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Abstract

Bacterial infectious diseases are studied primarily as a host-pathogen dyad. However it is 

increasingly apparent that the gut microbial community is an important participant in these 

interactions. The gut microbiota influences bacterial infections in a number of ways, including via 

bacterial metabolism, stimulation of host immunity and direct bacterial antagonism. This review 

focuses on recent findings highlighting the interplay between the gastrointestinal microbiota, its 

host and bacterial pathogens; and emphasizes how these interactions ultimately impact our 

understanding of infectious diseases.

Introduction

Classically, infectious diseases are viewed as a two-way interaction between a host and an 

invading pathogen. However, recent studies increasingly demonstrate that this perception is 

an over simplification. Appreciation that most organisms are colonized with distinct 

polymicrobial communities, collectively termed the microbiota, has lead to a reexamination 

of the concept of microbes in the context of health and disease [1]. Experiments in germ-free 

organisms, which lack a microbiota, show that the acquisition of symbiotic microbes is 

critical for normal development of the host [2,3]. In addition to host development, there is 

increasing appreciation that the microbiota plays a role in determining susceptibility and 

outcome of infections (Table 1).

This review focuses on studies exploring interactions between the microbiota and either a 

host or a pathogen and endeavors to highlight how integration of the microbiota in to the 
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investigation of host-pathogen interactions can ultimately lead to a more complete 

understanding of infectious diseases.

Host-Microbiota interactions: more than the sum of the parts

While it is becoming evident that few, if any, sites within the human body are truly sterile, 

the gastrointestinal tract is the most densely colonized site in the human body [4,5]. The 

adult gastrointestinal tract is primarily colonized by anaerobic bacteria that broadly belong 

to two phyla; Firmicutes and Bacteroidetes [6]. The presence and composition of the gut 

microbiota are important determinates of host physiology and health, while ‘dysbiosis’ or an 

altered gut microbial community is associated with states of disease [7,8]. Understanding the 

interplay between the gut microbiota and the host is an important topic of investigation.

Metabolic interactions

The symbioses between a host and associated communities are integral to the physiology of 

both. At the core of these interactions is metabolism as the gut bacterial community is 

important to the metabolic potential of the host. While therapeutic doses of antibiotics are 

known to alter the microbiome, low doses of antibiotics given early in life lead to lasting 

effects in composition of the gut microbial community [9]. These changes are associated 

with long-term alterations in host metabolism, which may predispose the host to diet 

dependent obesity [10].

Host-microbiota metabolism is tightly linked; disruption of the microbiota shifts the 

gastrointestinal metabolic profile towards one that supports the growth of bacterial 

pathogens. In the context of C. difficile infection, a study correlating colonization resistance 

to community structure demonstrates that communities that are drastically different in terms 

of membership can provide resistance to colonization by C. difficile [11••]. Rather than the 

community structure, the commonality between these resistant communities was their 

metabolic profile. Specifically, the susceptible community had a significant increase in key 

metabolites utilized by C. difficile such as carbon sources and primary bile acids like 

taurocholate.

Bile acid metabolism is a process that depends on both the host and the microbiota. The host 

synthesizes and secretes primary bile acids. Bile not actively recovered in the distal ileum is 

conjugated by the colonic microbiota into secondary bile acids which are then absorbed by 

the host in the colon (the role microbiota and bile acid metabolism is reviewed here [12]). 

However, antibiotic mediated alterations of the microbiota disrupts host-microbiota bile acid 

metabolism leading to increased levels of primary bile acids in the large bowel, setting up an 

advantageous environment for germination of C. difficile spores [13]. The importance of bile 

acids in the pathogenesis of C. difficile is underscored by findings that suggest that 

Clostridium scindens, a bacterium that can convert primary to secondary bile acids, partially 

restores colonization resistance to C. difficile [14,15].
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Regulation of immune response

Many aspects of host immune function are regulated by signals produced by the 

microbiome, such as metabolites. Butyrate, one short chain fatty acid produced by members 

of the microbiota, facilitates the development of localized immunity in the form of 

populations of peripheral anti-inflammatory T regulatory cells [16,17]. The 

immunomodulatory aspect of Tregs has been shown to play a role in persistent bacterial 

infections [18]. Since phylogenetically diverse members of the microbial community are 

able to elicit the differentiation of peripheral Tregs, this suggests that there is likely 

functional redundancy in composition of the gut microbial communities, such that different 

community structures provide the same function [19,20].

In addition to altering local immune response, microbiome-derived signals regulate immune 

function at primary immune sites [21•]. In mice, the presence of a gut microbial community 

enhances levels of myelopoiesis. Compared to germ-free or antibiotic treated mice, mice 

with intact microbiota had increased myeloid cells and were protected from systemic 

infection with the pathogen Listeria monocytogenes. Notably in this model, myelopoiesis 

was only achieved in the context of colonization with live bacteria, administration of 

MAMPs or SCFAs was not sufficient to restore germ-free mice to levels comparable to mice 

with intact communities. This suggests that diverse bacterial signals modulate host 

immunity, tuning the immune system to respond to a given situation such as bacterial or 

viral infections [22,23].

While microbial products alter the host, changes in host physiology can also alter the 

microbiota. Due to the abundance of anaerobes in the intestines it has been assumed that the 

lumen is strictly anaerobic. Characterization of the structure of the GI tract has shown that 

there are distinct communities associated with the mucosa compared to the lumen [24]. 

These distinct community structures are arranged in concordance with the radial oxygen 

gradient that exists within the gut [25,26]. Microbial communities are not immutable and 

changes in oxygen maybe a key driver. Notably, exogenous oxygen exposure such as 

hyperbaric oxygen therapy can shift the composition of the fecal microbiota [26••]. 

Inflammation can also alter oxygen homeostasis in the gut via the release of reactive oxygen 

and nitrogen species. While obligate anaerobes are incapable of detoxifying reactive oxygen 

species, some facultative anaerobes thrive in the inflamed gut [27]. Bacteria from the family 

Enterobacteriaceae, such as Escherichia coli are able to utilize host-derived nitrate as an 

alternative electron receptor during anaerobic respiration thereby gaining a competitive edge 

to expand within the gut [28]. Interestingly, antibiotic therapy, a risk factor for infections by 

non-typhoid Salmonella, decreases colonization resistance to E. coli by increasing 

inflammation in the gut [29]. Thus the interplay between a host and its microbiota is central 

to a host’s predisposition to infection.

Pathogen-Microbiota interactions: context matters

Another critical function of the microbiota is colonization resistance, or the capacity of the 

microbes that colonize our body to exclude pathogens. While some aspects of colonization 

resistance are mediated by bacterial modulation of immune response, bacteria-bacteria 
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interactions also play a role. Unraveling how these direct bacterial interactions affect the 

pathogenesis of an infection has been the focus of many recent studies.

Direct bacterial inhibition

Bacteria are constantly competing for space and nutrients. One way that bacteria gain a 

competitive advantage is via production of microbial products such as bacteriocins [30,31]. 

Bacteriocins are ribosomal synthesized microbial peptides that typically have a narrow range 

of bactericidal activity. While lactic acid bacteria production of bacteriocins has received 

much focus, many bacteria are believed to be capable of producing bacteriocins (for a 

comprehensive review please see [32]). Recently, bacteriocins have been appreciated as a 

means by which members of the gut microbiota might exclude bacterial pathogens. Human 

stool has been shown to contain many strains capable of producing bacteriocins [33,34]. 

Recently, Thuricin CD, a bacteriocin produced by a strain of Bacillus thuringiensis isolated 

from a human fecal sample, was demonstrated to have activity against C. difficile in a mouse 

model of infection [35].

As an added wrinkle of complexity in microbiota-pathogen interactions, production of 

bacteriocins may be driven by the context of the surrounding microbial community. In the 

setting of a four-strain consortium of fecal isolates that excluded Clostridium perfringens 

colonization, an isolate of Ruminococcus gnavus produced an anti-bacterial product only 

when specific members of the consortia were present [36]. The anti-bacterial substance was 

detected in Ruminococcus gnavus mono-associated mice or when it was present with the two 

Clostridia members of consortia, however addition of Bacteroides thetaiotaomicron to the 

community suppressed the expression of this molecule.

Competition for nutrients

Another facet of the interplay between the microbiota and invading pathogens is nutrient 

base interactions. In addition to microbiota-host metabolioic interactions mentioned earlier, 

the metabolism of microbiota plays a role in colonization resistance, as pathogens must 

compete with resident microbes for the nutrients they need to grow. An example of nutrient 

based bacterial antagonism was recently described in the case of E. coli strain Nissle 1917 

mediated colonization resistance to infection by Salmonella enterica serovar Typhimurium 

(S. Typhimurium) [37••]. E. coli strain Nissle is a well studied probiotic originally isolated in 

1917 from a solider who was protected from infectious gastroenteritis. During infection with 

S. Typhimurium, inflammation limits the availability of key nutrients like iron. Since E. coli 

strain Nissle has many redundant iron transporters, it was hypothesized that it would be a 

suitable competitor for S. Typhimurium, during infection. A single dose of E. coli strain 

Nissle after infection with S. Typhimurium, lead to persistent colonization by E. coli strain 

Nissle and decreased levels of S. Typhimurium, colonization. Furthermore, reduced S. 

Typhimurium colonization was dependent on the presence of E. coli Nissle iron transport 

and independent of its immunemodulatory effect.

While some gut microbiota -pathogen relations can be detrimental to the pathogen, 

pathogens can also scavenge nutrients from the gut microbiota. S. Typhimurium, can utilize 

molecular hydrogen derived from the microbiota as an alternative electron source in order to 
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colonize an intact gut microbial community [38]. In addition, recent work has highlighted 

bacterial cross-feeding during colonization by enteric pathogens [39]. Using a gnotobiotic 

mouse colonized with B. thetaiotaomicron as a model of an antibiotic treated gut, the 

authors found that levels of C. difficile were increased in these mice compared to infected 

germ-free mice. Notably, increased levels of C. difficile colonization is dependent on the 

ability of B. thetaiotaomicron to cleave host sialic acid, which is source of nutrition for C. 

difficile.

The significance of the microbiota in the context of this infection is underscored by findings 

which demonstrate that transplant of stool from healthy uninfected individuals can reduce 

colonization by diverse bacterial pathogens such as C. difficile or Vancomycin-resistant 

enterococci (VRE) [40–42]. A better understanding of the physiology of members of the gut 

microbiota will enable the rational selection of bacteria that best compete with specific 

enteric pathogens.

Host-microbiota-pathogen interactions: a systems approach to infection

While there is still much to be learned regarding the basic interactions within the gut 

microbiome itself, thinking about the microbiome in the context of infection can provide a 

more complete story in the study of host-pathogen interactions.

In many bacterial infections, such as those caused by VRE or Citrobacter rodentium, the 

cytokine IL-22 is protective [43,44]. Yet surprisingly, when comparing salmonella infection 

in wild-type versus IL-22 deficient mice, S. Typhimurium, colonization was enhanced in the 

presence of IL-22 [45••]. After exploring possible factors such as the pre-infection gut 

microbial community structure or post-infection levels of inflammation the authors found no 

major differences between the two strains of mice. However, the authors noticed that 

following S. Typhimurium infection, the intestine of IL-22 deficient mice experienced a 

‘bloom’ of bacteria from the family Enterobacteriaceae. Further work demonstrated that 

commensal Enterobacteriacea were suppressed by antimicrobial peptides upregulated by 

IL-22, however in the absence of IL-22 the Enterobacteriacea were not suppressed and thus 

were able to compete with S. Typhimurium, reducing levels of colonization.

Concluding remarks

Gastrointestinal infections are more than host-pathogen interactions; rather they represent 

the culmination of dynamic exchanges between a host, its microbiome and a pathogen. The 

microbiota affects the outcome of infections both directly and indirectly. Studying the 

gastrointestinal microbiota within the framework of infectious diseases provides context to 

the narrative of an infection. Experiments cataloging structural differences in the 

microbiome during disease have paved the way for future studies, which should strive to 

understand the functional result of these changes.
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Highlights

• The gut microbiome is a critical component in many gastrointestinal infections.

• The microbiota modulates infections through both direct and indirect 

interactions.

• Appropriate development of host immunity is dependent on the microbiome.

• Dissimilar microbial communities may provide similar functions.
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Table 1

The Effect of the Microbiome on Infection

Type of Interaction Pathogen Outcome of Infection Reference

Direct

Production of bacteriocins C. perfringens
C. difficile Decreased colonization [35] [36]

Competition for nutrients S. Typhimurium Decreased colonization [37]

Cross-feeding (eg. H2, Salic acid) S. Typhimurium
C. difficile Increased colonization [38] [39]

Conversion of host derived metabolites (eg. Bile acids) C. difficile Decreased colonization [11••]

Indirect

Production of immunomodulatory molecules (e.g. butyrate) --- --- [16] [17] [19•]

Stimulation of hematopoiesis L. monocytogenes Increased myelopoiesis and protection 
from systemic infection [21•]
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