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Abstract

Epigenetic changes including genomic imprinting may affect risk of late-onset Alzheimer’s 

disease (LOAD). There are >100 known imprinted genes and most of them are expressed in 

human brain. In this study, we examined the association of single nucleotide polymorphisms 

(SNPs) in 93 imprinted genes with LOAD risk in 1291 LOAD cases and 958 cognitively normal 

controls. We performed single-site, gene-based and haplotype analyses. Single-site analysis 

showed 14 significant associations at P<0.01. The most significant SNP (rs11770199; P=0.0003) 

in single-site analysis was located on chromosome 7 in the GRB10 gene. Gene-based analyses 

revealed 4 significant associations in the WT1, ZC3H12C, DLGAP2 and GPR1 genes at P <0.05. 

The haplotype analysis also revealed significant associations with three genes (ZC3H12C, 

DLGAP2 and GPR1). These findings suggest a possible role of imprinted genes in AD 

pathogenesis that show specific expression in the brain.
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Introduction

Late-onset Alzheimer’s disease (LOAD) is a major form of dementia. Both genetic and 

environmental factors determine its etiology [1]. Until recently, APOE was the only 

established susceptibility gene for LOAD [2]. Since 2009, large scale genome wide 

association studies (GWAS) have identified more than twenty non-APOE susceptibility loci 

for LOAD (CR1, BIN1, INPP5D, MEF2C, TREM2, CD2AP, HLA-DRB1/HLA- DRB5, 

EPHA1, NME8, ZCWPW1, CLU, PTK2B, PICALM, SORL1, CELF1, MS4A4/MS4A6E, 
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SLC24A4/RIN3,FER- MT2, CD33, ABCA7, CASS4) [3-6]. However, common variation in 

known LOAD genes explain only ~24-33% of total phenotypic variance of AD [7, 8]. This 

indicates the involvement of additional genes that affect the risk of LOAD. An attractive 

group of candidate genes that might affect the risk of LOAD include those that participate in 

genomic imprinting. To date, approximately 150 imprinted genes have been reported in 

mice and humans, representing less than 1% of the genome [9-11]. Imprinted genes are 

highly expressed in placenta and the brain [12]. In brain, imprinted genes are associated with 

neurodevelopment and behavior [13].

Genomic imprinting leads to parental origin specific gene expression, also called parent of 

origin effect [14]. A number of studies have reported parent of origin effect in LOAD 

[15-20]. Epigenetic studies in AD have also shown that methylation process involved in 

imprinting is altered in AD cases compared to controls [21-24]. Given the role of imprinting 

in neurodevelopment and also in the pathogenesis of LOAD, the present study examined the 

association of genetic variation in 93 imprinted genes with the risk of LOAD in a large case-

control sample. As all of these genes are known for their temporal expression in brain, we 

hypothesized that genetic variation in these genes may be associated with LOAD risk due to 

dysregulation of epigenetic mechanisms.

Materials and Methods

Subjects

The case-control sample used in this study is described elsewhere [25]. All subjects were 

European Americans. The mean age-at-onset (AAO) for LOAD cases (n=1,440) was 

72.6±6.4 years (65.6% women and 23.5% autopsy-confirmed). Control subjects (n=1,000) 

were 60 years or older (mean age 74.07±6.20 years; 59.8% women and 0.2% autopsy-

confirmed). LOAD cases were recruited from the University of Pittsburgh Alzheimer’s 

Disease Research Center (ADRC), all of whom met the National Institute of Neurological 

and Communication Disorders and Stroke (NINCDS)/Alzheimer’s Disease and Related 

Disorders Association (ADRDA) criteria for probable or definite AD. The University of 

Pittsburgh ADRC follows a standard evaluation protocol, including medical history, general 

medical and neurological examinations, psychiatric interview, neuro-psychological testing 

and magnetic resonance imaging scan. Controls were cognitively normal subjects that were 

derived from the same geographical area as the cases. Following standard quality control 

and exclusion criteria, 2,249 subjects (1,291 LOAD cases and 958 controls) were included 

in the final analysis. All subjects were recruited with informed consent, and the study was 

approved by the University of Pittsburgh Institutional Review Board.

Genotyping

A list of 107 human imprinted genes was developed from imprinted gene database 

(www.geneimprint.com) and catalogue of imprinted genes (http://igc.otago.ac.nz). Only 93 

imprinted genes were selected for final association analysis based on their representation in 

refgene database and our genotyped database. The Illumina Omni1-Quad chip was used for 

genotyping as described by Kamboh et al. [25]. There were a total of 3,401 single-
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nucleotide polymorphisms (SNPs) present on the Illumina chip in the examined 93 

candidate genes.

Statistical analyses

Association of 3,401 SNPs located in 93 imprinted genes was tested using the logistic 

regression under an additive model adjusting for age, sex, and the first four principal 

components as covariates using PLINK [25]. Further adjustment was made for APOE 

genotype following initial association tests. Nominal P-values less than 0.05 were 

considered suggestive evidence of association in these candidate genes

Versatile Gene-Based Association (VEGA) analysis was performed to determine the 

association of imprinted gene with LOAD. Tagger analysis was performed in Haploview 

with the following parameters: r2=0.80, minor-allele frequency (MAF) <0.01 to identify 

tagSNPs in each gene [26], (www.broadinstitute.org/haploview). This information was used 

to calculate P-value threshold for significance (Supplementary Table 1).

Haplotype analysis within each gene was done using a sliding-windows approach, including 

4 SNPs per window. The global P-value less than 0.05 was considered evidence for 

association between the trait and the haplotype window. Only SNPs with allele frequencies 

of 0.01 and higher in the pooled case-control sample were included in the haplotype 

analysis. Sliding-window haplotype analysis was performed using haplo.glm function in 

Haplo.Stats R package (version 1.5.5).

Results

Single-locus analysis

We examined the association of 3,401 SNPs in 93 candidate genes with the risk of LOAD. 

A total of 40 SNPs yielded nominal association (P<0.05) and 14 of them were significant at 

P<0.01 (Table 1). The most significant SNP, rs11770199 (P=0.0003) was located in the 

GRB10 gene on chromosome 7 followed by rs11161237 (P=0.0008) in ATP10A and 

rs6992443 (P=0.0009) in DLGAP2 on chromosome 8. Amongst the 14 significant SNPs at 

P<0.01, 8 revealed protection against AD risk (odds ratio (OR) range = 0.63-0.83) while the 

remaining 6 were associated with AD risk (OR range = 1.21-1.68)

Gene-based analysis

Gene-based analyses including all SNPs in a given gene, revealed 4 significant associations 

(WT1, ZC3H12C, DLGAP2, and GPR1) at P <0.05 (Table 2). Interestingly, all of these 4 

genes (WT1, ZC3H12C, DLGAP2, and GPR1) also revealed associations at P<0.01 in 

single-locus analysis. The most significant association was seen with WT1 (P=0.010). 

However, this association did not remain significant after correcting for gene-based multiple 

comparisons.

Haplotype Analysis

Haplotype analysis was performed within 4 genes (WT1, ZC3H12C, DLGAP2, and GPR1) 

that showed significant gene-based associations. Three of the 4 genes examined (ZC3H12C, 
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DLGAP2, and GPR1) showed significant haplotype window associations with LOAD (Fig 

1). ZC3H12C had 8 significant windows and the best association was observed for window 

21 (SNPs rs10891068-rs10891069-rs622822-rs17110877; P=0.009801). DLGAP2 showed 

23 significant windows and the best association was observed for window 58 (SNPs 

rs4256621-rs4876115-rs6558504-rs17064153; P=0.003875). Only one window was 

significant in GPR1 (SNPs rs2010572-rs16838070-rs6715398-rs16838083; P=0.024761). 

No significant haplotype window was observed in the WT1 gene (Fig 1).

Discussion

In this study we have tested the hypothesis that genetic variation in imprinted genes is 

associated with LOAD risk. We performed single-locus, gene-based and haplotype analyses 

on 93 imprinted genes. Single-locus analysis demonstrated 14 significant loci at P<0.01 and 

four of them also revealed significant associations in gene-based analysis. Four genes that 

showed significant association in gene-based and single locus analysis include WT1, 

ZC3H12C, DLGAP2, and GPR1. Although the association signals in these genes do not 

survive after multiple testings, they deserve attention as they are expressed in the brain and 

thus are potential candidates for AD. Our single-locus analysis showed that SNPs in two of 

these genes (DLGAP2/rs6992443; GPR1/rs16838070) are associated with increased risk for 

LOAD (OR=1.24-1.53). Also the significant haplotype windows within these genes 

contained best SNPs from single-locus analysis. These two genes have been reported as 

maternally imprinted. DLGAP2 (disks large-associated protein 2) is highly expressed in the 

brain [27] and it encodes membrane-associated guanylate kinases that plays a role in 

molecular organization of synapses and signaling of neuronal cells. GPR1 (G Protein-

Coupled Receptor 1) encodes for a receptor that has a role in regulation of inflammation and 

is expressed in hippocampus [28].

The other two genes that showed decreased risk for AD were ZC3H12C/ rs4754425 

(OR=0.84) and WT1/ rs5030328 (OR=0.63). ZC3H12C showed 8 significant haplotype 

windows; however, we did not find any significant haplotype window for WT1. The WT1 

(Wilms Tumor 1) gene encodes a transcription factor. It plays an important role in cellular 

development and cell survival. WT1 has been reported as paternally imprinted in placenta 

and fetal brain but maternally imprinted in fibroblasts and lymphocytes. It is suggested that 

neuronal apoptosis plays an important role in the pathogenesis of AD and relevant to this is 

the observation that levels of Wilms tumor 1 protein are increased during neuronal apoptosis 

[29]. Zinc Finger CCCH-Type containing 12C (ZC3H12C) functions as RNase and it 

regulates the levels of target RNA species [30].

All the four significant genes in our gene-based analysis are maternally imprinted and thus 

may provide a mechanism responsible for increased maternal inheritance in AD patients 

[19]. In this regard, maternally expressed imprinted genes in mice generally, but not always, 

show their expression in cerebral cortex/hippocampal regions that are associated with 

cognition and executive functioning [31]. So, it is quite possible that silencing or imprinting 

of maternal allele disrupt the cognitive functioning of the brain and it could lead to 

neurodegenerative disorders like AD. This is in line with many imprinting disorders where 

imprinting status of a gene is associated with abnormal brain development and function [32].
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Although the imprinted genes in the brain are candidate for AD, the current study does not 

tell us about the parental origin of single-base changes. However, finding significant 

associations with selected number of imprinted genes implies that imprinting may be an 

important mechanism for AD. Additional genetic studies in independent samples are needed 

to confirm our findings and to comprehensively examine the role of genetic variation in 

imprinted genes in relation to LOAD risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Haplotye windows showing association with AD. Horizontal lines show the windows tested, 

with the corresponding SNP rs number along the horizontal axis and global p-value on the 

vertical axis. Significant association fall above the red dotted line at –log10 (0.05) = 1.3.

Chaudhry et al. Page 9

J Alzheimers Dis. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Chaudhry et al. Page 10

Table 1

Most significant SNPs in 14 genes in single-locus analysis

Gene CHR
1 Base Pair

Position

Most
Significant

SNP
P-value OR

2
 (95%CI)

3

GRB10 7 50653096 rs11770199 0.0003 0.748 (0.64-0.87)

ATP10A 15 23633521 rs11161237 0.0008 1.689 (1.24-2.29)

DLGAP2 8 1637345 rs6992443 0.0009 1.537 (1.19-1.98)

GLIS3 9 4121657 rs1340252 0.0015 1.241 (1.09-1.41)

KCNQ1 11 2504751 rs2283155 0.0017 1.218 (1.07-1.37)

PHACTR2 6 144083752 rs6915880 0.0029 0.829 (0.73-0.93)

ANO1 11 69711744 rs3740722 0.003 0.764 (0.64-0.91)

MAGI2 7 78013532 rs1978326 0.0043 0.658 (0.49-0.87)

WT1 11 32366048 rs5030328 0.0054 0.632 (0.45-0.87)

GPR1 2 206775748 rs16838070 0.0058 1.245 (1.06-1.45)

ZNF331 19 58720819 rs2708771 0.006 0.803 (0.69-0.94)

NTM 11 131287579 rs656644 0.0067 0.812 (0.69-0.94)

ZC3H12C 11 109547367 rs4754425 0.0084 0.836 (0.73-0.95)

SLC22A2 6 160558735 rs2450974 0.0088 1.331 (1.07-1.65)

1
Chromosomal location

2
Odds ratio

3
Confidence Interval
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Table 2

Imprinted gene loci associated with Alzheimer Disease in VEGA analysis

Gene CHR
1 SNP Base-Pair Location Total

SNPs

No. of
Tagging

SNPs

P- Value
Threshold

for
Significance

P-value

WT1 11 rs5030328 32365897-32413657 29 17 0.002941 0.0100

ZC3H12C 11 rs4754425 109469296-109547776 30 11 0.004545 0.0227

DLGAP2 8 rs6992443 1436975-1644049 95 60 0.000833 0.0364

GPR1 2 rs16838070 206748284-206791016 17 14 0.003571 0.0371

1
Chromosomal location
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