Skip to main content
. Author manuscript; available in PMC: 2015 Aug 1.
Published in final edited form as: Twin Res Hum Genet. 2015 Jan 13;18(1):19–27. doi: 10.1017/thg.2014.81

Table 1.

Bivariate variance components models for latent component-by-measured environment (G×M) interaction.

Model Equation
Classical ACE modela
M=μM+aMAM+cMCM+eMEM (1)
Bivariate cholesky
P=μP+aCAM+cCCM+eCEM+aUAU+cUCU+eUEU (2)
Bivariate cholesky with G×M
P=μP+(aC+αCM)AM+(cC+κCM)CM+(eC+ɛCM)EM+(aU+αUM)AU+(cU+κUM)CU+(eU+ɛUM)EU. (3)
Nonlinear main effects model with G×M
P=μP+β1M+β2M2+(aU+αUM)AU+(cU+κUM)CU+(eU+ɛUM)EU. (4)
Nonlinear main effects
P=μP+β1M+β2M2+aUAU+cUCU+eUEU. (4*)
Linear main effects only
P=μP+β1M+aUAU+cUCU+eUEU. (4†)
a

shown here for the putative moderator.

Note: P refers to a phenotype of interest, M refers to a putative moderator, a, c, and e refer to additive genetic, shared environment, and non-shared environment influences respectively, and μ is the mean. A, C, and E are standard normal latent variables. The subscript “C” refers to factors that affect both M and P, and the subscript “U” refers to factors that are unique to P.