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Differential Role of CCR2 in the Dynamics of
Microglia and Perivascular Macrophages

During Prion Disease

Diego G�omez-Nicola, Sjoerd T. T. Schetters, and V. Hugh Perry

The expansion of the microglial population is one of the hallmarks of numerous brain disorders. The addition of circulating progenitors
to the pool of brain macrophages can contribute to the progression of brain disease and needs to be precisely defined to better
understand the evolution of the glial and inflammatory reactions in the brain. We have analyzed the degree of infiltration/recruitment
of circulating monocytes to the microglial pool, in a prion disease model of chronic neurodegeneration. Our results indicate a minimal/
absent level of CCR2-dependent recruitment of circulating monocytes, local proliferation of microglia is the main driving force main-
taining the amplification of the population. A deficiency in CCR2, and thus the absence of recruitment of circulating monocytes, does
not impact microglial dynamics, the inflammatory profile or the temporal behavioral course of prion disease. However, the lack of
CCR2 has unexpected effects including the failure to recruit perivascular macrophages in diseased but not healthy CNS and a small
reduction in microglia proliferation. These data define the composition of the CNS-resident macrophage populations in prion disease
and will help to understand the dynamics of the CNS innate immune response during chronic neurodegeneration.
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Introduction

The determination of the relative contribution of local pro-

liferation of microglial cells vs. the infiltration of bone-

marrow derived progenitors during CNS pathology is a mat-

ter of intense debate. The recruitment of circulating progeni-

tors or monocytes has been evidenced in models of

neurodegeneration (Prinz and Mildner, 2011) highlighting

the different roles of these cells and resident microglia in, for

example, regulating amyloid [(Ab) clearance in model of Alz-

heimer’s disease (AD)] (Simard et al., 2006). However, the

current trend supports in situ microglial proliferation as the

major mechanism regulating microglial turnover, with little or

no contribution of circulating progenitors (Gomez-Nicola

et al., 2013; Lawson et al., 1992; Mildner et al., 2011). Cir-

culating Ly6ChiCCR21 monocytes are able to infiltrate the

brain and influence pathology under certain conditions (brain

preconditioning; Mildner et al., 2007, 2011). CCR22/2 mice

have a greatly decreased Ly6ChiCCR21 monocyte population

and recruitment to the CNS parenchyma is CCR2-dependent

making them a valuable model in which to study the role of

recruited monocytes in chronic neurodegeneration (Mildner

et al., 2007). Previous studies using CCR22/2 mice reported

decreased survival and increased Ab load in APP or APP/PS1

transgenic mice and, to some extent, a reduction of the

microglial numbers in the brain (El Khoury et al., 2007;

Naert and Rivest, 2011). More recently, the increase in Ab
deposition was correlated with a defect in perivascular macro-

phages, rather than an impact over the microglial population

(Mildner et al., 2011). However, it is unclear how the popu-

lation of CNS-resident macrophages may be modulated in

the context of other models of neurodegeneration, such as

prion disease, where a massive expansion of the microglial

population accounts for a significant pathological component

of the disease (Gomez-Nicola et al., 2013).

Experimental models of prion disease are tractable labo-

ratory models in which to study protein misfolding,

View this article online at wileyonlinelibrary.com. DOI: 10.1002/glia.22660

Published online March 19, 2014 in Wiley Online Library (wileyonlinelibrary.com). Received Jan 8, 2014, Accepted for publication Mar 4, 2014.

Address correspondence to Diego G�omez-Nicola, Ph.D., Centre for Biological Sciences, University of Southampton, South Lab&Path Block, Mail Point 840, LD80C,

Southampton General Hospital, Tremona Road, SO16 6YD, Southampton, United Kingdom. E-mail: d.gomez-nicola@soton.ac.uk

From the Centre for Biological Sciences, University of Southampton, United Kingdom.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited.

VC 2014 The Authors. Glia Published by Wiley Periodicals, Inc. 1041

mailto:nicola@soton.ac.uk


progressive neuronal degeneration, synaptopathy, and the

characteristic glial inflammatory response common to several

neurodegenerative diseases (Ransohoff and Perry, 2009). In

prion disease, a 10-fold expansion of the microglial popula-

tion is observed, associated with the local proliferation of resi-

dent microglia driven through the CSF1R pathway (Gomez-

Nicola et al., 2013). Abrogating microglial proliferation by

selective targeting of the CSF1R activation has a protective

effect and delays the progression of the clinical symptoms of

the disease (Gomez-Nicola et al., 2013). Although CCR2

deficiency has been shown not to affect the survival of prion

diseased mice (Tamguney et al., 2008), some studies suggest a

contribution from bone-marrow derived cells to the micro-

glial population (Priller et al., 2006) although this latter study

was confounded by the effects of brain irradiation. Therefore,

the degree of infiltration of circulating progenitors, even if

small, needs to be evaluated in order to better understand the

composition of the macrophage populations of the brain in

progressive neurodegeneration.

We have studied the potential contribution of circulat-

ing monocytes or progenitors to the pool of macrophages/

microglia in prion disease, using tracing techniques and inves-

tigated the role of CCR2 in the cell populations’ dynamics.

We provide evidence for a minimal/absent recruitment of cir-

culating progenitors to the brain parenchyma, and report on

the effects of CCR2 over the control of microglial and peri-

vascular macrophage proliferation during the neurodegenera-

tive process.

Materials and Methods

Experimental Model of Prion Disease
Female C57BL/6J (Harlan, Bicester, UK), c-fms-EGFP (Sasmono

et al., 2003; macgreen), and C57BL/6J-CCR22/2 mice (Menzies

et al., 2012) were bred and maintained in local facilities. Mice

expressing EGFP under the promoter of c-fms (CSF1R) are charac-

terized by the expression of green fluorescence in microglial cells.

Mice were housed in groups of 4–10, under a 12-h light/12-h dark

cycle at 21�C, with food and water ad libitum. Prion disease was

induced under anesthesia with a ketamine/rompun mixture (85 and

13 mg/kg, respectively), and injection of 1 lL of either ME7-

derived (ME7-animals; 10% w/v) or normal brain homogenate

(NBH-animals), injected stereotaxically and bilaterally in the brain

at the coordinates from bregma: anteroposterior, 22.0 mm; lateral,

21.7 mm; depth, 1.6 mm. When required, mice were given an

intraperitoneal (i.p.) injection of BrdU (Sigma-Aldrich; 7.5 mg/mL,

0.1 mL/10 g weight in sterile saline), on the 2 days before the end

of the experiment. All procedures were performed in accordance

with UK Home Office licensing.

Tracing of Circulating Cells with CFDA
A stock solution of CFDA (VybrantVR CFDA SE Cell Tracer Kit,

Molecular Probes) was prepared by dissolving 0.5 mg CFDA in 90

lL of dimethyl sulfoxide. A labeling solution (2% CFDA in sterile

saline) was then prepared and after thorough mixing, injected (10

mL/g body weight) over a 5-min period via the tail vein of restrained

conscious NBH (control) and ME7 (prion) mice, at 12 weeks post-

induction. Similar results were obtained by injecting 100 mL intra-

splenically after abdominal surgery, as previously reported (Bech-

mann et al., 2005). The animals were sacrificed at 48 h after the

injection, to examine cell migration to the brain parenchyma.

Behavioral Tests
CCR2-deficient (CCR22/2) or wild-type (WT) mice treated with

NBH or ME7 (n 5 6/group), were tested weekly on behavioral tasks

from the 13th week post-injection, previously demonstrated to detect

the onset of behavioral dysfunction (Guenther et al., 2001): open-

field locomotor activity, burrowing activity, and motor performance

on an inverted screen were assessed.

Open-Field Locomotor Activity
The open-field tests were carried out using activity monitoring soft-

ware (Med Associated). The mice were placed in individual cages of

27 3 27 3 0.3 cm for a period of 3 min, to further analyze the

total distance travelled (cm) and the number of ambulatory counts,

using the average speed as an internal control of the mouse motor

abilities, during the test period (3 min).

Burrowing
Plastic cylinders, 20 cm long and 6.8 cm in diameter were filled

with 190 g of normal diet food pellets and placed in individual

mouse cages. Mice were placed individually in the cages overnight,

weighting the remaining pellets at the end of the session, and calcu-

lating the amount displaced (“burrowed”). The mice were then

returned to their home cage.

Inverted Screen
The inverted screen is a 43-cm2 of wire mesh consisting of 12 mm2

of 1 mm diameter wire, surrounded by a 4-cm wooden bead to pre-

vent the mouse from escaping the screen. Each mouse was placed in

the center of the square and the screen inverted over 2 s, with the

head of the mouse declining first. The screen was held steadily 20–

30 cm above a padded surface. The time at which the mouse fell off

was noted, or the mouse was removed when reaching the maximum

time of the assay (120 s; Guenther et al., 2001).

Body Weight and Late-Stage Clinical Signs of
Disease
Body weights of all mice were monitored on a weekly basis from 8

weeks post-injection. Terminal disease was defined as a humane end-

point of a loss of �15% body weight and/or the development of

severe clinical signs; at this point animals were sacrificed.

Immunohistochemistry
Coronal hippocampal sections were cut from paraformaldehyde-

fixed, frozen, or fresh brains. Mice perfusion, tissue processing and

immunohistochemical analysis was performed as previously described

(Gomez-Nicola et al., 2008, 2013), using the following primary

antibodies: goat anti-Iba1 (Wako), rat anti-CD11b (ABD Serotec),
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chicken anti-GFP (Abcam), mouse anti-GFAP (Millipore), rat anti-

CD34 (Abcam), rat anti-CD34 (BD Biosciences), rat anti-Ly6c

(ABD Serotec), rabbit anti-laminin (Sigma-Aldrich), mouse anti-

BrdU (DSHB), rat anti-BrdU (Santa Cruz Biotechnologies), rabbit

anti-PU.1 (Cell Signaling), rabbit anti-CCR2 (Abcam), rat anti-

CD206 (Mannose receptor, AbD Serotec), and rat anti-MHCII

(EBioscience). Following primary antibody incubation, the sections

were washed and incubated with the appropriate biotinylated sec-

ondary antibody (Vector Labs), and/or with the appropriate Alexa

405, 488, or 568 conjugated secondary antibody or streptavidin

(Molecular Probes). For light microscopy, the sections were visual-

ized using diaminobenzidine (DAB) precipitation, in a Leica CTR

5000 microscope, coupled to a Leica DFC300FX microscope cam-

era. When required, the DAB signal was enhanced with 0.05%

nickel ammonium sulfate, producing a black precipitate. After

immunofluorescence labeling, nuclei were visualized by DAPI stain-

ing and the sections were mounted with Mowiol/DABCO (Sigma-

Aldrich) mixture. The sections were visualized on a Leica TCS-SP5

confocal system, coupled to a Leica CTR6500 microscope.

The general immunohistochemistry protocol was modified for

the detection of BrdU, adding a DNA denaturation step with 2N

HCl (30 min, 37�C), as previously described (Gomez-Nicola et al.,

2011, 2013).

Quantification and Image Analysis
The quantification of antigen positive cells (i.e., Iba11) or antigen

positive area (i.e., GFAP) was performed after DAB immunohisto-

chemistry (n 5 4 fields/mouse, n 5 4–6 mice/group), as previously

described (Gomez-Nicola et al., 2010, 2013). Data were represented

as number of positive cells/mm2. All quantifications were performed

with the help of the ImageJ image analysis software.

Analysis of Gene Expression by RT-PCR
CCR2-deficient (CCR22/2) or WT mice treated with NBH or

ME7 (n 5 4–6/group) were processed to obtain samples from the

hippocampus or the thalamus by dissection under a microscope,

after intracardiac perfusion with heparinized 0.9% saline. RNA was

extracted using the RNAqueousVR -Micro Kit (Life Technologies),

quantified using Nanodrop (Thermo Scientific), to be retrotran-

scribed using the iScript cDNA Synthesis Kit (Bio-Rad), following

manufacturer’s instructions, after checking its integrity by electropho-

resis in a 2% agarose gel. cDNA libraries were analyzed by qPCR

using the iTaq Universal SYBR Green supermix (Bio-Rad) and the

following custom designed gene-specific primers (Sigma-Aldrich):

csf1 (NM_007778.4; FW, agtattgccaaggaggtgtcag, RV, atctggcatga

agtctccattt), il34 (NM_001135100.1; FW, ctttgggaaacgagaatttggaga,

RV, gcaatcctgtagttgatggggaag), csf1r (NM_001037859.2; FW, gcag

taccaccatccacttgta, RV, gtgagacactgtccttcagtgc), pu.1 (NM_011355.1;

FW, cagaagggcaaccgcaagaa, RV, gccgctgaactggtaggtga), c/ebpa

(NM_007678.3; FW, agcttacaacaggccaggtttc, RV, cggctggcgacatacag

tac), runx1 (NM_001111021; FW, caggcaggacgaatcacact, RV, ctcgtg

ctggcatctctcat), irf8 (NM_008320; FW, cggggctgatctgggaaaat, RV,

cacagcgtaacctcgtcttc), cd34 (NM_133654.3; FW, gccctacaggagaaaggct

gggt, RV, gcccctcgggtcacattggc), c-kit (NM_021099.3; FW, cgtcttccg

gcacaacggca, RV, tgagcagcggcgtgaacagag), sca1 (NM_009124.6; FW,

cccggggtggccgtgatac, RV, agctggctggtccgctcagg), ccl2 (NM_011333.3;

FW, ttaaaaacctggatcggaaccaa, RV, gcattagcttcagatttacgggt), ccr2

(NM_009915; FW, aggagccatacctgtaaatgcc, RV, tgtggtgaatccaatgccct),

il1b (NM_008361.3; FW, gaaatgccaccttttgacagtg, RV, tggatgctctcatca

ggacag), tgfb (NM_011577; FW, tgtacggcagtggctgaacc, RV, cgtttgg

ggctgatcccgtt), mhc class II antigen A, alpha (H2-Aa) (mhcII;

NM_010378.2; FW, agctctgattctgggggtcctcg, RV, ataaacgccgtctgtgact

gact), and ym1 (NM_009892; FW, atggaagtttggacctgccc, RV, agtagc

agccttggaatgtctt). Quality of the primers and the PCR reaction were

evaluated by electrophoresis in a 1.5% agarose gel, checking the

PCR product size. Data were analyzed using the 2-DDCt method

with Primer Opticon 3 software, using gapdh (NM_008084.2; FW,

tgaacgggaagctcactgg, RV, tccaccaccctgttgctgta) as a housekeeping

gene.

Statistical Analysis
All experiments were designed and performed in accordance with the

ARRIVE guidelines. Data were expressed as mean 6 SEM and ana-

lyzed with the GraphPad Prism 5 software package (GraphPad Soft-

ware). For all data sets, normality and homoscedasticity assumptions

were reached, validating the application of the one-way or two-way

ANOVA, followed by the Tukey post hoc test for multiple

comparisons.

Results

Prion Disease Causes a Mild Expansion of the
CD341 Population While Driving no Detectable
Recruitment of Circulating Progenitors to the Brain
Parenchyma
Following our recent findings defining the control and conse-

quences of microglial proliferation in prion disease (Gomez-

Nicola et al., 2013), we now set out to characterize the

potential contribution of infiltrated peripheral precursor cells

to the disease. We analyzed the expression or localization of

different markers of peripheral precursor cells or hematopoi-

etic stem cells during the time course of prion disease (Fig.

1). First, we analyzed the expression of CD341 during prion

disease (Fig. 1A), an antigen reported as characteristic of pro-

liferating microglial cells (Ladeby et al., 2005b). CD341 cells

show a trend to be more numerous in prion disease mice

when compared with the NBH group, more evident in the

thalamus at late-stage disease (Fig. 1A). A similar trend was

observed in the other areas analyzed (data not shown), as well

as at the mRNA level (Fig. 1B). The analysis of the mRNA

expression of c-kit and sca1, markers for bone-marrow pro-

genitors, showed no significant increase in prion diseased

brain, when compared with the NBH controls (Fig. 1B).

Next, we analyzed the identity of Ly6c-expressing cells,

an antigen characteristic of endothelial cells and infiltrated

monocytes (Mildner et al., 2007; Prinz and Mildner, 2011).

The expression of Ly6c (Fig. 1C; red) in prion diseased brains

is absent from microglial cells (Fig. 1C; GFP1), as evidenced

by confocal microscopy. Ly6c (Fig. 1D; red) is expressed in

G�omez-Nicola et al.: Absence of Monocyte Recruitment in Prion Disease

July 2014 1043



FIGURE 1: Analysis of the infiltration of peripheral monocyte precursors in prion diseased brain. (a) Immunohistochemical analysis of the
expression of CD34 in the CA1 region of the hippocampus and the thalamus of prion disease (ME7) and control (NBH) mice. Quantified data
expressed as mean 6 SEM of the number of CD341 cells/mm2. (b) Analysis of the expression of mRNA of CD34, c-kit and SCA1 in the hippo-
campus (CA1) and thalamus of prion disease (ME7) and control (NBH) mice. Expression of CD34, c-kit and SCA1 represented as mean 6 SEM
and indicated as relative expression levels using the 22DDCt method. (c) Analysis of the infiltration of Ly6c1 monocytes by double immuno-
fluorescence for Ly6c (red) and GFP (microglia, green) in the CA1 region of the hippocampus of prion disease (ME7). (d) Analysis of the
expression of Ly6c in blood vessels by triple immunofluorescence for Ly6c (red), GFP (microglia, green), and laminin (blue) in the hippocam-
pus (CA1) of prion disease mice (ME7). (e) Analysis of the infiltration of peripheral cells (CFDA1, green) in the CA1 hippocampal layer (left)
or the meningeal space (mid and right panels) in prion disease (microglia shown as CD11b1, red). White arrowheads indicate CFDA1/
CD11b1 cells. Statistical differences: *P < 0.05, ** P < 0.01. Data were analyzed with a two-way ANOVA and a post hoc Tukey test. (c) Nuclei
are stained with Hoechst (blue). (c, d) Fluorescent sections evaluated with confocal microscopy. Scale bar in (c, d) 50 mm; in (e) 20 mm.



blood vessels, as evidenced by its colocalisation with laminin1

capillaries (Fig. 1D; blue) but not with GFP1 microglial cells

(green). Using an alternative approach, labeling peripheral

monocytes with the fluorescent tracer CFDA, we did not

observe CD11b1 microglial cells (red) being generated from

circulating precursors (CFDA1, green) in the parenchyma of

the brain (Fig. 1E). CFDA1 cells expressing CD11b were

found in the meninges (Fig. 1E, mid and right panels; white

arrowheads) and in the perivascular space, at a similar fre-

quency in both NBH and ME7 mice.

Our results show some expansion of the CD341 cell

population, independent of the recruitment of circulating

progenitors to the microglial pool, supporting previous stud-

ies highlighting the important role of proliferation of resident

microglial cells in prion disease (Gomez-Nicola et al., 2013).

The Expansion of the Microglial Population in Prion
Disease is Independent of the Contribution of
Circulating Monocytes
Given the recent evidence that the Ly-6ChiCCR21 popula-

tion of circulating monocytes infiltrates the brain during

pathology in a CCR2-dependent manner (Prinz and Mildner,

2011), we analyzed the progression of prion disease in

CCR22/2 mice. The microglial population (Iba-11 cells)

expanded to similar levels in the hippocampus (HC) of WT

and CCR22/2 mice, in response to prion disease (ME7),

when compared with NBH controls (Fig. 2A,D). The tran-

scription factor underlying microglial proliferation in prion

disease, PU.1 (Gomez-Nicola et al., 2013), is similarly

expressed in both WT and CCR22/2 mice, and is upregu-

lated in response to prion disease (Fig. 2B,D). Cell prolifera-

tion (BrdU1 cells) increases upon injection of ME7, but the

proliferative fraction of the expanding microglia population

(Brdu1/Iba-11 cells) shows a 2.64-fold increase in WT ME7-

animals, while CCR22/2 ME7-animals show a significantly

smaller 1.11-fold increase (Fig. 2C,D). The analysis of

mRNA expression by qPCR correlated with the results

obtained by immunohistochemistry (Fig. 2E). The mRNA

expression of PU.1 and C/EBPa, transcription factors regulat-

ing microglial proliferation, increases to similar levels in the

HC of both WT and CCR22/2 mice with prion disease

(ME7, 20wpi), although C/EBPa mRNA expression was

found to be relatively less expressed in CCR22/2 ME7-

animals, when compared with the WT ME7-animals (Fig.

2E) consistent with the smaller increase in Brdu labeled cells

in the CCR22/2 ME7-animals. The transcription factors

RUNX1 and IRF8, involved in the proliferation and lineage

commitment of microglia (Ginhoux et al., 2010; Kierdorf

et al., 2013), were found to be upregulated in animals with

prion disease, with no differential effect of the CCR22/2

FIGURE 1: Continued.
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FIGURE 2: Characterization of the impact of CCR2 deficiency on the dynamics and regulation of microglial proliferation in prion disease.
(a–c) Immunohistochemical analysis of the expression of Iba1 (a), PU.1 (b) and the incorporation of BrdU (c) in the CA1 region of the hip-
pocampus of prion disease (ME7) and control (NBH) mice, at 20 weeks postinduction. (d) Quantification of the number of microglial cells
(Iba11, PU.11) or proliferating cells (BrDU1); data expressed as mean 6 SEM of the number of antigen1 cells/mm2. (e) Analysis of the
expression of mRNA by qPCR of CSF1, IL34, CSF1R, PU.1, C/EBPa, RUNX1, and IRF8 in the hippocampus of prion disease (ME7) and
control (NBH) mice, at 20 weeks postinduction. Expression of mRNA represented as mean 6 SD and indicated as relative expression lev-
els to GAPDH using the 22DDCt method. Statistical differences: *P < 0.05, ***P < 0.001, and ****P < 0.0001. Data were analyzed with a
two-way ANOVA and a post hoc Tukey test. (a, b) Nuclei are stained with Neutral Red. Scale bar in (a–c) 50 mm (in c). [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]



background (Fig. 2E). The expression of CSF1 and its recep-

tor CSF1R show similar patterns, appearing upregulated in

prion disease, with the CCR22/2 background having a less

pronounced effect (Fig. 2E). The expression of IL34, an alter-

native ligand for CSF1R, shows no significant change with

the different genetic backgrounds (WT vs. CCR22/2) or

experimental groups (NBH vs. ME7) used at the 20W time-

point, in accord with previously reported results (Gomez-Nic-

ola et al., 2013).

These results support the notion that the expansion of

the microglial population in prion disease is independent of

the recruitment of circulating monocytes, and is largely if not

exclusively due to proliferation of resident microglial cells.

We observed, however, that lack of CCR2 had a small but

significant effect on the microglia proliferative response.

CCR2 Deficiency Inhibits the Expansion of the
Population of Perivascular Macrophages in Prion
Disease
Following recent reports highlighting the role of perivascular

macrophages during chronic neurodegeneration (Mildner

et al., 2011), we analyzed this population in the prion dis-

eased animals (Fig. 3). Prion disease causes an expansion of

the perivascular macrophage population [Mannose receptor

(MR)1; Fig. 3A,B], when compared with NBH mice.

Although CCR2 deficiency does not impact the renewal of

the perivascular macrophage population in na€ıve or control

conditions, it inhibits the expansion of the population as

observed in comparing the WT and CCR22/2 ME7-animals

(Fig. 3A,B). We did not find a significant proliferative frac-

tion of perivascular macrophages in response to prion disease

(data not shown), validating the hypothesis that this popula-

tion is renewed/expanded from circulating progenitors

(Mildner et al., 2011). To better understand the differential

responses of the microglial and perivascular macrophages

populations (Figs. 2 and 3) we investigated the expression

of CCR2 in brains of WT ME7-animals (Fig. 3C). Confo-

cal microscopy analysis shows CCR2 expression (red) in

perivascular macrophages (MR1, blue), but not in parenchy-

mal microglial cells (GFP1) in WT ME7-animals (Fig. 3C)

and was absent in CCR22/2 mice (data not shown).

These results support a CCR2 dependent expansion of

the perivascular macrophage population in prion disease, but

not in the healthy brain.

CCR2 Deficiency Does Not Modify the Microglial
Inflammatory Response to Prion Disease
We next aimed to address the impact of CCR2 deficiency on

the generation of the microglial inflammatory response in

prion disease (Fig. 4). We first analyzed the expression of

MHCII by immunohistochemistry, and found increased

expression in ME7-animals both with a WT or CCR22/2

background (Fig. 4A,C), in accord with the results obtained

at the mRNA level (Fig. 4D). Quantitative PCR analysis of

inflammatory mediators shows a significant increase of the

expression of the proinflammatory cytokine IL1b in ME7-

animals when compared to NBH-animals (Fig. 4D), regard-

less of the genetic background (WT vs. CCR22/2). Similar

FIGURE 3: Characterization of the impact of CCR2 deficiency on the perivascular macrophage population. (a) Immunohistochemical anal-
ysis of the expression of Mannose receptor (MR; CD206) in the CA1 region of the hippocampus of prion disease (ME7) and control
(NBH) mice, at 20 weeks postinduction. (b) Quantification of the number of MR1 cells; data expressed as mean 6 SEM of the number of
antigen1 cells/mm2. (c) Confocal analysis of the expression of CCR2 (red) by triple immunofluorescence for MR (blue) and GFP (microglia,
green) in the hippocampus [CA1 of prion disease mice (ME7)]. Statistical differences: ** P < 0.01. Data were analyzed with a two-way
ANOVA and a post hoc Tukey test. Scale bar in (a) 50 mm; in (c) 10 mm.
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results were obtained for the expression of the anti-

inflammatory cytokine TGFb, found to be upregulated in

response to prion disease, independent of the deficiency of

CCR2 (Fig. 4D). The expression of the marker of M2-like

inflammatory activation, YM1, was in accord with previously

reported data (Gomez-Nicola et al., 2013), showing non-

significant change with prion disease, and these results were

not differentially affected by the WT or CCR22/2 back-

ground (Fig. 4D). Both the chemokine CCL2 and its recep-

tor CCR2 were found to be upregulated in WT ME7-

animals (Fig. 4D), while CCR2 deficiency did not significant

alter the expression of CCL2.

Given the results regarding microglial activation in

response to prion disease upon CCR2 deficiency, we wanted

to analyze its impact on the astroglial response. Using immu-

nohistochemical analysis, we found an increased expression of

GFAP in ME7-animals, with no observed differences when

comparing WT vs. CCR22/2 mice (Fig. 4B,C).

CCR2 Deficiency Does Not Modify the Pathological
Course of Prion Disease
Following the observations that circulating progenitors do

not contribute to the microglial pool (Figs. 1 and 2) and

that CCR2 deficiency does not modify the inflammatory

FIGURE 4: Characterization of the impact of CCR2 deficiency on the inflammatory and gliotic response in prion disease. (a, b) Immunohisto-
chemical analysis of the expression of MHCII (a) and GFAP (b) in the CA1 region of the hippocampus of prion disease (ME7) and control
(NBH) mice, at 20 weeks post-induction. (c) Quantification of the number of MHCII1 or GFAP1 cells; data expressed as mean 6 SEM of the
number of antigen1 cells/mm2. (d) Analysis of the expression of mRNA by qPCR of MHCII, IL1b, TGFb, YM1, CCL2, and CCR2 in the hippo-
campus of prion disease (ME7) and control (NBH) mice, at 20 weeks postinduction. Expression of mRNA represented as mean 6 SD and indi-
cated as relative expression levels to GAPDH using the 22DDCt method. Statistical differences: * P < 0.05, ** P < 0.01, *** P < 0.001, and
**** P < 0.0001. Data were analyzed with a two-way ANOVA and a post hoc Tukey test. Scale bar in (a, b) 50 mm in (a). [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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reaction in prion disease except in the perivascular compart-

ment (Fig. 4), we examined the pathological course of the

ME7 model in WT vs. CCR22/2 mice using behavioral

techniques (Fig. 5), to address the overall contribution of

CCR2 to the disease. CCR2 deficiency did not affect the

normal decay in burrowing activity observed from the 14th

week in WT ME7-animals, maintaining a similar behavioral

trend (Fig. 5A). Similarly, we did not observe any genotype-

dependent difference in the effect of prion disease on the

loss of motor strength and motor coordination evidenced by

the inverted screen task, when compared with NBH controls

(Fig. 5B). The behavioral course of prion disease is also

characterized by a phase of hyperactivity, observed at similar

levels in WT or CCR22/2 ME7-animals and identified by

an increase in the distance travelled and the ambulatory

counts in the open field task (Fig. 5C,D). We did not

observe any difference in the behavior of control mice

(NBH) from a WT or CCR22/2 background in the

reported tests.

These results indicate that CCR2 deficiency does not

impact the pathological course of prion disease, thus support-

ing the hypothesis that there is little or no contribution of

FIGURE 5: Effect of CCR2 deficiency over the behavioral progression of prion disease. Time-course of the behavioral responses
observed in control (NBH) or prion diseased mice (ME7), with a WT or CCR22/2 genetic background. (a) Effect of the different experi-
mental groups on the burrowing behavior, measured as weight displaced (g) off the tube in 24 h. (b) Effect of the different experimental
groups on the motor performance and coordination, measured as time spent (seconds) on the inverted screen test. (c, d) Effect of the
different experimental groups on the locomotor activity, measured as distance travelled (cm) and ambulatory counts in the open field
test. Statistical differences: WT NBH vs. WT ME7 *P < 0.05, ** P < 0.01, *** P < 0.001; CCR22/2 NBH vs. CCR22/2 ME7 # P < 0.05, ##

P < 0.01, ### P < 0.001. Data were analyzed with a two-way ANOVA and a post hoc Tukey test.
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circulating progenitors to the microglial pool and indicating a

minimal role of the CCL2-CCR2 system on this disease.

Discussion

The expansion of the microglial population is a characteristic

of the progression of most brain pathologies. We provide evi-

dence for a minimal/absent recruitment of circulating progeni-

tors or monocytes during prion disease: recruited monocytes

make a negligible, if any, contribution to the expansion of the

microglial population, the inflammatory reaction and the

behavioral progression of the neuropathology. We recently

showed that the proliferation of microglial cells during prion

disease is controlled by the activity of the CSF1R pathway, and

blocking this receptor has a beneficial effect by delaying the

progression of the pathology (Gomez-Nicola et al., 2013). Our

results support the hypothesis of local proliferation being

responsible for the expansion of the microglial population

(Ajami et al., 2007; Mildner et al., 2007, 2011), contradicting

the earlier observed recruitment of peripheral bone-marrow

progenitors (Priller et al., 2006; Williams et al., 1995). The

recruitment of circulating progenitors to sites of evolving

chronic neurodegeneration is rare, and only seen where an

experimental alteration of the system, for example where irradi-

ation, compounds the cell migration (Mildner et al., 2011;

Prinz and Mildner, 2011). Our results may indicate the exis-

tence of a minor CD341 microglial population during neuro-

degeneration, previously identified in models of acute neural

injury (Ladeby et al., 2005a). Expression of the stem cell anti-

gen CD34 has been linked to a marked ability of self-renewal

and as a characteristic of proliferating resident microglia, and

not necessarily of infiltrating bone-marrow precursors (Ladeby

et al., 2005b). However, further experiments would be neces-

sary to support the existence of a highly proliferative CD341

microglial subpopulation in prion disease.

The evidence reported here shows that there is minimal

impact of CCR2 deficiency on prion disease. These results

are in line with previously reported data indicating that

CCR2 deficiency does not modify prion incubation times or

survival (Tamguney et al., 2008). We observe a similar expan-

sion of the microglial pool (Iba11 or PU.11 cells) in

response to prion disease in mice with a WT or CCR22/2

background. We did however observe an impact of CCR2

deficiency on the expansion of the perivascular macrophage

population driven by prion disease (Galea et al., 2005), which

is somewhat different compared to the results reported for

the APP/PS1 model of AD (Mildner et al., 2011), even

though the innate immune response in APP transgenics and

experimental models of prion disease share many similarities.

Different detection methods could be one reason for this dif-

ference and an in-depth analysis of the expression of specific

markers of perivascular macrophages, like CD163 or mannose

receptor (CD206; Galea et al., 2005, 2008; Hawkes and

McLaurin, 2009) will help to understand the dynamics of

this population in APP models. However, the behavioral

results obtained in this work indicate a negligible role of the

perivascular macrophage population during the progression of

prion disease. This is indicated by the fact that abolishing the

expansion of the perivascular macrophage population in

response to prion disease in CCR2 deficient mice had no

impact over the progression of the pathology.

The chemokine receptor CCR2 can bind all the mono-

cyte chemoattractant proteins, although it is the only estab-

lished high-affinity receptor for CCL2 (Charo et al., 1994;

Huang et al., 2005). Both CCL2 and CCR2 are upregulated

in prion disease, as reported in the present work and previ-

ously (Felton et al., 2005), indicating a potential role for of

this receptor-ligand interaction. CCL22/2 mice show an

amelioration of the behavioral deficits and a mild increase of

survival when infected with the ME7 prion strain, without

affecting the microglial population (Felton et al., 2005).

These effects were not replicated by genetic deletion of

CCR2. Instead we observed a small reduction of the expres-

sion of the mitogenic pathways controlling microglial prolifer-

ation (CSF1R). The activity of the CCL2-CCR2 pathway has

been previously shown to stimulate microglial proliferation

(Hinojosa et al., 2011), although this reported link of CCR2

with microglial proliferation was not observed in CSF1-

treated cells isolated from CCR22/2 mice (Mildner et al.,

2007). Although we observed a reduction in microglial prolif-

eration it did not impact the endpoint expansion of the cell

population, indicating that other balancing forces could be

modulated by CCR2 deficiency, as for example apoptosis of

microglial cells (Gomez-Nicola et al., 2013). Our results indi-

cating a minimal impact of CCR2 deletion on the inflamma-

tory state of microglial cells are in accord with previously

reported evidence with microglia isolated from CCR22/2

mice, which show no differences from WT microglia with

regard to expression of IL6, TNFa, or MCH class II after

stimulation with LPS or Pam3CSK4 (Mildner et al., 2007). It

is also interesting to be noted that CCR2 was not detected

on microglial cells throughout development (Mizutani et al.,

2012). Therefore, the effects of the activation of the CCL2/

CCR2 system on the control of cell proliferation would need

to be further explored, to better understand the discrepancies

present in the literature.

CCL2 is expressed by astrocytes through the TNF-a/

JNK pathway (Gao et al., 2009), activated microglia in senile

Ab plaques, and reported to be expressed by some neurons

(Hickman and El Khoury, 2013). Although the expression of

CCR2 in the brain has been reported in neurons in the spinal

cord (Gao et al., 2009), in certain regions of the brain (Bose

and Cho, 2013), including the neurogenic niches (Tran et al.,
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2007), its expression in the brain has been defined by other

authors to be specific to infiltrating precursors, and is not

present on any other cell from the microglial or neuroepithe-

lial lineage (Mizutani et al., 2012; Saederup et al., 2010). We

here report CCR2 expression in perivascular macrophages,

and we hypothesize that a deficient or aberrant signal derived

from the perivascular compartment might be responsible for

the observed decrease in the proliferative activity of microglia

in CCR22/2 ME7 mice. The impact of CCR2, independent

of its effect on the microglia, has been previously described in

the brain. It has been reported that CCL2, in a CCR2-

dependent manner, can be neuroprotective against HIV-1

transactivator protein (Tat) toxicity in rat primary midbrain

neurons and after intrastriatal injection of Tat (Yao et al.,

2009). Similarly, CCR2 deficiency significantly reduces the

generation of neuropathic pain (Gao et al., 2009). In the

MPTP model of murine Parkinson’s Disease (PD), CCL2 is

upregulated in astrocytes and neurons, but the absence of

CCL2 and CCR2 does not protect against loss of dopaminer-

gic neurons in the striatum (Kalkonde et al., 2007). More

recently, CCR2 deficiency was shown to prevent

hippocampus-dependent spatial learning and memory impair-

ments induced by cranial irradiation, highlighting the poten-

tial neuron-specific functions of this receptor (Belarbi et al.,

2013; Raber et al., 2013). These contrasting views might be

explained by alternative ligands, besides CCL2: binding and

signaling through CCR2 can be achieved by CCL2, CCL7,

CCL8, CCL12, and CCL13 (Bose and Cho, 2013). For

example, CCL8 was reported to elicit the CCR2-mediated

neuroprotective effects after irradiation (Belarbi et al., 2013).

Together with the findings reported here, the literature sup-

ports a re-evaluation of the expression levels and activity of

the system of CCR2 and its ligands in the brain, to better

understand its functions in different brain cells.

To summarize, our results support the evidence that the

expansion and activation of the microglial population in

chronic neurodegeneration is independent of the recruitment

of circulating monocytes. We highlight the relevance of

CCR2 for the control of the dynamics of the perivascular

macrophage population. Our results clearly define the exis-

tence of three compartments, the blood, the perivascular com-

partment and the brain parenchyma that regulate immune-to-

brain communication. Careful evaluation of the dynamics

between these compartments will be key to understanding the

influence of the innate immune response on the progression

of chronic neurodegeneration.
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