P was censored. 

Under the censoring scheme imposed here, the null model was rejected in favor of a model 

containing G×M effects or non-linear main effects the vast majority of the time when the 

data generating model lacked or had only weak G×M effects or non-linear main effects.

These results were generally supported by BIC comparisons. BIC differences were largely in 

the expected direction when P was ordinalized. However, when P was censored, BIC tests 

led to favoring models with G×M or non-linear effects over those that do not even when the 

true model does not include any G×M or non-linear effects. For instance, when the data 

were generated under the Cholesky with high rGM, and P was censored, the non-linear main 

effects with G×M model had the lowest BIC value in 85% of replicates. Perhaps more 

troubling is the failure to detect G×M when it does exist. In particular, it was difficult to 

distinguish between moderation of the genetic and environmental influences common to M 

and P and non-linear main effects. This was true whether M or P were ordinalized or 

censored. However, when data were censored, common G×M effects were mistaken for non-

linear main effects in the majority of replicates under most conditions. Unfortunately, these 

problems cannot be solved with transformation “to normality” before analysis because such 

transformation may then serve to eliminate G×M should it actually exist.

This study shows that violations of normality, particularly in the phenotype of interest, result 

in problems in both distinguishing non-linearity from G×M and in detecting moderation of 

the common factors influencing both the moderator and the phenotype. Underlying G×M 

effects themselves may lead to mild deviations from normality in the phenotype. Therefore, 

researchers should interpret model fitting results with caution when the phenotypic data may 

deviate from distributional assumptions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example of distribution of simulated data after ordinalizing (left panel) or censoring (right 

panel). Data were ordinalized by grouping the top 2%, the bottom 30%, and evenly dividing 

the remaining scores. Data were censored by replacing scores in the bottom 30% with the 

value of the 30th percentile.

Note: For left panel Mean = 1.8, SD = 1.6, Skew = 0.2, Kurtosis = -1.3; for right panel Mean 

= 0.4, SD = 1.2, Skew = 1.6, Kurtosis = 3.2.
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