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Abstract

An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide 

protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-

specific binding antibodies following immunization typically focus on determining the magnitude 

of antibody responses, but the epitope diversity of antibody responses has remained largely 

unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 

6,564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the 

Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we 

quantified the magnitude, breadth, and depth of IgG binding to linear HIV-1 sequences in HIV-1-

infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray 

measured potentially important differences in antibody epitope diversity, particularly regarding the 

depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 

peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.
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1. Introduction

One of the fundamental challenges in HIV-1 vaccine development is the tremendous 

diversity of HIV-1 strains worldwide (Korber et al., 2001; Gaschen et al., 2002; Taylor et 

al., 2008; Barouch and Korber, 2009; Korber et al., 2009; Walker et al., 2011; Ndung'u and 

Weiss, 2012; Picker et al., 2012; Stephenson and Barouch, 2013). Globally, there are more 

than a dozen HIV-1 subtypes and hundreds of circulating HIV-1 recombinant forms (CRFs), 

and between-subtype variation can be as large as 35% (Hemelaar et al., 2006; Taylor et al., 

2008; Ndung’u and Weiss, 2012). Several HIV-1 vaccine candidates under development aim 

to overcome the challenge of HIV-1 genetic diversity either through the choice of HIV-1 

antigen sequence or the method of antigen delivery (Stephenson and Barouch, 2013). 

However, most tools used to assess the immunogenicity of these vaccines focus on 

measuring the magnitude of HIV-1-specific antibody responses, rather than the epitope 

diversity and specificity of these responses.

Peptide microarrays are a potential tool for the measurement of antibody diversity against 

linear epitopes in HIV-1 vaccine studies. This platform has been utilized to characterize 

antibody binding to linear sequences in multiple fields, including HIV-1 vaccine research 

(Nahtman et al., 2007; Cerecedo et al., 2008; Gaseitsiwe et al., 2008; Lorenz et al., 2009; 

Tomaras et al., 2011; Haynes et al., 2012). HIV-1-specific microarrays to date, however, 

have not included extensive coverage of variable sequences (Karasavvas et al., 2012; 

Gottardo et al., 2013; Imholte et al., 2013). Here we describe the development of a global 

HIV-1 peptide microarray that includes 6,564 overlapping linear HIV-1 peptides covering 

most common HIV-1 variants in the HIV-1 sequence database at Los Alamos National 

Laboratory (LANL). This microarray includes 6,564 peptides, including an average of 7 

peptide variants for each 15 amino acid position in HIV-1 Env, Gag, Nef, Pol, Rev, Tat, and 

Vif, with up to 95 peptide variants per location within the most variable regions of HIV-1 

Env. This epitope diversity on the microarray allows for more precise measurements of the 

magnitude, breadth and depth of HIV-1-specific binding IgG responses.

2. Methods

2.1.Generation of peptide library

In collaboration with JPT Peptide Technologies (Berlin, Germany), we designed a library of 

HIV-1 linear peptides that provided optimal coverage of HIV-1 global sequence diversity. 

We began by downloading the sequence alignment for HIV-1 genes ENV, GAG, NEF, POL, 

REV, TAT, and VIF from the website of the LANL HIV-1 sequence database (Theoretical 

Biology and Biophysics, 2009) using the following settings: Alignment type: Web 

Alignment (all complete sequences); Year: 2009; Region: Pre-defined region of the genome; 

Subtype: All M Group (A-K + Recombinants); DNA/Protein: Protein; Format: FASTA. Full 

length proteins of gp120, gp41, p17, p24, Tat, and Nef were used, as were the immunogenic 
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fragments of p2p7p1p6, protease, reverse transcriptase, integrase, Vif, and Ref as published 

by LANL (Theoretical Biology and Biophysics, 2010) (Table 1).

From the global sequence database, we selected the individual sequences to be used as 

peptides that would provide optimal coverage of sequence diversity using the program 

package MosaicVaccines.1.2.11 from LANL (ftp://ftp-t10.lanl.gov/pub/btk/mosaic/) 

(Fischer et al., 2007a; Thurmond et al., 2008a). Parameters for the generation of MOSAIC 

sequences were –s 20 –d=true –T 20 –p 100. Sequence manipulation and processing were 

performed in R 2.11.1 (http://www.r-project.org/) using the package Biostrings 

(http:www.bioconductor.org/packages/2.2/bioc/html/Biostrings.html) or using bespoke 

scripts in python (http:www.python.org/).

Since our goal was to cover the seven most frequent clades (A, B, C, D, G, CRF01_AE, and 

CRF02_AG), we used a stepwise approach to generating an optimal sequence cocktail. As a 

first step, the MOSAIC program was used to identify a sequence for each gene product or 

fragment from each of the 7 most frequent clades, and the resulting 7 sequences were 

merged into one cocktail. Secondly, we identified 13 additional sequences which showed 

best coverage without consideration of the clade. These two sequence cocktails were merged 

into one cocktail and evaluated for gain of coverage for each sequence. All sequences which 

did not gain more than 0.75% of coverage were removed from the cocktail. Thirdly, 

MOSAIC sequences were generated for each gene product or fragment, respectively 

(Fischer et al., 2007b; Thurmond et al., 2008b). For the MOSAIC runs the sequence 

cocktails generated in the previous step were used as fixed sequences. The resulting 

cocktails were evaluated in terms of coverage gain. All MOSAIC cocktails which gained 

less than 1% coverage were removed, and a maximum of 2 MOSAIC sequences was kept in 

the final cocktail. Figure 1A displays the relationship between the increasing size of the 

cocktail and the plateauing increase in coverage for gp120.

Once we had generated a cocktail of sequences with optimal global coverage, we then 

generated a library of peptides where all sequences within the cocktail were covered at a 

minimal number of peptides. One of the sequences was used as a template sequence and 

processed into 15 amino acid peptides overlapping by 11 amino acids. All other sequences 

within the cocktail were fragmented into peptide scans of 15 amino acid peptides 

overlapping by 14 amino acids. Of note, this length of peptide (15 amino acids) covers 83% 

of known linear antibody epitopes in the LANL immunology database, including the median 

length of epitopes (11 amino acids) (Theoretical Biology and Biophysics, 2014). Scan-

peptides were then aligned onto the scan-peptides of the template. The resulting 5,141 

peptides covered all template sequences completely. For ENV, we performed one additional 

step to assure that every region of the protein was represented on the microarray by adding 

additional MOSAIC sequences that our group generated in the course of HIV-1 vaccine 

design (Barouch et al., 2010; Barouch et al., 2013). To overcome the bias of peptides 

towards conserved regions of the protein, we also included an additional 1,004 peptides 

from the variable loops V2 and V3 of gp120 in the library.

The final library consisted of 6,654 peptides from 135 different clades or CRFs. CRFs are 

circulating related variants that have different regions associated with the different major 
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HIV-1 clades (Robertson et al., 2000); for example CRF_02 has sections of clade A and 

clade G, and is common in West Africa. (For a comprehensive listing of CRF’s see http://

www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html). By capturing A clade diversity, 

we capture some of the diversity found in the regions of CRF_02 that are A-like, but 

CRF_02 started with a recombinant founder virus decades ago, and has been spreading and 

diversifying as a separate lineage (Zhang et al., 2010), and so it will have its own distinctive 

evolutionary trajectory. Each CRF represents its own lineage, thus by including the CRFs in 

diversity considerations, not just major clades, we take a more comprehensive and realistic 

view of global diversity than by a more narrow examination of major clades. Figure 1B 

shows how many peptides were included in each clade- or CRF-specific peptide set (only 

sets that contain >300 peptides are shown). If a peptide sequence was found in multiple 

clades/CRFs, then it was counted in multiple sets. Peptides sets from the seven most 

frequent clades (A, B, C, D, G, CRF_01, and CRF_02) include >500 peptides each.

2.2 Microarray printing

PepStar peptide microarrays were produced by JPT Peptide Technologies GmbH (Berlin, 

Germany). All peptides were synthesized on cellulose membranes using SPOT synthesis 

technology. Subsequent to a final synthesis step attaching a reactivity tag to each peptide’s 

N-terminus, the side chains were deprotected and the solid-phase bound peptides were 

transferred into 96-well microtiter filtration plates (Millipore, Bedford, MA, USA). For 

cleaving the peptides from the cellulose membrane the individual spots were treated with 

aqueous triethylamine [2.5% (v/v)]. The peptide-containing solution was centrifuge-filtered 

into daughter plates and the solvent was removed by evaporation under reduced pressure. 

Quality control measurements using LCMS were performed on random samples of the final 

library. For transferring the peptides to 384 well plates, the dry peptide derivatives were 

dissolved in 35 µl of printing buffer and reformatted with automated liquid handling 

systems. Peptide microarrays were produced using a non-contact high performance 

microarray printer on epoxy-modified slides (PolyAn; Germany). All peptides and controls 

were deposited in three identical sub-arrays, enabling analysis of assay homogeneity and 

reliability of the results. Peptide microarrays were scanned after printing process and 

statistical values were generated for identification and quality control of each individual 

spot. Subsequently, peptide microarray surfaces were deactivated using appropriate 

quenching solutions, washed with water and dried using microarray centrifuges. Resulting 

peptide microarrays were stored at 4°C until use.

2.2. Sample selection

Thirty-six (36) serum or plasma samples were obtained from previously performed studies 

in the Barouch laboratory and were selected to represent a spectrum of potential preclinical 

and clinical uses for the microarray. Samples included (a) plasma from 5 HIV-1-infected 

individuals from North America with high HIV-1 viral load and 5 HIV-uninfected controls, 

(b) serum from 5 human subjects vaccinated with one dose of adenovirus 26 (Ad26) vaccine 

expressing clade A HIV-1 Env and 5 naive human controls, (c) serum from 5 rhesus 

monkeys vaccinated with 6 doses of clade C HIV-1 Env protein and 2 naïve monkey 

controls, and (d) serum from 5 guinea pigs vaccinated with 6 doses of clade C HIV-1 Env 

protein and 3 naïve guinea pig controls.
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2.3. Microarray incubation and immunolabeling

Microarray slides were incubated with serum or plasma using the manual method, 

essentially as described (Masch et al., 2010). Serum or plasma was diluted 1:200 in 

SuperBlock T20 (TBS) Blocking Buffer (Thermo Scientific). Slides were placed in the 

individual chambers of a Sarstedt Quadriperm Dish and incubated in 4 mL of diluted serum/

plasma for 1 hr at 30° C. Slides were then washed with 5 mL of TBS-Buffer + 

0.1%Tween20 for 3 minutes on a shaker at room temperature for 5 washes. Next, slides 

were incubated with Alexa Fluor 647-conjugated AffiniPure Mouse Anti-Human IgG (H+L) 

(Jackson ImmunoResearch Laboratories) for human or monkey samples for 1 hr in the dark 

on a shaker at room temperature. Alexa Fluor 647-conjugated AffiniPure Goat Anti-Guinea 

Pig IgG (H+L) (Jackson ImmunoResearch Laboratories) was used for guinea pig samples. 

Slides were then washed 5 times with TBS-Buffer with 0.1%Tween20, and 5 times with 

deionized water. To dry, slides were placed in a 50 mL conical and spun at 1500 rpm for 5 

minutes. Of note, all batches of slides were run in parallel with a control slide that is 

incubated with secondary antibody alone.

2.3 Microarray image analysis

Slides were scanned with a GenePix 4300A scanner (Molecular Devices), using 635 nm and 

532 nm lasers at 500 PMT and 100 Power settings. Images were saved as TIF files. The 

fluorescent intensity for each feature (peptide spot) was calculated using GenePix Pro 7 

software and GenePix Array List (GAL) file, a text file with specific information about the 

location, size, and name of each feature on the slide. This analysis created a GenePix Results 

(GPR) file. We then calculated the mean fluorescent intensity across the triplicate sub-arrays 

(SAs) for each feature; if the coefficient of variation was greater than 0.5, then the mean of 

the two closest values was used. These calculations were performed with a custom-designed 

R script “MakeDat_V04” (available as Appendix 1) and R software package 2.15.2. Data 

was saved as a comma-delimited DAT file usable by Excel (Microsoft). MakeDat_V04 also 

created scatterplots of the correlation between the feature fluorescent intensities of sub-array 

1 and 2, sub-array 2 and 3, and sub-array 1 and 3 as a measure of assay quality (Figure 3).

The threshold value used to define a minimum positive fluorescent intensity was calculated 

for each slide using the computational tool rapmad (Robust Alignment of Peptide 

MicroArray Data, available for free at http://tron-mainz.de/tron-facilities/computational-

medicine/compmed) and the custom-designed R script “calc_THRES_KS_130711_V02” 

(available as Appendix 2). This analysis is based on the method as previously described 

(Renard et al., 2011) and distinguishes those peptide features that carry a signal from those 

features that only display noise. Data from each individual slide was combined with data 

from the control slide to create two distributions of data (noise and signal). We then 

calculated four potential threshold values for positivity with increasing levels of stringency: 

the false discovery rate cutoff (FDR cutoff), the point at which the chance that signal is 

noise is P<0.01, 5 standard deviations above the mean of the noise distribution 

(SD.noise*5), and the point at which the chance that signal is noise is very low at P<10−16.
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2.4 Analysis of magnitude, breadth, and depth of antibody binding

The raw magnitude, or fluorescent intensity, of antibody binding to individual peptides 

(averaged over the 3 sub-arrays as described above) was sorted and categorized by (1) 

HIV-1 protein, (2) amino acid start position as aligned to HXB2 HIV-1 reference strain, and 

(3) HIV-1 clade or CRF within which the peptide sequence can be found. This sorting was 

performed using the custom-designed R script “Table_select_V01” (available as Appendix 

3). To correct for any direct binding of the secondary antibody to linear peptides, the 

fluorescent intensity of antibody binding measured on the control slide was subtracted from 

the fluorescent intensity of antibody binding measured on the sample slide. Finally, all 

corrected fluorescent intensities were compared to the calculated threshold for positivity, 

and all values above the threshold were considered positive (with the rest of the values 

changed to “0” and considered negative). For these studies, we chose the threshold 

SD.noise*5.

To calculate the breadth of antibody binding, we evaluated the number of positive peptides 

for each sample and aligned the peptide sequences to eliminate overlap. If any positive 

peptide sequences shared 5 or more contiguous amino acids, we assumed that the peptides 

were recognized by the same antigen-binding site on a single antibody; these overlapping 

sequences were conservatively defined as a single positive “binding site.” If the first and last 

overlapping peptide in a string of overlapping peptides shared 4 or less amino acids, we 

assumed that the peptides were recognized by a minimum of two antibody sites (on either 

two antibodies or the same antibody). This approach to calculating antibody breadth is based 

on established methods to calculate T cell breadth, essentially as described in (Stephenson et 

al., 2012). The primary difference is that the overlapping region for T cells is usually 9 or 

more amino acids, reflecting the structure of CD4/CD8 T cell binding pockets. For 

antibodies, the antigen binding-site can range in length, and for conformational epitopes 

may not be contiguous. For this analysis, 5 amino acids was chosen as the minimum overlap 

region for antibody binding based on the fact that, apart from a handful of 3 and 4 AA 

sequences, 5 AA is the minimum length reported for human antibody binding to linear 

HIV-1 sequences as per the LANL HIV Immunology Database (Theoretical Biology and 

Biophysics, 2014). Conformational epitopes cannot be directly assessed with linear peptide 

microarray.

To calculate the depth of antibody responses, we evaluated the overlapping sequences of 

each binding site and determined the number of unique sequence variations of the binding 

site that were present. We then calculated the average number of variations/binding site for 

each sample. We also determined the relative frequency of clade or CRF-specific antibody 

responses. To do this we first defined distinct clade or CRF peptide ‘sets’ that included any 

peptide whose sequence had been identified in that clade or CRF (see Figure 1B). If a 

sequence could be found across multiple clades, it was included in multiple sets. We then 

calculated the percent of positive peptides within each set to provide a relative measure of 

clade- or CRF-specific antibody responses that could be comparable across sets of different 

sizes. To maximize our ability to detect differences in clade- or CRF-specific antibody 

responses, we restricted this analysis to the variable regions V1V2 and V3 of gp120.
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3. Results and Discussion

3.1 Evaluation of coverage of global HIV-1 sequence diversity

In designing this microarray, our goal was to develop a tool to measure the diversity of 

HIV-1-specific antibody binding to linear HIV-1 epitopes from global sequences. To 

determine how well the peptide library represented global HIV-1 sequence diversity, we 

analyzed coverage using the program package MosaicVaccines.1.2.11 as described above. 

We found that the peptide library covered the majority of sequences in the Los Alamos 

National Database (Table 1), including gp120 (50.2 %), gp41 (65.5 %), Gag p17 (58.4 %), 

and Gag p24 (86.2 %). Of note, for some protein regions a small group of 15-mer peptides 

sufficed to span a reported antibody binding site, but because the site was of high sequence 

diversity with no conserved sequences, the observed coverage was low (e.g. VIF_1 with 9% 

coverage reported).

We also evaluated the coverage of gp120 sequences from clades A, B, C, D, G, CRF01_AE, 

CRF02_AG, and a summary population of all other clades (Figure 2). This analysis 

demonstrated that for each clade- or CRF-specific sequence, 50% of the sequence (on 

average) was covered by peptides on the microarray. As expected, in the variable regions of 

the HIV-1 proteome lower coverage was achieved, as for the variable loops in ENV V1/V2 

(HXB2 131–196) or V4 (HXB2 385–418). However, the microarray reached a maximum of 

95 peptide variants for each location within the most variable regions of HIV-1 Env, and an 

average of 7 peptide variants for each location on HIV-1 Env, Gag, Nef, Pol, Rev, Tat, and 

Vif.

The diversity of linear peptides on the global HIV-1 microarray described here is in contrast 

to the composition of the predominant HIV-1 peptide microarray previously reported in the 

literature (Tomaras et al., 2011; Karasavvas et al., 2012; Gottardo et al., 2013; Imholte et al., 

2013). This previous microarray includes gp160 subtype consensus sequences from six 

HIV-1 group M subtypes (A, B, C, D, CRF_01 and CRF_02) and a consensus group M 

gp160, Con-S. In contrast to the global microarray reported here, this previous microarray 

contains less than a quarter of the number of peptides (1,423 vs. 6,564), excludes variable 

sequences by design, and does not include any non-Env proteins, making it potentially less 

optimal for quantifying HIV-1 antibody epitope diversity.

3.2 Evaluation of microarray assay quality and determination of threshold values for 
positivity

Given the density of peptides on the microarray (19,692 peptides over 3 triplicate sub-

arrays), we designed a program to evaluate the quality of raw microarray data following 

sample incubation and immunolabeling, as described above. Figure 3 demonstrates 

representative results of this analysis following microarray incubation with plasma from an 

HIV-1-infected subject. As shown in this example, the program provides a snapshot of how 

well the results from each sub-array correlate with each other; in this case the correlation 

ranged from R2=0.93 to 0.96. We also designed a program to determine a threshold value 

above which a signal can be considered “positive” (Renard et al., 2011). Figure 4 

demonstrates representative results of this analysis when the microarray was incubated with 
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plasma from an HIV-1-infected subject. By providing four potential threshold values with 

varying stringency, the program allows the user to decide whether his or her analysis will 

have greater sensitivity or specificity in detecting antibody binding.

3.3 Quantitating and visualizing antibody binding diversity

The goal of this project was to develop a method to both quantitate and visualize antibody 

binding patterns to diverse HIV-1 sequences for the purpose of HIV-1 vaccine and 

therapeutic research. To visualize binding patterns, one can plot the magnitude of peptide 

binding (MFI) by peptide location (starting amino acid position). For instance, Figure 5A 

demonstrates the gp140-specific binding pattern among HIV-1-infected subjects, where the 

average MFI per peptide is shown for the 5 subjects. In this example, peak MFI values were 

observed at the V3 region of gp120 and the CC loop region of gp41, with maximum values 

about 60,000 MFI, consistent with well-described immunodominant regions in HIV-1 

infection (Goudsmit, 1988; Tomaras et al., 2008; Tomaras and Haynes, 2009; McMichael et 

al., 2010). Among HIV-uninfected controls, there were a handful of nonspecific positive 

peptides, but peak values did not rise above 4,500 MFI (Figure 5B). For comparison, Figure 

5C shows the binding pattern among human subjects vaccinated with a single priming dose 

of Ad26-EnvA HIV-1 vaccine. Here peak binding values were observed to V1, V2 and V3 

linear peptides, with maximum MFIs up to about 12,000. The lower MFI of vaccinees 

compared to HIV-1-infected subjects is expected given receipt of only one dose of vaccine 

without subsequent boosting, but were still above those observed in naïve controls (Figure 

5D). Of note, sera from naïve controls demonstrated more nonspecific positive peptides than 

plasma from naïve controls.

As shown in Figure 5E–H, the peptide microarray can also be used to map antibody binding 

patterns in two animal models commonly used in HIV-1 vaccine research: rhesus macaques 

and guinea pigs (Nkolola et al., 2010; Barouch et al., 2012; Barouch et al., 2013; Nkolola et 

al., 2014). In both examples, animals were vaccinated with 6 serial doses of clade C HIV-1 

protein and developed a similar binding pattern, with peak responses at V3. The higher 

MFIs among vaccinated animals compared to humans is likely due to the increased number 

of boosts received by the animals. Of note, naïve guinea pig samples demonstrated higher 

backgrounds than naïve human or monkey samples.

While maps of antibody binding can provide a useful tool to visualize binding patterns, they 

are less useful for the quantitative comparison of groups or HIV-1 regions. To provide such 

quantitative data, we calculated the average MFI of peptide binding sorted by region and 

HIV-1 protein (Figure 6A); magnitude can be compared across subjects or vaccine platforms 

as long as the dilution factor for the assay is kept constant, as was done in these experiments. 

As demonstrated in Figure 6A, the microarray can help characterize which regions of the 

HIV-1 envelope are preferentially targeted. For example, in HIV-1-infected subjects, V3-

specific binding was significantly greater than to any other gp120 region (P<0.02 for all 

comparisons by t-test) and CC loop-specific binding was greater than to any other gp41 

region (P<0.002 for all comparisons by t-test). In contrast, human vaccinees did not show a 

preference for V3 or CC loop responses, although the vaccine included these antigens.
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It is also useful to know whether HIV-1-specific antibodies are binding to a limited region of 

the HIV-1 envelope or if multiple areas are targeted. Figure 6B demonstrates the number of 

binding sites (“breadth”) by gp120 and gp41 region for our four groups of samples. Here, we 

can see that while the vaccinated human subjects had relatively low magnitude gp140 

binding compared to HIV-1-infected subjects, there was no discernable difference in 

antibody breadth between the two groups. This ability to distinguish between magnitude and 

breadth is important in HIV-1 vaccine research. For example, if a particular vaccine 

candidate elicits low magnitude but broad antibody responses, then one might decide to 

change the vaccine vector or schedule to boost responses. On the other hand, if the vaccine 

candidate elicits high magnitude but narrow antibody responses, then one might decide to 

retain the same vector and schedule, but change the immunogen to broaden the specificity.

We also developed the microarray to measure the cross-clade binding of HIV-1-specific 

antibodies. Figure 6C demonstrates the mean number of epitope variants per binding site by 

gp120 and gp41 region for the four groups of samples. This analysis shows that the Ad26-

EnvA vaccine elicited comparable depth of V4 binding as seen in the HIV-1-infected 

subjects (5 vs. 6 variants/binding site, P=NS by t-test), even though the vaccine elicited 

significantly lower magnitude of V4 binding (1,955 vs. 10,468 MFI, P=0.0031 by t-test). In 

addition, the depth of V2 binding among vaccinated guinea pigs could not be predicted by 

magnitude alone. For example, while HIV-1-infected humans and HIV-1-vaccinated guinea 

pigs had the same magnitude of V2-specific responses (5,998 vs. 7,770 MFI, P=NS by t-

test), the vaccinated guinea pigs had significantly greater depth of V2-specific binding (7 vs. 

20 variants/binding site, P=0.0161 by t-test). Despite substantial differences in the human 

and guinea pig studies, this example demonstrates how the microarray can discriminate 

between magnitude and depth of antibody responses. This information may be highly 

relevant to HIV-1 vaccine researchers who aim to design a global HIV-1 vaccine capable of 

blocking acquisition of diverse HIV-1 strains.

We also calculated the relative clade- or CRF-specific binding present for the three most 

frequent clades (A, B, and C). Figure 7 demonstrates the percent of each clade- or CRF-

specific peptide set that was positive for the four groups within the variable regions V1V2 

and V3. In Figure 7A, we can see that among vaccinated monkeys and guinea pigs, V1V2-

specific responses were increased compared to the other cohorts, and that binding to clades 

A and C V1V2 peptides predominated, whereas clade B-specific binding was relatively low. 

This finding likely reflects the fact that both monkeys and guinea pigs received clade C Env 

immunogens. In contrast, in Figure 7B, we can see that among HIV-1-infected subjects, who 

had increased V3-specific responses, binding to clade B peptides predominated. This finding 

presumably reflects the fact that these subjects were from North America and were infected 

with clade B HIV-1. These data suggest that the microarray may not only be useful for 

measuring cross-clade immune responses following vaccination, but also may have an 

application in serotyping HIV-1-infected subjects. Further studies with larger numbers of 

HIV-1-infected subjects from different regions could test this hypothesis.

Finally, we also designed the microarray to assess HIV-1-specific binding across the HIV-1 

proteome. In Figure 8A, we demonstrate the magnitude, breadth, and depth of HIV-1-

specific binding to gp120, gp41, Gag, Nef, Pol, Rev, Tat, and Vif proteins among 5 HIV-1-
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infected human subjects. We observed that gp41 (which includes regions from the 

cytoplasmic tail) has the highest binding magnitude, followed by Gag. Figure 8B shows the 

antibody binding pattern for Gag among 5 HIV-1-infected subjects; peak values are noted 

within the p17 region, with very little Gag-specific binding among naïve controls (Figure 

8C). Antibody binding to non-Env proteins may be relevant to evaluate vaccine potency and 

for certain non-neutralizing antibodies (Lewis, 2014). Some studies have also shown an 

association between anti-p24 responses and virologic control (Weber et al., 1987; Trkola et 

al., 2004). In addition, the microarray might be useful to assess vaccine-induced 

seroreactivity in the context of HIV-1 vaccine clinical trials.

4. Conclusions

As more HIV-1 vaccine candidates progress into clinical trials, it is important to develop 

new tools to assess the epitope diversity of HIV-1-specific antibodies. Here we report the 

development of a global HIV-1 peptide microarray based on a library of 6,564 peptides 

covering the majority of sequences in the Los Alamos National Laboratory HIV-1 sequence 

database. This microarray provides a method to measure the magnitude, breadth, and depth 

of IgG binding to linear HIV-1 peptides, allowing for a more in depth analysis of antibody 

epitope diversity than is currently available. Such knowledge may contribute to 

improvements in HIV-1 vaccine design and development, or to a better understanding of 

immune responses to HIV-1 infection. The major limitations are that this assay does not 

measure conformational antibodies or antibody function. Nevertheless, when used in 

conjunction with other antibody assays, the microarray assays should prove useful for both 

preclinical and clinical HIV-1 research.
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Appendix 1. MakeDat_V04 R Script

Note, all provided R scripts are available under the terms of the Free Software Foundation’s 

GNU General Public License, as outlined at http://www.r-project.org/.

PAR_dir <- ".\\"

PAR_val <- "F635.Mean"

PAR_filter <- FALSE

PAR_flags <- c("−100") # "−50", "−75", "−100"

PAR_array <- 1 # 1 or 21

PAR_multiwell <- matrix( c(1,2,7,8,13,14,

3,4,9,10,15,16,

5,6,11,12,17,18,
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19,20,25,26,31,32,

21,22,27,28,33,34,

23,24,29,30,35,36,

37,38,43,44,49,50,

39,40,45,46,51,52,

41,42,47,48,53,54,

55,56,61,62,67,68,

57,58,63,64,69,70,

59,60,65,66,71,72,

73,74,79,80,85,86,

75,76,81,82,87,88,

77,78,83,84,89,90,

91,92,97,98,103,104,

93,94,99,100,105,106,

95,96,101,102,107,108,

109,110,115,116,121,122,

111,112,117,118,123,124,

113,114,119,120,125,126) ,ncol=21)

#############################################################################

####################

######################

readGPR = function(name) {

headersize <- read.table(name, header=FALSE, skip=1, nrows=1)

GPR <- read.table(name, header=TRUE, skip=as.numeric(headersize[1,1])+2, sep 

="\t",

strip.white=TRUE, colClasses="character")

GPR <- GPR[order(as.numeric(GPR$Column)),]

GPR <- GPR[order(as.numeric(GPR$Row)),]

GPR <- GPR[order(as.numeric(GPR$Block)),]

return(GPR)

}

getMC2 = function(val1, val2, val3) {

tmp <- cbind(rbind(abs(val1-val2),abs(val1-val3),abs(val2-

val3)),rbind(mean(c(val1,val2)), mean(c(val1,val3)),

mean(c(val2,val3))),rbind(val1,val1,val2),rbind(val2,val3,val3),rbind(1,1,2),

rbind(2,3,3))

colnames(tmp) <- c("Diff", "MC2", "MC2_1", "MC2_2", "MC2_SA1", "MC2_SA2")

tmp <- tmp[order(tmp[,1]),]

return(tmp[1,])

}

getMMC2 = function(val1, val2, val3) {

val <- mean(c(val1, val2, val3))

if(sd(c(val1, val2, val3))/val > 0.5){

val <- getMC2(val1, val2, val3)["MC2"]
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}

return(val)

}

filterDAT = function(dat) {

tmp <- NULL

exclude = c("AA","GGSGGGSDYKDDDDK","printingbuffer","empty")

for(i in 1:nrow(dat)) {

if( length(unlist(strsplit(dat[i,"Annotation"],"|",fixed=TRUE))) == 4 & (! 

(dat[i,"ID"] %in%

exclude)) ) {

tmp <- c(tmp,TRUE)

} else {

tmp <- c(tmp,FALSE)

}

}

return(dat[tmp,])

}

plotplus = function(x ,y ,name ,xl ,yl, MINVAL, MAXVAL) {

xtmp <- subset(x, !(x==-Inf|y==-Inf))

ytmp <- subset(y, !(x==-Inf|y==-Inf))

x <- xtmp

y <- ytmp

plot(x, y, main=name, xlab=xl, ylab=yl, xlim=c(MINVAL,MAXVAL), 

ylim=c(MINVAL,MAXVAL))

tmp1 <- lm(y~x)

abline(tmp1, col="red")

tmp2 <- summary(tmp1)

pos1 <- MAXVAL - (MAXVAL-MINVAL)/10*1

pos2 <- MAXVAL - (MAXVAL-MINVAL)/10*2

pos3 <- MAXVAL - (MAXVAL-MINVAL)/10*3

text(MINVAL,pos1,pos=4,labels=paste("Rq 

=",round(as.numeric(tmp2[8]),digits=2)),col="red")

text(MINVAL,pos2,pos=4,labels=paste("Sl

=",round(as.numeric(tmp1$coefficients[2]),digits=2)),col="red")

text(MINVAL,pos3,pos=4,labels=paste("In 

=",round(as.numeric(tmp1$coefficients[1]))),col="red")

}

#############################################################################

####################

######################

getDAT = function(fname,GPR,BLOCKS=NULL,INDEX=NULL){

fname <- unlist(strsplit(fname,"\\",fixed=TRUE))

fname <- fname[length(fname)]

fname <- substr(fname,1, nchar(fname)-4)
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if(is.null(BLOCKS)){

ARRAY <- GPR

}else{

ARRAY <- subset(GPR, as.numeric(GPR$Block) %in% BLOCKS)

fname <- sprintf("%s_ARRAY%.2d",fname,INDEX)

}

### dat ###

SA <- NULL

SA_LINES <- nrow(ARRAY)/3

for(i in 1:3){

SA[[i]] <- ARRAY[(SA_LINES*(i-1)+1):(SA_LINES*(i)),,drop=FALSE]

}

if(FALSE %in% unique(c(SA[[1]]$Name == SA[[2]]$Name, SA[[1]]$Name == SA[[3]]

$Name))){

print("ERROR")

return()

}

DAT <- cbind(SA[[1]]$ID, SA[[1]]$Name, SA[[1]]$Annotation, SA[[1]]$Flags, 

SA[[2]]$Flags,

SA[[3]]$Flags, SA[[1]][[PAR_val]], SA[[2]][[PAR_val]], SA[[3]][[PAR_val]])

colnames(DAT) <- c("ID", "Name", "Annotation", "SA1_Flags", "SA2_Flags", 

"SA3_Flags", "SA1",

"SA2", "SA3")

tmp <- apply(DAT[,c("SA1","SA2","SA3")],c(1,2),as.numeric)

DAT <- cbind(DAT, apply(tmp,1,mean), apply(tmp,1,median), apply(tmp,1,sd),

apply(tmp,1,sd)/apply(tmp,1,mean), apply(tmp,1,min), apply(tmp,1,max))

colnames(DAT)[colnames(DAT)==""] <- c("Mean", "Median", "SD", "CV", "Min", 

"Max")

MC2 <- NULL

MMC2 <- NULL

for(i in 1:nrow(DAT)){

MC2 <- rbind(MC2,

getMC2(as.numeric(DAT[i,"SA1"]),as.numeric(DAT[i,"SA2"]),as.numeric(DAT[i,"SA

3"]))[2:4])

MMC2 <- c(MMC2,

getMMC2(as.numeric(DAT[i,"SA1"]),as.numeric(DAT[i,"SA2"]),as.numeric(DAT[i,"S

A3"])))

}

DAT <- cbind(DAT, MC2, MMC2)

### corr ###

tmp[cbind(SA[[1]]$Flags %in% PAR_flags, SA[[2]]$Flags %in% PAR_flags, SA[[2]]

$Flags %in%

PAR_flags)] <- NA

colnames(tmp) <- paste("CORR_",colnames(tmp),sep="")
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DAT <- cbind(DAT,tmp)

DAT <- cbind(DAT, apply(tmp,1,mean,na.rm=T), apply(tmp,1,median,na.rm=T),

apply(tmp,1,sd,na.rm=T), apply(tmp,1,sd,na.rm=T)/apply(tmp,1,mean,na.rm=T),

apply(tmp,1,min,na.rm=T), apply(tmp,1,max,na.rm=T))

DAT[DAT==Inf] <- NA

DAT[DAT==-Inf] <- NA

DAT[DAT=="NaN"] <- NA

colnames(DAT)[colnames(DAT)==""] <- c("CORR_Mean", "CORR_Median", "CORR_SD", 

"CORR_CV",

"CORR_Min", "CORR_Max")

CORR_MC2 <- NULL

CORR_MMC2 <- NULL

for(i in 1:nrow(DAT)){

VAL <- tmp[i,!is.na(tmp[i,])]

if(length(VAL)==1){

CORR_MC2 <- rbind(CORR_MC2, c(VAL,VAL,VAL))

CORR_MMC2 <- c(CORR_MMC2, VAL)

}else if(length(VAL)==2){

CORR_MC2 <- rbind(CORR_MC2, c(mean(VAL),VAL))

CORR_MMC2 <- c(CORR_MMC2, mean(VAL))

}else if(length(VAL)==3){

CORR_MC2 <- rbind(CORR_MC2, getMC2(VAL[1],VAL[2],VAL[3])[2:4])

CORR_MMC2 <- c(CORR_MMC2, getMMC2(VAL[1],VAL[2],VAL[3]))

}else{

CORR_MC2 <- rbind(CORR_MC2, c(NA,NA,NA))

CORR_MMC2 <- c(CORR_MMC2, NA)

}

}

colnames(CORR_MC2) <- c("CORR_MC2","CORR_MC2_1","CORR_MC2_2")

DAT <- cbind(DAT, CORR_MC2, CORR_MMC2)

if(PAR_filter){

DAT <- filterDAT(DAT)

}

DAT <- DAT[order(DAT[,"Name"]),]

write.table(DAT, file=sprintf("%s.dat",fname), quote=TRUE, sep="\t", 

row.names=FALSE,

col.names=TRUE)

### image ###

NCOLOR <- 256

PAL <- rev(heat.colors(NCOLOR))

MINVAL <- 0

MAXVAL <- 65535

MINVAL_LOG <- 2.5

MAXVAL_LOG <- log10(MAXVAL)
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PAR_valB <- "B635.Mean"

png(filename=sprintf("%s.png",fname), width=5*200, height=4*200, res=100)

layout(rbind(

c(1,3,5,6,7),

c(1,3,8,9,10),

c(2,4,11,13,15),

c(2,4,12,14,16)

))

par(mar=c(0,4,2,1))

plot(as.numeric(ARRAY$X), as.numeric(ARRAY$Y)*(−1), col=PAL[(NCOLOR-1)/

(MAXVAL-

MINVAL)*(as.numeric(ARRAY[[PAR_val]])-MINVAL)+1], pch=15, cex=0.8, xlab="", 

ylab="", axes=FALSE,

main="Array signal", yaxs="i", xaxs="i", xlim=c(min(as.numeric(GPR$X)), 

max(as.numeric(GPR$X))),

ylim=c(max(as.numeric(GPR$Y))*(−1), min(as.numeric(GPR$Y))*(−1)))

tmp <- log10(as.numeric(ARRAY[[PAR_val]]))

tmp[tmp<MINVAL_LOG] <- MINVAL_LOG

plot(as.numeric(ARRAY$X), as.numeric(ARRAY$Y)*(−1), col=PAL[(NCOLOR-1)/

(MAXVAL_LOG-

MINVAL_LOG)*(tmp-MINVAL_LOG)+1], pch=15, cex=0.8, xlab="", ylab="", 

axes=FALSE, yaxs="i",

xaxs="i", main="Array signal log", xlim=c(min(as.numeric(GPR$X)), 

max(as.numeric(GPR$X))),

ylim=c(max(as.numeric(GPR$Y))*(−1), min(as.numeric(GPR$Y))*(−1)))

plot(as.numeric(ARRAY$X), as.numeric(ARRAY$Y)*(−1), col=PAL[(NCOLOR-1)/

(MAXVAL-

MINVAL)*(as.numeric(ARRAY[[PAR_valB]])-MINVAL)+1], pch=15, cex=0.8, xlab="", 

ylab="", axes=FALSE,

main="Array background", yaxs="i", xaxs="i", xlim=c(min(as.numeric(GPR$X)),

max(as.numeric(GPR$X))), ylim=c(max(as.numeric(GPR$Y))*(−1), 

min(as.numeric(GPR$Y))*(−1)))

tmp <- log10(as.numeric(ARRAY[[PAR_valB]]))

tmp[tmp<MINVAL_LOG] <- MINVAL_LOG

plot(as.numeric(ARRAY$X), as.numeric(ARRAY$Y)*(−1), col=PAL[(NCOLOR-1)/

(MAXVAL_LOG-

MINVAL_LOG)*(tmp-MINVAL_LOG)+1], pch=15, cex=0.8, xlab="", ylab="", 

axes=FALSE, yaxs="i",

xaxs="i", main="Array background log", xlim=c(min(as.numeric(GPR$X)), 

max(as.numeric(GPR$X))),

ylim=c(max(as.numeric(GPR$Y))*(−1), min(as.numeric(GPR$Y))*(−1)))

par(mar=c(4,4,2,1))

plotplus(as.numeric(DAT[,"SA1"]),as.numeric(DAT[,"SA2"]),"",sprintf("SA %d",

1),sprintf("SA
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%d",2), MINVAL, MAXVAL)

plotplus(as.numeric(DAT[,"SA1"]),as.numeric(DAT[,"SA3"]),"",sprintf("SA %d",

1),sprintf("SA

%d",3), MINVAL, MAXVAL)

plotplus(as.numeric(DAT[,"SA2"]),as.numeric(DAT[,"SA3"]),"",sprintf("SA %d",

2),sprintf("SA

%d",3), MINVAL, MAXVAL)

plotplus(log10(as.numeric(DAT[,"SA1"])),log10(as.numeric(DAT[,"SA2"])),"",spr

intf("SA %d

log",1),sprintf("SA %d log",2), MINVAL_LOG, MAXVAL_LOG)

plotplus(log10(as.numeric(DAT[,"SA1"])),log10(as.numeric(DAT[,"SA3"])),"",spr

intf("SA %d

log",1),sprintf("SA %d log",3), MINVAL_LOG, MAXVAL_LOG)

plotplus(log10(as.numeric(DAT[,"SA2"])),log10(as.numeric(DAT[,"SA3"])),"",spr

intf("SA %d

log",2),sprintf("SA %d log",3), MINVAL_LOG, MAXVAL_LOG)

plotplus(MC2[,"MC2_1"],MC2[,"MC2_2"],"",sprintf("MC2 %d",1),sprintf("MC2 %d",

2), MINVAL,

MAXVAL)

plotplus(log10(MC2[,"MC2_1"]),log10(MC2[,"MC2_2"]),"",sprintf("MC2 %d log",

1),sprintf("MC2 %d

log",2), MINVAL_LOG, MAXVAL_LOG)

plot(density(as.numeric(ARRAY[[PAR_val]])), xlim=c(MINVAL,MAXVAL), main="", 

xlab="Signal")

plot(density(log10(as.numeric(ARRAY[[PAR_val]]))), 

xlim=c(MINVAL_LOG,MAXVAL_LOG), main="",

xlab="Signal log")

tmp <- NULL

tmp[["SA1"]] <- as.numeric(DAT[,"SA1"])

tmp[["SA2"]] <- as.numeric(DAT[,"SA2"])

tmp[["SA3"]] <- as.numeric(DAT[,"SA3"])

boxplot(tmp, ylim=c(MINVAL,MAXVAL), ylab="Signal")

tmp <- NULL

tmp[["SA1"]] <- log10(as.numeric(DAT[,"SA1"]))

tmp[["SA2"]] <- log10(as.numeric(DAT[,"SA2"]))

tmp[["SA3"]] <- log10(as.numeric(DAT[,"SA3"]))

boxplot(tmp, ylim=c(MINVAL_LOG,MAXVAL_LOG), ylab="Signal log")

dev.off()

}

#############################################################################

####################

######################

files <- dir(path=PAR_dir, pattern="*.gpr", full.names=TRUE)

files <- files[!file.info(files)$isdir]
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files <- files[substr(files,nchar(files)-3,nchar(files)) == ".gpr"]

for(i in 1:length(files)){

print(sprintf("Processing file %d out of %d",i,length(files)))

GPR <- readGPR(files[i])

if(PAR_array==1){

getDAT(files[i],GPR)

}else{

for(j in 1:PAR_array){

print(sprintf("Processing array %d out of %d",j,PAR_array))

getDAT(files[i],GPR,PAR_multiwell[,j],j)

}

}

}

Appendix 2: calc_THRES_KS_130711_V02 R Script

library(rapmad)

INDEX<-read.table("sample.xls",header=F,sep = "\t", strip.white=T,skip=1)

INDEX.dat<-INDEX[INDEX[,1]=="dat",]

if(ncol(INDEX.dat)==4){

LIST.1 <- c(as.character(INDEX.dat[,2]),as.character(INDEX.dat[,4]))

}else{

LIST.1 <- c(as.character(INDEX.dat[,2]))

}

LIST.1<-LIST.1[LIST.1!=""]

FILENAME<-"OUTFILE_THRESH.Rdat"

DAT<-NULL

for (cnt1 in 1:length(LIST.1)){

DAT.TMP<-read.table(paste(LIST.1[cnt1],sep=""),header=TRUE,sep = "\t", 

strip.white=T)

DAT<-cbind(DAT,DAT.TMP$MMC2)

}

#INDEX<-read.table(paste("INDEX_2070_NEW.txt",sep=""),header=TRUE,sep = 

"\t", strip.white=T)

CN<-substr(LIST.1,1,nchar(LIST.1)-4)

colnames(DAT)<-CN

DAT<-cbind(DAT.TMP[,c(1:3)],DAT)

save(DAT,file=FILENAME)

####Plot of Signal Distribution for Raw Data

TAB.OUT<-NULL

png(filename = paste("01_thresholds_raw_data.png",sep=""), width = 3200, 

height =

1600*round((length(LIST.1)+.1)/2),

units = "px", pointsize = 40, bg = "white", res = NA,
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restoreConsole = TRUE)

par(mfrow=c(round((length(LIST.1)+.1)/2),2))

par(mai=c(2.5,2.5,1,.5))

for (c1 in (4:ncol(DAT))){

FIT.TMP<-signal.gmm.generic(DAT[,c1],logScale=F)

y1<-rnorm(10000,mean = FIT.TMP[[2]][1], sd = FIT.TMP[[3]][1])

y2<-rnorm(10000,mean = FIT.TMP[[2]][2], sd = FIT.TMP[[3]][2])

D<-density(DAT[,c1])

plot(density(DAT[,c1]),lwd=4,main=colnames(DAT)[c1],xlim=c(FIT.TMP[[2]][1]-

(FIT.TMP[[3]][1]*3),FIT.TMP[[2]][1]+(FIT.TMP[[3]][1]*15)))

lines(density(y1),col="red",lwd=4)

lines(density(y2),col="blue",lwd=4)

abline(v=FIT.TMP[[5]],lwd=3,col="red",lty=2)

abline(v=FIT.TMP[[2]][1]+(FIT.TMP[[3]][1]*5),lwd=3,col="blue",lty=2)

DAT.STAT<-cbind(DAT[,c1],FIT.TMP[[1]])

DAT.STAT.p0.01<-DAT.STAT[DAT.STAT[,2]<0.01,]

abline(v=min(DAT.STAT.p0.01[,1]),lwd=3,col="green",lty=2)

DAT.STAT.p0<-DAT.STAT[DAT.STAT[,2]==0,]

abline(v=min(DAT.STAT.p0[,1]),lwd=3,col="magenta",lty=2)

legend(min(DAT.STAT.p0[,1]),max(D$y),c("Data","FIT-Noise","Fit-Signal","FDR

cutoff","SD.noise*5","P<0.01","P=0"),lwd=4,

lty=c(1,1,1,2,2,2,2),

col=c("black","red","blue","red","blue","green","magenta"))

TAB.OUT<-rbind(TAB.OUT,cbind(colnames(DAT)[c1],FIT.TMP[[5]],FIT.TMP[[2]][1]+

(FIT.TMP[[3]][1]*5),min(DAT.ST

AT.p0.01[,1]),min(DAT.STAT.p0[,1])))

}

dev.off()

##make DAT-CTRL

DAT.COR<-NULL

DAT.ID.KEEP<-NULL

if (ncol(INDEX.dat)==4){

INDEX.dat.corr<-INDEX.dat[INDEX.dat[,4]!="",]

for (c1 in (1:nrow(INDEX.dat.corr))){

DAT.ID.TMP<-

substr(as.character(INDEX.dat.corr[c1,2]),

1,nchar(as.character(INDEX.dat.corr[c1,2]))-4)

DAT.ID.KEEP<-c(DAT.ID.KEEP,DAT.ID.TMP)

CTR.ID.TMP<-

substr(as.character(INDEX.dat.corr[c1,4]),

1,nchar(as.character(INDEX.dat.corr[c1,4]))-4)

DAT.COR<-cbind(DAT.COR,DAT[[DAT.ID.TMP]]-DAT[[CTR.ID.TMP]])

}

colnames(DAT.COR)<-paste(DAT.ID.KEEP,"COR",sep="_")
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DAT.COR<-cbind(DAT[,1:3],DAT.COR)

####Plot of Signal Distribution for Corrected Data

png(filename = paste("02_thresholds_corrected_data.png",sep=""), width = 

3200, height =

1600*round((length(DAT.ID.KEEP)+.1)/2),

units = "px", pointsize = 40, bg = "white", res = NA,

restoreConsole = TRUE)

par(mfrow=c(round((length(DAT.ID.KEEP)+.1)/2),2))

par(mai=c(2.5,2.5,1,.5))

for (c1 in (4:ncol(DAT.COR))){

FIT.TMP<-signal.gmm.generic(DAT.COR[,c1],logScale=F)

y1<-rnorm(10000,mean = FIT.TMP[[2]][1], sd = FIT.TMP[[3]][1])

y2<-rnorm(10000,mean = FIT.TMP[[2]][2], sd = FIT.TMP[[3]][2])

D<-density(DAT.COR[,c1])

plot(density(DAT.COR[,c1]),lwd=4,main=colnames(DAT.COR)

[c1],xlim=c(FIT.TMP[[2]][1]-

(FIT.TMP[[3]][1]*3),FIT.TMP[[2]][1]+(FIT.TMP[[3]][1]*15)))

lines(density(y1),col="red",lwd=4)

lines(density(y2),col="blue",lwd=4)

abline(v=FIT.TMP[[5]],lwd=3,col="red",lty=2)

abline(v=FIT.TMP[[2]][1]+(FIT.TMP[[3]][1]*5),lwd=3,col="blue",lty=2)

DAT.STAT<-cbind(DAT.COR[,c1],FIT.TMP[[1]])

DAT.STAT.p0.01<-DAT.STAT[DAT.STAT[,2]<0.01,]

abline(v=min(DAT.STAT.p0.01[,1]),lwd=3,col="green",lty=2)

DAT.STAT.p0<-DAT.STAT[DAT.STAT[,2]==0,]

abline(v=min(DAT.STAT.p0[,1]),lwd=3,col="magenta",lty=2)

legend(min(DAT.STAT.p0[,1]),max(D$y),c("Data","FIT-Noise","Fit-Signal","FDR

cutoff","SD.noise*5","P<0.01","P=0"),lwd=4,

lty=c(1,1,1,2,2,2,2),

col=c("black","red","blue","red","blue","green","magenta"))

TAB.OUT<-

rbind(TAB.OUT,cbind(colnames(DAT.COR)[c1],FIT.TMP[[5]],FIT.TMP[[2]][1]+

(FIT.TMP[[3]][1]*5),min(DA T.STAT.p0.01[,1]),min(DAT.STAT.p0[,1])))

}

dev.off()

}

colnames(TAB.OUT)<-c("Experiment","FDR-cutoff","SD.noise*5","P<0.01","P=0")

write.table(TAB.OUT,file="thresholds.xls",quote=F,row.names=F,col.names=T,sep

="\t")

Appendix 3: Table_select_V01 R script

readDAT = function(name) {

return(read.table(name, header=TRUE, sep ="\t", strip.white=TRUE, 
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colClasses="character"))

}

filterDAT = function(dat) {

tmp <- NULL

exclude =

c("AA","empty","GGSGGGSDYKDDDDK","GGSDYKDDDDK","DYKDDDDK","printingbuffer","m

ouse_IgG","human_IgG

","IgG-mouse","IgG-human")

for(i in 1:nrow(dat)) {

if( length(unlist(strsplit(dat$Annotation[i],"|",fixed=TRUE))) == 4 & (!(dat

$ID[i] %in%

exclude)) ) {

tmp <- c(tmp,TRUE)

} else {

tmp <- c(tmp,FALSE)

}

}

return(dat[tmp,])

}

#############################################################################

####################

######################

VAL <- "MMC2"

files <- read.table("samples.xls", header=FALSE, sep ="\t", strip.white=TRUE,

colClasses="character")

TAB <- NULL

for(i in 1:nrow(files)) {

print(i)

print(files[[1]][i])

DAT <- filterDAT(readDAT(files[[1]][i]))

TAB <- cbind(TAB, as.numeric(DAT[[VAL]]))

}

colnames(TAB) <- files[[2]]

rownames(TAB) <- sprintf("%s - %s", DAT$ID, DAT$Name)

TAB <- TAB[order(as.numeric(substr(rownames(TAB),19,22))),]

TAB <- apply(TAB,c(1,2),round)

OUT <- rownames(TAB)

OUT <- strsplit(OUT, " - ", fixed=T)

OUT <- do.call("rbind",OUT)

OUT <- cbind(OUT, do.call("rbind",strsplit(substr(OUT[,2],

6,14),"",fixed=T))) # Protein

OUT <- cbind(OUT, as.numeric(substr(OUT[,2],16,19))+1 ) # Position+1

OUT <- cbind(OUT, do.call("rbind",strsplit(substr(OUT[,2],

21,182),"",fixed=T))) # Clade
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PROT <- toupper(c("env", "gag", "nef", "pol", "rev", "tat", "vif", "vpr", 

"vpu"))

CLADE <- 

c("A","A1","A2","B","C","D","F1","F2","G","H","J","K","01_AE","02_AG","03_AB"

,"04_cpx","05_DF","0

6_cpx","07_BC","08_BC","09_cpx","10_CD","11_cpx","12_BF","13_cpx","14_BG","15

_01B","16_A2D","17_B

F","18_cpx","19_cpx","20_BG","21_A2D","22_01A1","23_BG","24_BG","25_cpx","26_

AU","27_cpx","28_BF"

,"29_BF","31_BC","32_06A1","33_01B","34_01B","35_AD","36_cpx","37_cpx","38_BF

1","39_BF","40_BF","

42_BF","43_02G","44_BF","45_cpx","46_BF","47_BF","49_cpx","0102A","01A1","01A

DF2","01AF2U","01B",

"01BC","01C","01DU","0206","0209","0213","0225","02A","02A1","02A1U","02AG","

02B","02C","02D","02

GK","02U","06A1","0708","09A","13U","1819","26C","26CU","A1A2CD","A1A2D","A1C

","A1CD","A1CDGKU","

A1CG","A1D","A1DHK","A1F2","A1G","A1GHU","A1GJ","A1GU","A1H","A1U","A2C","A2C

D","A2D","AC","ACD",

"AD","ADGU","ADU","AF2","AF2G","AGKU","AGU","AHJU","AKU","AU","BC","BCF1","BC

U","BF","BF1","BG","

CD","CF1","CF1U","CU","DF","DF1G","DG","DO","DU","F2KU","GKU","JKU","P","A3",

"0107","01GHJKU","11

A1","23A1","A1B","A1DK","A2G","ACFG","AG","AGH","BFG","DF1","GH","F","01F2","

01U","02H","07B","11

C","CGU","x","01A1G","02F2","KU","A1A2","GJ")

colnames(OUT) <- c("Sequence","Name",PROT,"Position+1",CLADE)

OUT <- cbind(OUT, TAB)

write.table(OUT, file="table_select.xls", quote=TRUE, sep="\t", row.names=F, 

col.names=TRUE)
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Figure 1. Generation of a global HIV-1 peptide library
(A) Cocktail size of Env gp120 and Gag p24 sequences is plotted against percent coverage 

of global sequence variability. The cocktails consist of the single best covering sequences 

from each of the 7 frequent clades (left of vertical line), and the 13 best covering sequences 

as calculated from the complete HIV-1 sequence library and MOSAIC sequences (right of 

vertical line). (B) Clade- and circulating recombinant form (CRF)-specific peptide sets are 

shown. Only sets that have >300 peptides are shown out of a total of 135 sets. If a peptide 

sequence was found in multiple clades/CRFs, then it was counted in multiple sets.
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Figure 2. Coverage of HIV-1 peptide library for gp120 by clade
Top row: A, C, G, CRF02_AG; bottom row: B, D, CRF01_AE, and all other clades. The X-

direction of each plot represents the sequence of gp120. Sequences segments included on the 

microarray are depicted in red. In the Y-direction all sequences for the respective clade from 

the alignment HIV1_ALL_2009_ENV_PRO.fasta are shown (total 2248). The average 

coverage (horizontally) for each used HIV-1 sequence is 50%. The evaluation of coverage 

was performed presuming the same length of all sequences for one protein or fragment 

within a given clade.
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Figure 3. Quality analysis of raw microarray data
The signal distribution of a representative microarray is displayed, as well as the correlation 

between slide sub-arrays. This data is following incubation with serum from an HIV-1-

infected subject. SA, subarray; Rq, R squared; Sl, slope; In, intersection with the y axis; 

MC2, two closest values between the 3 sub-arrays; MC2 1 and MC2 2, each component of 

MC2.
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Figure 4. Determination of threshold values for positivity
The signal and noise distribution of data from a sample microarray is displayed, as well as 

the correlation between slide sub-arrays. Microarray data is following incubation with 

plasma from an HIV-1-infected subject. FDR, false discovery rate; SD, standard deviation.
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Figure 5. IgG binding to linear HIV-1 gp140 peptides in HIV-1-infected subjects and vaccine 
recipients
The mean fluorescent intensity (MFI) of positive HIV-1 gp140 peptides are plotted against 

the amino acid start position as aligned to HXB2 HIV-1 reference strain for (A) 5 HIV-1-

infected human subjects with high viral load, (B) 5 HIV-uninfected plasma controls, (C) 5 

human subjects following one dose of Ad26-EnvA HIV-1 vaccine, (D) 5 naïve human 

serum controls, (E) 5 rhesus monkeys following 6 doses of HIV-1 Clade C Env protein, (F) 

2 naïve rhesus monkey serum controls, (G) 5 guinea pigs following 6 doses of HIV-1 Clade 

C Env protein, and (H) 3 naïve guinea pig serum controls. Symbols represent the average 
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MFI from infected or vaccinated subjects (color squares) and controls (black circles); bars 

represent SEM.
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Figure 6. Magnitude, breadth, and depth of HIV-1-specific antibody binding, as measured by 
global HIV-1 peptide microarray
Antibody responses for four groups are are plotted by gp120 and gp41 region, including (A) 

the mean fluorescent intensity of positive peptides (magnitude), (B) the number of binding 

sites (breadth), and (C) the mean number of epitope variants at each binding site (depth). 

The four groups include HIV-1-infected subjects (blue), vaccinated human subjects (red), 

vaccinated rhesus monkeys (green), and vaccinated guinea pigs (purple). Bars represent 

SEM.
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Figure 7. Cross-clade HIV-1 antibody binding as measured by global HIV-1 peptide microarray
The percent of clade- or CRF-specific peptide sets that are positive for V1V2 and V3 

regions of gp120. The four cohorts include HIV-1-infected subjects (blue), vaccinated 

human subjects (red), vaccinated rhesus monkeys (green), and vaccinated guinea pigs 

(purple). Bars represent SEM.
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Figure 8. IgG binding to linear HIV-1 peptides from across the HIV-1 proteome in HIV-1-
infected subjects
(A) The mean fluorescent intensity (MFI) of positive HIV-1 peptides (magnitude), number 

of binding sites (breadth), and mean variants per binding site (depth) are shown for multiple 

HIV-1 proteins for 5 HIV-1-infected human subjects. Bars represent SEM. In addition, the 

MFI of positive HIV-1 Gag peptides are plotted against the amino acid start position as 

aligned to HXB2 HIV-1 reference strain for 5 HIV-1-infected human subjects (B) and 5 

HIV-uninfected controls (C). Bars represent SEM.
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