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Abstract

In this paper we introduce methodology—causal directed acyclic graphs—that empirical 

researchers can use to identify causation, avoid bias, and interpret empirical results. This 

methodology has become popular in a number of disciplines, including statistics, biostatistics, 

epidemiology and computer science, but has yet to appear in the empirical legal literature. 

Accordingly we outline the rules and principles underlying this new methodology and then show 

how it can assist empirical researchers through both hypothetical and real-world examples found 

in the extant literature. While causal directed acyclic graphs are certainly not a panacea for all 

empirical problems, we show they have potential to make the most basic and fundamental tasks, 

such as selecting covariate controls, relatively easy and straightforward.

1. Introduction

Scholars spend significant time and energy seeking to identify cause and effect relationships 

that exist in their data. Even a brief review of the extant legal literature suggests that state-

of-the-art statistical analysis is now routine; every stage of empirical research— from data 

collection to model choice to presentation of findings—is more advanced and sophisticated 

than was typical in the empirical literature just a decade ago.

Surprisingly, one aspect of causality that researchers have spent very little time exploring is 

the precise nature of the underlying relationships between and among the variables of 

interest. Understanding this basic structural framework is essential for a number of empirical 

tasks, such as specifying sound statistical models, avoiding bias and confounding, and 

accurately interpreting results. In fact, pursuing an empirical project without a map of the 

cause and effect relations is a bit like undertaking a construction project without a detailed 

blueprint: success is possible, but the likelihood of confusion and error increases quite a bit 

absent a good plan.

In this paper we describe the use of causal directed acyclic graphs as a formal methodology 

for reasoning about cause and effect relationships and about qualitative assumptions in 

empirical research. Pearl (1995) introduced these diagrams into the causal inference 
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literature and showed how they could be useful in reasoning about causal structures and in 

determining what variables an investigator needs to control for in answering specific causal 

queries. These diagrams are similar to (and sometimes even used synonymously with 

(Edwards 1991)) Bayes' nets or influence diagrams, but causal directed acyclic graphs 

specifically allow for causal or counterfactual interpretation, as we clarify below. We will 

demonstrate how the use of such graphs can assist researchers in interpreting their empirical 

analyses. As we discuss, this causal directed acyclic graph methodology generalizes and 

formalizes, within a causal context, ideas from the structural equation modeling and path 

analysis literature that have been popular in the legal and social sciences.1 The causal 

directed acyclic graph methodology, while building on existing ideas also offer innovations 

and advantages for empirical scholars seeking to make causal claims and for this reason has 

become popular in statistics, biostatistics, epidemiology and computer science—we argue 

here that it could be of use in empirical legal research as well.2

To give just one example of how causal diagrams can aid empirical researchers, consider a 

study of judicial behavior by Adam Cox and Thomas Miles (2008) investigating the effects 

of individual judges' characteristics on federal judicial decision making in the voting rights 

context. For their project, the authors collected data on these background characteristics 

(ideology, gender, race, age, education, employment experience prior to the bench), along 

with case characteristics, and the final judicial decision in the legal controversy. They were 

particularly interested in the effects of ideology and race3 on judicial decisions but they also 

comment on the effects of various other demographic characteristics of the judges. The 

causal relationships of these variables might be as depicted in figure 1 below, suggesting 

that each of the variables has a direct and unmediated effect on the unit of analysis, the 

judicial decision, but are not related to each other except as “parents” of the decisions 

themselves. As will be seen below, this structure would warrant the analytic approach taken 

by Cox and Miles in the presentation and interpretation of their findings.

Alternatively, the variables in Cox and Miles' study could be related as depicted in figure 2, 

implying a far more complex (and perhaps more realistic) set of relationships. The unit of 

analysis is the case and the case characteristics now affect both judicial decisions and the 

likelihood that litigation will take place in courts with judges of a particular race, gender, 

age or ideology—plaintiffs are likely to file claims with judges deemed friendly to their 

legal claims. The various variables are essentially viewed as characteristics of the case itself. 

However, because of the cause relationships between the judge's race, gender, and ideology 

and education and employment these variables will have causal relationships amongst one 

another as indicated in the diagram. Gender, race and age have direct effects on the variables 

education, ideology, employment, and judicial decisions, as well as indirect effects on 

1One key distinction between the diagrams used in structural equation modeling efforts and those that we discuss here, for example, is 
that in the former context the diagrams depict the variables that will be included in a statistical model whereas in our context the 
diagrams help researchers identify which variables to include and exclude as controls. Many other differences will become apparent in 
our discussion below.
2Researchers have noted and utilized mapping techniques, some that are akin to directed acyclic graphs, to understand and explain a 
range of legal issues, such as forensic evidence in traffic accidents (e.g. Davis 2003)and legal reasoning and argument (van Gelder 
2007). We have, however, been unable to identify any articles or studies that formally explain the DAG methodology and its 
usefulness for empirical legal scholars seeking to make causal claims.
3We note that some authors (e.g. Holland 1986; Hernán 2005) argue that “effects of race” are potentially ill-defined because there is 
no conceivable hypothetical intervention to change race.
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ideology, employment, and judicial decision as mediated through education. Education has a 

direct effect on ideology, employment, and judicial decisions and an indirect effect on 

judicial decisions as mediated through ideology and employment. Indeed, only ideology and 

employment have a direct unmediated effect on judicial decisions in both figures 1 and 2.).

In sum, we suggest that both case and individual judge characteristics directly affect the 

outcome unit of analysis, i.e. the judicial decision. Further, case characteristics directly 

affect only litigation-relevant judge characteristics along with the final judicial decision. 

Several of the background judge characteristics do not affect each other because they are 

temporally unchanging, such as race and gender.

Deciding which diagram better describes the structural relationships between these variables 

requires that investigators rely on theory and qualitative assumptions, and the distinction is 

key for purposes of making good modeling decisions and interpreting empirical results 

correctly. If, on the one hand, figure 1 reflects the true structure of the data, then, as will be 

made clear below, the total and direct effects on judicial decisions are equal for each of the 

seven variables, and the choice of statistical controls for assessing these effects is relevant 

only for purposes of precision (that is to say, the controls are useful for decreasing the 

standard error of the estimate). If figure 2 is the true model, on the other hand, then the 

estimates of the total and direct effects of race, gender or age will in general diverge; indeed 

they could have different signs—the direct effect could be negative while the overall total 

effect could be positive. Parsing total effects and direct effects of, say race, in the context of 

figure 2 would require the authors to adjust for education, employment, ideology, gender, 

age and case characteristics for the direct effect, but only case characteristics for the total 

effect. Moreover, and perhaps more importantly, the estimated total effect of ideology, 

education, and employment are likely to be biased if figure 2 is correct and the authors fail 

to control for gender, race and age. After our exposition of the theory of causal directed 

acyclic graphs we will return to these and other issues and show how the assumptions made 

by empirical scholars could have notable affects on results.4

We would like to point out an important fact that is often overlooked by researchers before 

continuing: interpreting coefficients from a regression is never free of assumptions vis-à-vis 

the structural relationships between and among variables. Whenever a regression coefficient 

is interpreted causally, assumptions are necessarily being made about how the variables in 

the regression are related; causal diagrams, as we will show below, are useful because they 

make explicit what scholars often assume implicitly and sometimes inadvertently. Our goal 

in this article is to demonstrate how causal diagrams can aid empirical scholars in clarifying 

their theory about the data and in the subsequent task associated with interpreting empirical 

results. This will increase the likelihood that investigators will make sound qualitative 

assumptions, pursue the best modeling strategy for identifying causal effects, and interpret 

results in a useful and precise manner.5

4It might be argued that to estimate a target parameter, investigators should simply adjust for all available variables that affect the 
cause and outcome of interest and that potentially mediate the effects in order to assure precise estimates, avoid bias and allow for the 
identification of direct effects. But this common approach, as noted above, does not allow the researcher to distinguish between total 
and direct effects, a difference that is often of great importance in empirical research. Further, as will be seen below, such an all-
inclusive approach to modeling has the potential to induce bias and confounding.
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Before outlining the ways in which causal diagrams can advance the goals and aims of 

empirical legal research, we first describe the formal rules and principles for constructing 

and reasoning about these diagrams. Section 2 describes the mechanics of constructing 

causal graphs and shows why the graphs are useful for clarifying qualitative modeling 

assumptions, a necessary step for addressing problems of confounding and selection bias. 

Section 3 explains how and why the graphs enable researchers to determine what 

independence and conditional independence relations hold amongst variables. Section 4 

turns directly to the issues of confounding and selection and illustrates how investigators can 

use causal graphs to examine problems of confounding and selection bias and to estimate the 

causal effects of an intervention, treatment, or policy change from non-experimental data. 

Section 5 discusses the way in which directed acyclic graphs can address the issues 

associated with controlled directed effects. In section 6.1, we demonstrate how to apply the 

causal directed acyclic graph framework to questions that emerge in the context of legal 

research with the help of a case study that focuses on the Cox and Miles' (2008) 

investigation outlined above. In Section 6.2, thanks to Cox and Miles' generous decision to 

share their dataset, we re-fit the data to new statistical models that account for the bias and 

confounding that we believe exists in their study. Through this re-estimation process, we 

demonstrate the ways in which causal diagrams could have improved and made more 

precise the empirical results reported by Cox and Miles; specifically, we note that the 

authors systematically report both inflated and deflated coefficients. The authors' claim with 

respect to ideology is perhaps overstated, but their causal claims with respect to race, age, 

and employment are quite a bit stronger than they may realize. Section 7 offers concluding 

remarks and notes the variety of empirical legal studies that could benefit from the 

methodology that we present here.

Finally, we would like to note that our presentation here is intended to be an introduction to 

the theory and uses of causal diagrams. We seek to demonstrate how legal scholars are able 

to use the graphs for the most basic questions that emerge in all empirical studies. There are 

many other empirical issues that can be addressed through the use of causal graphs that we 

do not discuss here, such as issues involving mutual causation, interaction, and qualitative 

information about signs. We encourage scholars to consult the broad, emerging literature in 

statistics, biostatistics, epidemiology and computer science for more-in-depth discussion of 

these and other issues.

2. Causal theory and Directed Acyclic Graphs

The first step in creating a causal directed acyclic graph requires the construction of a 

network or diagram representing the investigator's understanding of the relationships and 

dependencies between and among variables. The graph consists of a set of nodes (the 

5The causal structures like those presented in figures 1 and 2 are not only important for empirical studies in the academic context, they 
also have practical use. To see this, suppose an investigator seeks to identify the effects of race not on judicial outcomes, but on 
employment decisions for purposes of identifying race discrimination. In this context, the total effect of race is not the target; rather 
the interest lies in indentifying if and how race directly influenced the hiring decision irrespective of the applicants' education. In the 
words of one prominent judge, “The central question in any employment-discrimination case is whether the employer would have 
taken the same action had the employee been of a different race (age, sex, religion, national origin, etc.) and everything else had 
remained the same.”5 This standard requires the researcher to control for education (to identify the direct effects) and for gender (to 
avoid confounding) if figure 2 is the true model. However, no adjustments are necessary if figure 1 reflects the underlying structure of 
the data.
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variables) and a set of directed edges (arrows) that link the nodes. A path is an unbroken, 

nonintersecting sequence of edges that may go along with or against the arrows. A directed 

path is a path that follows the edges in the direction of the arrows. Relationships such as A 

← B → C and A→ B→ C are both paths but only the latter is directed path as it follows the 

edges in the direction indicated by the graph's arrow. A node Xi that has a directed edge into 

node Xj indicates the former is the “parent” (or “direct cause”) of the latter; in this case Xj is 

said to be a “child” of Xi. A node Xi is an “ancestor” (or “indirect cause”) of Xj if there is a 

directed path from Xi to Xj; in this case Xj is said to be a “descendent” of Xi. If there is no 

node on the graph which has a directed path back to itself, then the graph is said to be 

acyclic. In this essay we consider graphs that are both directed and acyclic and for this 

reason are called directed acyclic graphs (DAGs) (Pearl 2009; Greenland, Pearl, & Robins 

1999).

The directed graphs that are acyclic preserve the notion that causes must precede their 

effects. Systems exhibiting mutual causation can be handled on a causal directed acyclic 

graph by representing the same variable at different times by different nodes. Representing 

systems in which causation amongst variable is mutual and simultaneous is more difficult 

but some progress can be made even in these settings (White & Chalak, 2009).

A directed acyclic graph is said to be a causal directed acyclic graph if two conditions are 

met. First, the arrows on the graph must have a causal interpretation in the sense that 

interventions on a parent node should affect the values of the child node. Second, for a graph 

to be a causal directed acyclic graph it is necessary that any common cause of two variables 

on the graph is also on the graph. If there is a variable that is only a cause of one other 

variable on the graph, it may be included or omitted from the graph; however, if the variable 

is a cause of two or more other variables on the graph then it must be included. As will be 

seen below this requirement that any common cause of two variables on the graph must also 

be on the graph is important for reasoning about confounding and causal relationships.

Figure 3 presents a modified example of a causal graph from Judea Pearl's 2009 book, 

Causality: Models, Reasoning, and Inference (Pearl 2009, 15). The graph indicates the 

relationship among and between five separate variables. Assume, for purposes of discussion, 

that it represents the relations among the seasons of the year (X1), sprinkler systems (X2), 

rainfall (X3), wet pavement (X4) and accidents (Y). The DAG shows that X1 is a parent of 

both X2 and X3; that X2 and X3 are parents of X4; and that X4 is a parent of Y. In the 

terminology given above, we could also describe X1, X2, X3 and X4 as ancestors of Y; we 

could describe X2, X3, X4 and Y as descendents of X1. All of these concepts will become 

useful in our discussion below. Moreover, it is easy to see that X2 ← X1 → X3 and X1→ 

X2→ X4 → Y are both paths but only the latter is a directed path.

The graph reflects our intuitions, understanding, and beliefs about the world and it is meant 

to convey underlying assumptions of analysis. The absence of a direct link between X1 and 

Y, for example, captures our understanding that the influences of seasonal variation on 

sidewalk accidents is mediated through various other conditions and are not direct causes of 

accidents. Springtime, for example, does not directly cause one to slip on the sidewalk; 

rather springtime leads to more rain and higher levels of sprinkler use, which in turn, leads 
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to wet pavement, which is the direct and proximate cause of observed accidents in this 

model. The intuitions represented in the graph also coincide with independence conditions. 

As will be seen below, the graph implies that knowing X4 renders Y independent of the set 

{X1, X2, X3}. If further thought and consideration lead us to believe that the variables are 

related in a different manner, then the graph must be updated to reflect this new 

understanding. We show how slight modifications in the graph reflect different assumptions 

in our discussion below.

More extended discussion of causal directed acyclic graphs can be found in the work of 

Pearl (1995 Pearl (2009) and Greenland, Pearl and Robins (1999). In the appendix we 

discuss some more technical material on how causal directed acyclic graph are related to 

structural equation modeling. Importantly, these causal directed acyclic graph generalize 

structural equation modeling ideas in the legal and social sciences by not imposing 

assumptions about linearity or normality; causal directed acyclic graphs in fact do not 

impose any assumptions concerning functional form or distributions (see the online 

appendix for further details). This considerable increased generality, however, comes at a 

price. Unlike traditional structural equation modeling techniques, the use of causal directed 

acyclic graphs generally does not entail estimating path coefficient; because causal DAGs 

do not make assumptions about functional form it will often not be possible to characterize 

the relationships between variables as a single path coefficient. Causal DAGs rather are 

conceptual tools, which allow the researcher to draw conclusions about confounding and to 

clarify structural assumptions. The conclusions drawn will apply irrespective of the 

functional form relating the variables. However, to conduct empirical analyses, the use of 

causal DAGs will be supplemented by regression analyses and thus also with additional 

assumptions about function form.

3. Causal Diagrams and Independence Relations

It is easy to see that causal DAGs provide an intuitive and straightforward means for 

expressing qualitative assumptions about the relationships of the variables of interest. The 

graphs, however, can also highlight hidden complexities about these relationships that 

researchers ignore in the absence of the DAG. Consider the variable X4 in figure 3 and note 

that X2 and X3 both have directed edges into X4. Because X4 is the effect of two separate 

causes, we will say that X4 is a “collider variable” on the path X2 → X4 ←X3. Colliders 

take on special importance because they reflect the fact that two parents can be marginally 

independent but can become dependent if we condition on their common effect.

It may seem surprising and perhaps counter-intuitive that conditioning on a node could 

actually create dependence, rather than block it. Observations on common consequences of 

two independent variables tend to render those causes dependent, because information about 

one of the causes tends to make the other more or less likely given the consequences that 

have occurred (Pearl 2009; Morgan & Winship 2007). Stephen Morgan and Christopher 

Winship provide a useful example to illustrate the point. Consider a team of researchers who 

plan to study the applicant pool of a particular university. The admission criteria at the 

university calls for either a high SAT score or a high level of extra-curricular activities. 

These two factors are likely to be negatively correlated in the admitted student population, 

VanderWeele and Staudt Page 6

Law Probab Risk. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



but uncorrelated in the applicant pool, the population of interest. Thus if the researchers 

decide to adjust for the admission decision in their study, they would uncover a strong 

correlation between SAT scores and extra-curricular activities when in fact no such 

correlation exists in the applicant pool generally (Morgan and Winship 2007, 66-67). This 

pattern is sometimes referred to as selection bias in the legal and social science literature and 

can be induced by adjustment for collider variables in some contexts—a problem we discuss 

further below.

Formally, a collider is defined as a node on a particular path such that both the preceding 

and subsequent nodes on the path have directed edges going into that node. Note that a 

collider is specific to a path. Thus X4 is a collider on the path X2 → X4 ←X3 but X4 is not a 

collider on the path X2 → X4 →Y. A path between two nodes, A and B, is said to be 

blocked conditional on some set of variables Z if either there is a variable in Z on the path 

that is not a collider or if there is a collider on the path such that neither the collider itself 

nor any of its descendants are in Z. If all paths between A and B are blocked given Z then it 

can be shown that A and B are independent conditional on Z. Thus in figure 3, X2 and X3 

will be conditionally independent given X1 since the path X2 ← X1 →X3 is blocked by X1 

which is in the conditioning set and the path X2 → X4 ←X3 is blocked by X4 which is a 

collider on the path. Thus all paths between X2 and X3 are blocked conditional on X1 and so 

X2 and X3 are conditionally independent given X1. However, using these rules of 

conditional independence we can see that X2 and X3 will not be conditionally independent 

given X1 and X4. When we condition on X4 the path X2 → X4 ←X3 is no longer blocked 

conditional on X1 and X4 because we are now conditioning on the collider X4. These rules 

concerning blocked paths allow us to assess any independence relation on the graph. 

Essentially, statistical association between two variables A and B can arise in one of three 

ways. First, A might be a cause of B (or B a cause of A) and this creates association between 

the two variables. Second, A and B might be statistically associated because of some 

common cause C of both A and B, even if neither A nor B is a cause of the other. Third, A 

and B might be associated if we condition on a common effect of A and B (or, more 

generally, if we condition on a common effect of two variables one of which is associated 

with A and one of which is associated with B).

The next section describes the relationship between causal DAGs and the estimation of 

causal effects, shows how it is possible to use the graph to identify causal effects, and relates 

this discussion to methods and criteria for addressing problems of confounding and selection 

biases.

4. Using DAGs for the Identification of Causal Effects

Suppose we have observational data and that we have constructed a causal diagram 

representing the relationships and dependencies of the variables of interest as discussed 

above. We want to estimate the causal effect of a specific intervention, policy program, or 

medical procedure (set X= x) on an outcome of interest (Y). The question arises as to what 

adjustments must be made to avoid confounding. Adjustments are essentially equivalent to 

dividing the population into groups that are homogenous relative to some factor, say Z, and 

assessing the effect of the intervention on the outcome in each homogenous group and then 
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averaging the results (Pearl 2009, 78). Such a procedure is often carried out in conjunction 

with modeling by means of regression techniques.

Confounding occurs when an unblocked “back-door” path exists from the treatment or 

intervention to the outcome, thereby allowing additional factors, other than treatment, to 

affect the dependent variable of interest. A back-door path from X to Y is a path that begins 

with an edge going into X. The effect of X on Y is unconfounded when all back-door paths 

between the treatment and the outcome are blocked by the set of pretreatment variables for 

which adjustment is made. More formally, let Yx denote the value of Y which would be 

obtained, if possibly contrary to fact, there were an intervention to set X to the value x. 

Variables of the form Yx are sometimes referred to as counterfactual variables or potential 

outcomes (Rubin, 1974). We cannot in general draw inferences about counterfactual 

variables for a particular individual but under certain assumptions we can draw inferences 

about the probability distributions or expectations over a population of counterfactual 

variables. We say that the effect of X on Y is unconfounded given Z if P(Yx | Z = z) = P(Y | 

Z = z, X =x). The quantity P(Yx | Z = z) is not in general empirically observable from 

observational data since we do not in general know what would happen under interventions 

to set X to x. In contrast the quantity P(Y | Z = z, X =x) is empirically observable. When the 

effect of X on Y is unconfounded given Z we can estimate counterfactual probabilities P(Yx 

| Z = z) using observed probabilities P(Y | Z = z, X =x). The condition referred to as 

unconfoundedness is sometimes also referred to as “the conditionally ignorable treatment 

assignment” in the literature on causation (Rubin 1990; Greenland, Pearl and Robins 1999).

These concepts become transparent and easy to understand with the help of a causal DAG 

and Judea Pearl's back-door criterion, a simple graphical test that researchers can use to 

determine whether the effect of X on Y is confounded. We first set out a general version of 

the result and then provide some specific examples of its application. A set of variables, Z, 

satisfies the back-door criterion relative to the ordered pair X and Y in a DAG if

i. no node in Z is a descendant of X; and

ii. Z blocks every path between X and Y that begins with an arrow into X (i.e. all 

backdoor paths from X to Y).

If the set of variables Z satisfies this criterion, then the causal effect of X on Y is identified 

and given by the formula

To understand how the back-door criterion operates, reconsider figure 3 and assume we seek 

to identify the effects of wet pavement (X4) on the likelihood of accidents (Y). Because all 

paths to Y must enter through X4 we easily can see there is no back-door path from X4 to Y 

and thus it is possible to identify the causal effects of the treatment without controlling for 

any variables whatsoever. Thus, we do not need to make any adjustments to the model, and 

the expected value of the causal effect of the treatment on the outcome of interest is equal to 

E(Yx4) = E(Y| X4 = x4). The total effect of the wet pavement on accidents, comparing wet 
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pavement to dry pavement, would then be given by E(Yx4=1) - E(Yx4=0) = E(Y| X4 = 1) - 

E(Y| X4 = 0).

Now assume that the DAG we have constructed for identifying the effects of wet pavement 

on accidents is presented in figure 4.

Suppose that sprinkler systems often jut out of the ground in a manner that makes accidents 

happen irrespective of whether the pavement is wet and that U1 indicates whether the 

sprinkler system is jutting out of the ground. Suppose we only have data on X1, X2, X3, X4 

and Y but not U1. Note that if figure 4 is in fact a correct representation of the causal 

relationships then figure 3 is not a causal DAG because not all of the effect of X2 on Y is 

mediated by X4. In this case, figure 3 could be made into a causal DAG by adding an arrow 

from X2 directly to Y; then both figures 3 and 4 would be causal DAGs but figure 4 would 

simply be a more elaborate causal DAG. In any case, if figure 4 indicates a correct depiction 

of the causal relationships we have possible confounding bias because we have two back-

door paths from X4 to Y. Namely, we have X4 ←X2 → U1 → Y and X4 →X3 → X1 → X2 

→ U1 → Y. The back-door criterion, however, indicates that it is nonetheless possible to 

identify the causal effects of X4 on Y if we adjust for X2. Using the criteria set out above, 

X2 is not a descendant of X4 and it blocks all back-door paths from X4 to Y. Thus adjusting 

for X2 in our model means that the expected value of the effect of wet pavement on 

accidents is E(Yx4) = Σx2 E[Y| X4 = x4, X2 = x2]P(X2 = x2) —an equation that is similar to 

the generalized version presented above. The total effect of the wet pavement on accidents, 

comparing wet pavement to dry pavement, would then be given by

What if X2 it self was unobserved—would the analysis change? If X2 were unobserved we 

could not satisfy the back-door criterion using the variables for which we had data and thus 

the causal effects of wet pavement on the likelihood of accidents would be confounded. This 

is because we would not be able to find a set of Z variables that included nondescendants of 

X4 and that would block all back-door paths from X4 to Y. Even if we adjusted for X1 and 

X3 we would still have the unblocked path X4 ←X2 → U1 → Y and thus our estimate of the 

effect of X4 on Y would be confounded by the uncontrolled for effects of X2 and U1.

One of the important and interesting features of the back-door criterion is that it may lead to 

different modeling approaches than are commonly adopted by empiricists. One familiar 

approach for addressing possible confounding, for example, is to control for any and all pre-

treatment variables. This approach has the perceived advantage of assuring that the 

investigator will adjust for all possible confounders and in the worse case scenario will not 

affect the results if no confounding in fact exists. But there are also disadvantages to this 

approach. Adjusting for numerous and possible unnecessary variables requires far more 

information and thus may be costly; it may pose problems if the sample size is limited; and 

if the controls are correlated only with treatment (and not the outcome) the estimates will be 

less efficient and thus statistical significance could be lost. Moreover, as we will see below, 
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it can sometime even introduce bias! For all these reasons, parsimony should be preferred in 

modeling—and the back-door criterion facilitates this goal.

To see how the common approach of adjusting for all pre-treatment covariates differs from 

the approach that relies on the back-door criterion, reconsider figures 3 and 4. Using the 

former strategy, a researcher would control for X1, X2, and X3 in order to identify the effects 

of X4 on Y; the back-door criterion, however, calls for no adjustments in figure 3 and for 

adjusting only for X2 in figure 4. This difference is important because more complex DAGs 

would lead to far more adjustments under the common approach but not necessarily under 

the back-door criterion.

Not only will the back-door criterion often lead to fewer adjustments, the method enables 

researchers to avoid confounding when it would be induced by the rule of thumb that calls 

for controlling for all pre-treatment variables. Consider figure 5, where the variables U1 and 

U2 indicate unobservable and unmeasurable variables. If the researcher controls for X3, a 

pretreatment variable, she will unwittingly open a back-door path from X4 to Y (namely, X4 

← U2 → X3 ← U1 → Y) that cannot be blocked due to the existence of unobservable 

variables. This problem emerges because X3 is a collider variable on this path (i.e. an effect 

of two different causes). As noted above, when we adjust for a collider variable, we create 

an association with two otherwise independent variables, which in this context creates 

confounding. Thus if the researcher constructed a DAG similar in substance to figure 5 with 

a collider variable present and adopted the common approach of controlling for all 

pretreatment variables—she would create confounding when it could be avoided if she 

relied on the backdoor criterion.

We are now in a position to set out a more conceptually detailed description of the back-

door criterion that will assist researchers in the decision of when to control and when not to 

control for pretreatment variables. For purposes of this discussion, we label a directed path 

such as A→B→C as a chain, a non-directed path such as A ←B→ C as a fork, and a 

collider variable as one that is the effect of two separate causes, such as B in the path 

A→B←C. Recall we seek a set of variables, Z, that satisfies the back-door criterion relative 

to the ordered pair X and Y in a DAG. According to Pearl's test, we can say that the back-

door criterion is satisfied if Z contains non-descendents of X and if every backdoor path 

from X to Y contains

i. a chain, A →B → C, where the middle node B is in Z, or

ii. a fork, A ←B → C, where the middle node B is in Z, or

iii. a collider variable B, A →B ←C, such that the middle node B is not in Z and such 

that no descendant of the collider is in Z.

With these criteria, investigators are able to conceptualize the problem of confounding in a 

clear and unambiguous manner. Moreover, as we show in our discussion below, the criterion 

allows for a systematic procedure that is applicable to diagrams of any shape, size, or 

complexity. Finally, the back-door criterion enables the analyst to search for the optimal and 

minimal set of covariates (see Pearl 2009, 80 for further discussion).
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5. Controlled directed effects

One further issue concerning the identification of causal effects may be of interest. Consider 

again the causal DAG in figure 4. Suppose we are interested in the effect of sprinkler 

systems (X2) on accidents (Y). Part of this effect may be mediated because the sprinkler 

systems make the pavement wet; this part of the effect is said to be mediated through X4. 

Part of the effect of the sprinkler system on accidents may occur directly because the 

systems jut out of the ground in a manner that make accidents more likely. We may be 

interested principally in the direct effect of the sprinkler system on accidents controlling for 

wet pavement.

More generally, if some variable X is a cause of some outcome Y and if M is a variable on a 

directed path from X to Y, we may be interested in the direct effect of X on Y controlling 

for M. We let Yxm denote the value of Y which would be obtained, if possibly contrary to 

fact, there were interventions to set X to the value x and M to the value m. The controlled 

direct effect is then defined as Yx=1,m - Yx=0,m. Note that this controlled effect may be 

different for different values of m. Thus in the context of the sprinkler example we might be 

interested in the direct effect of the sprinkler systems on accidents intervening to make the 

pavement wet; this would be denoted by Yx2=1,x4=1 - Yx2=0,x4=1 and this quantity captures 

the “jutting out” effects of sprinkler systems being on when the pavement is wet. Note that 

here the mediator M that we are controlling for is the variable X4 indicating whether the 

pavement is wet. Alternatively, we might be interested in the direct effect of the sprinkler 

systems on accidents intervening to make the pavement dry; this would be denoted by 

Yx2=1,x4=0 - Yx2=0,x4=0 and would capture the “jutting out” effects of sprinkler systems 

being on when the pavement is dry.

In general controlling for a post-treatment variable can introduce bias (Rosenbaum, 1984; 

Pearl, 2001) in the analysis of total effects. However, under certain circumstances the results 

of such analyses can be interpreted as direct effects (Pearl, 2001). Causal diagrams clarify 

the assumptions required for such a causal interpretation. We can draw conclusions about 

the identification of controlled direct effects using a generalization of the backdoor path 

criterion. Specifically, if there is some set of variables Z which are not descendents of either 

X or M and if (i) all backdoor paths from X to Y that do not pass through M are blocked by 

Z and (ii) all backdoor paths from M to Y are blocked by Z and X then inferences can be 

drawn about the probability distribution of counterfactuals of the form Yxm. Basically these 

conditions amount to Z sufficing to block all the backdoor paths from (X,M) jointly to Y. 

Specifically if the conditions above hold then

More general conditions for identification are also available (Pearl 2001) but the conditions 

given above will suffice for the purposes of our discussion. In the context of the sprinkler 

example, we see that if we want the direct effect of sprinkler systems (X2) on accidents (Y) 

controlling for wet pavement (X4) we do not need to adjust for anything. There are no 

backdoor paths from X2 to Y that do not pass through M (=X4) and thus the first condition 
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above is satisfied. Furthermore, X2 blocks all backdoor paths from X4 to Y. We could then 

simply regress Y on X2 and X4 and the coefficient for X2 would represent the direct effect. 

Estimating the total effects of the sprinker system on accidents would, in contrast, require 

the investigator to control only for X1 or X3 to avoid confounding.

It is important to note that to identify controlled direct effects there are two backdoor path 

conditions given above that must be satisfied, not just one. In addition to the condition that 

the backdoor paths from X to Y must be blocked by Z, the backdoor paths from M to Y 

must be blocked by (X, Z). Both conditions are needed if we want to estimate controlled 

direct effects. That is to say, we must not just adjust for variables that confound the 

relationship between intervention X and outcome Y but also for those variables that 

confound the relationship between the mediator M and the outcome Y. If we do not control 

for variables that confound the relationship between the mediator M and the outcome Y (i.e. 

if the second condition is not satisfied) then our estimate of controlled direct effects will be 

biased (Judd & Kenny 1981; Robins & Greenland 1992; Cole & Hernán 2002). Other more 

subtle definitions of direct and indirect effects, which allow for the partitioning of a total 

effect into a direct and indirect effect are also available (Pearl 2001).

6. Improving Empirical Research with DAG Methodology

We now turn from abstract rules and hypothetical examples to Cox and Miles' study, 

Judging the Voting Rights Act, with which we began our discussion. We use the causal DAG 

methodology to illustrate the assumptions that authors often unknowingly make in their 

empirical work and, at the same time, demonstrate just how causal DAGs can aid 

researchers in basic empirical tasks. In Section 6.1, we note that Cox and Mile's regression 

analyses depend on the accuracy of figure 1 (presented the introduction); the authors' 

estimates, however, are confounded if figure 2 is a better depiction of the data. In Section 

6.2, we refit the data to the models assuming the accuracy of figure 2 and highlight the 

qualitative and quantitative changes that emerge between our findings and those presented 

by Cox and Miles in their study.

6.1 Cox and Miles' Causal Assumptions and the Potential for Confounding

In the introduction, we presented, in figures 1 and 2, DAGs depicting possible cause and 

effect relationships between and among the variables of interest. If figure 1 is accurate, the 

authors need not worry about possible confounding. Nor is there any distinction to be made 

between total and direct effects because these two effects are identical in figure 1 for all 

variables. One could regress judicial decisions on each of the variables one by one to obtain 

total effects. Alternatively, if figure 1 is correct then one could also regress judicial 

decisions on all seven variables simultaneously and use this regression to also obtain the 

causal effects. The difference between the two is that the latter approach will produce more 

precise estimates.

If figure 2 is accurate, confounding is a potential problem for purposes of estimating the 

effects of ideology, education, and employment. This is because open back-door paths exist 

from these variables to the outcome of interest. For ideology, there are back-door paths to 

judicial decisions including “ideology←gender→judicial decisions” and 
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“ideology←race→judicial decisions” and “ideology←age→judicial decisions”; similar 

backdoor paths exist for employment and education. In figure 2 gender, race and age are 

confounded only by case characteristics. Thus if control is made only for the characteristics 

of the case, the total effect of gender, race or age could be estimated. Moreover, in figure 2, 

ideology and employment, are the only variables with causal effects that are not mediated by 

intervening variables and thus the total and direct effects are identical for these nodes, but 

not for any other node in the figure.

Cox and Miles present their multivariate regression analysis for the effect of ideology on 

individual judicial decisions and we reproduce these regression estimates in table 1 below. 

In each of the regression models reported in this table, Cox and Miles regress judicial 

decisions on ideology and a number of variables recording characteristics of the case 

including—in different variations as depicted in columns 1, 2, and 3 of the table. They do 

not, however, control for race, gender, age or education and yet as noted above, if the 

structural relationships given in figure 2 are correct this would indicate that all of the 

estimates of the effect of ideology are confounded. To obtain unconfounded estimates of the 

effect of ideology under figure 2, one would have to control for race, gender, age and 

education, as well as the characteristics of the case.

Cox and Miles do not completely ignore the effects of race, gender, age, education and 

employment on judicial decisions. Table 2 reproduces the authors' regression estimates in 

models that account for these characteristics. Consider first the regression model presented 

in column 1 with ideology, race, gender and the characteristics of the case as covariates. If 

our figure 2 is a correct representation of the causal relationships amongst the variables, then 

the estimate for race reported by Cox and Miles cannot be interpreted as the direct effect of 

race, controlling for ideology, because ideology is confounded by education and age, which 

are not controlled for, and thus the set of controls does not satisfy the second backdoor path 

criterion for direct effects as presented in the previous section. Furthermore, the estimate for 

race cannot be interpreted as the total effect of race because the analysis controls for judge's 

ideology, which is a descendent of race in figure 2. Similarly, the estimate for gender cannot 

be interpreted as the direct effect of gender on judicial decisions controlling for ideology 

because ideology is confounded by education and age, which are not in the model; nor can 

their estimate for gender be interpreted as a total effect because control is being made for 

ideology, which is a descendent of gender.

If our figure 2 is correct then to obtain the direct effect of race, controlling for ideology and 

education, one could regress judicial decisions on race, gender, age, education, ideology and 

case characteristics; similarly to obtain the direct effect of gender, controlling for ideology 

and education, one could again simply regress judicial decisions on race, gender, age, 

education, ideology and case characteristics. Note, however, that these direct effects 

controlling for ideology and education, would include the effects of race (or gender) 

mediated by employment. One could alternatively obtain estimates of the direct effects of 

race (or gender), controlling for ideology, education, and employment, on judicial decisions 

by regressing judicial decisions on race, gender, age, ideology, education, employment and 

case characteristics.6 These direct effect estimates would then not include effects of race on 

judicial decisions mediated through prior employment but it would include the effects 
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mediated through other “life experiences” due to race, a possible mechanism suggested by 

Cox and Miles. To obtain the total effect of race one could regress judicial decisions on race 

and characteristics of the case; to obtain the total effect of gender one could regress judicial 

decisions on gender and characteristics of the case. However, if figure 2 is correct, the 

regression analysis of Cox and Miles reported in Column 1 (in which judicial decision is 

regressed on race, gender, ideology and the characteristics of the case) cannot be interpreted 

as any of the aforementioned effects because ideology is confounded by education and age 

and no control is made for education and age in this model.

We now turn to Cox and Miles' discussion of the effects of age, education and employment. 

Again assuming that our figure 2 is correct, the age coefficient reported in table 2 column 2 

(in which judicial decision is regressed on ideology, age and the characteristics of the case) 

cannot be interpreted as a direct effect of age on judicial decisions controlling for ideology 

because ideology is confounded by education, race and gender which are not in the model; 

nor can their estimate for age be interpreted as a total effect of age because control is being 

made for ideology which is a descendent of age. To obtain the direct effect of age on judicial 

decisions controlling for ideology and education one could regress judicial decisions on 

race, gender, age, education, ideology and case characteristics. To obtain the total effect of 

age on judicial decisions one could regress judicial decisions on simply age and the 

characteristics of the case.

Cox and Miles report the results of a regression of judicial decisions on ideology, education 

and the characteristics of the case (table 2, column 3), and results of a regression of judicial 

decisions on ideology, employment and the characteristics of the case (table 2, column 4). 

However, if figure 2 is correct, the estimates from these regressions cannot be interpreted as 

the total effects—nor as the direct effects—of education and employment on judicial 

decisions. This is because the effects of education and employment on judicial decisions are 

confounded by race, gender, and age; there are unblocked backdoor paths from education 

and employment to judicial decision through race, gender and age. To obtain the total effect 

of education on judicial decisions, one could regress judicial decisions on education, race, 

gender, age and the characteristics of the case. Note that race, gender, age and the 

characteristics of the case block all backdoor paths from education to judicial decisions in 

figure 2. To obtain the direct effect of education, controlling for ideology and employment, 

on judicial decisions, one could regress judicial decisions on education, ideology, 

employment, race, gender, age and the characteristics of the case. In figure 2, the total and 

direct effects of employment on judicial decisions coincide. To obtain the effect (total or 

direct) of employment on judicial decisions, one could regress judicial decisions on 

education, race, gender, age and the characteristics of the case.

In summary, if the regression analyses in tables 1 and 2 are to be interpreted as Cox and 

Miles suggest, the causal diagram depicted in our figure 1 must be correct, but we believe 

that figure 2 is a more realistic description of the data. Cox and Miles would have more 

6We note that one could also obtain the direct effect of race, controlling just for ideology (and not education) but this requires 
techniques other than standard regression analyses (cf. VanderWeele 2009). This direct effect of race on judicial decisions, controlling 
only for ideology, would then include the effects mediated through education and employment.
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closely approximated the effects of interest, therefore, had they carried out their regression 

analyses that we suggested above. In the next section, we explore whether and how Cox and 

Miles' empirical results would change if they relied upon the directed acyclic graphing 

methodology.

6.2 Re-analysis of the Cox and Miles Data

While many of the estimates in the Cox and Miles' study are confounded, it is nonetheless 

possible that these effects remain statistically and substantively significant even when the 

proper controls are included in the model. Indeed, we find that many (but by no means all) 

of Cox and Miles' qualitative conclusions survive our re-analysis—but their quantitative 

conclusions tend to be consistently over- and understated given the problems of bias and 

confounding in their choice of variables to include in their statistical models.

To enable our re-analysis of the data, Cox and Miles generously agreed to share their data 

and for this reason we are able to compare precisely how the differing estimation strategies 

can and will affect the parameters of interest. To begin our investigation, we first fit the data 

to Cox and Miles' statistical model, assuming with the authors that figure 1 above accurately 

reflects the underlying relationships between and among the variables. As expected, we 

were able to replicate their findings with only minor differences;7 the results of this 

replication process are presented in table 3, columns 1, 2, and 3. We then re-fit the data, 

assuming the variables as depicted in figure 2. Our results are juxtaposed to those found by 

Cox and Miles' in table 3, columns 1(a), 2(a), and 3(a).

The first thing to note about table 3 is that, at least in the voting rights context, the 

qualitative effects of ideology are robust to various sets of controls. Specifically, the role of 

ideology is both positive and is statistically significant (with p-values of approximately 0.05 

or less). This finding confirms Cox and Miles' claim that ideology is causally related to pro-

plaintiff outcomes and Section 2 liability in particular. The authors' modeling strategy, 

however, has inflated the size of this effect in every context. After including the proper 

controls, we obtained estimates that were 2.4 - 5 percentage points lower than those obtained 

by Cox and Miles; given the relatively small size of the coefficients in all the models, this 

means that due to confounding Cox and Miles have overestimated the effects of ideology by 

19%, 45%, and 50% in column 1, 2, and 3, respectively.8 Although accounting for this 

inadvertent exaggeration does not change the authors' underlying claim with respect to the 

positive effects of ideology in this particular, in other situations such changes can have a 

substantive effect even on qualitative conclusions given the possibility of a change in the 

sign of the coefficient—a problem that we show in fact emerges in the context of gender.

After identifying the effects of ideology, Cox and Miles turn to the judges' other personal 

characteristics: race, gender, education, and past employment. With minor exceptions, we 

were again able to replicate the authors' findings and we present these results in columns 1, 

2, and 3 of table 4 below.9 We then adopted the modeling strategy that we believe better 

7Cox and Miles reported a coefficient of .158 of ideology in table 1, column 3 but when we re-estimated their model we found a 
coefficient of .148. We believe this is simply a typographical error.
8We calculated these percentages by dividing Cox and Miles' estimates for ideology by our estimates. For example, .145/.121 = 1.19 
indicating that Cox and Miles' estimate is a 119% of ours, or 19% larger.
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accounts for the true underlying causal relationships and present our findings in columns 

1(a), 2(a), and 3(a) below.

Beginning first with the effects of race. We again find support for Cox and Miles' claim that 

a judge's race affects the likelihood of voting in favor of Section 2 liability, but in this 

context we believe the authors reported deflated coefficients. They find that controlling for 

ideology African-American judges are 30% more likely to vote in favor of liability than 

white judges,10 but we find the actual direct effect is 6-8 percentage points higher.11 This 

means that the authors underestimated causal effects of race by 17-20%.12 These findings, 

along with those discussed immediately above with respect to ideology suggest that race has 

quite a bit stronger effect on outcomes than the authors believe, while ideology has less of 

an effect than estimated. We deem these twin findings of our modeling process to be 

important for at least two reasons. First, identifying unbiased effects of the variables allows 

researchers to have better confidence in their empirical claims and in inferences about 

causation. Without addressing the problem of confounding, causal claims are completely 

unwarranted. Second, our findings make Cox and Miles' study all the more important to the 

literature. As they note, quite a few scholars have investigated the effects of ideology on 

judicial decision-making but few have explored the effects of race and those that have done 

so have produced null findings. Cox and Miles' data—after attempting to address the 

problems of bias and confounding by appropriate covariate control—not only suggests that 

race is an important factor to consider but that the direct effect of race is roughly 250% 

greater than that of ideology in the decision-making context when it comes to voting rights 

claims.13 This is a finding that is important for understanding and predicting judicial 

outcomes and also for the judicial appointment process.

With respect to the direct effects of gender, our models produce contrasting qualitative 

results: Cox and Miles suggest that gender has a negative effect on the likelihood of voting 

for Section 2 liability while our revised model suggests the effects are positive. By 

underestimating the effects of gender on judicial outcomes, in short, the authors 

misidentified the sign of the coefficient. In neither approach, however, do the results achieve 

statistical significance as shown in columns 1 and 1(a) of table 4.14

With respect to the direct effects of education, presented in columns 2 and 2(a) of table 4, 

our qualitative results are very similar: we, like Cox and Models, find positive but 

statistically insignificant effects associated with college and clerking, and negative, slightly 

significant effects caused by a judge's decision to attend an elite law school.15 A comparison 

9Compare our replicated findings in table 3 to Cox and Miles' original finding reproduced in table 2.
10Cox and Miles note that the dataset is comprised of primarily black and white judges. Cox and Miles (p. 30 2008.
11The total effects of race can be estimated by regressing the judicial decision on race with controls only for case characteristics. We 
estimated these effects and obtained a coefficient of .286, which is statistically significant at the p ≤ .01 level.
12We calculated these percentages by dividing Cox and Miles estimate (.3) by our own estimates (.36, .362, .377).
13Cox and Miles estimation process suggests this difference is 140 percent. See results presented in table 2.
14The total effects of gender on the likelihood of finding liability can be estimated by regressing the judicial decision on gender and 
case characteristics; this effect was also not statistically significant.
15The total effects of education, obtained by regressing the judicial decision on education, race, gender, age, and characteristics, 
indicates that an ivy league college and elite law school education have a negative (but not statistically significant) effect on outcomes 
whereas clerking has a positive effect (the clerkship coefficient is .11) and this effect is significant at the p ≤ .05.
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of the two sets of findings however, suggests that of Cox and Miles' education coefficients 

are slightly overstated.

Columns 3 and 3(a) depict the effects of past employment experience: our models again 

produce similar qualitative results except with respect to a judge's past experience on a state 

court. We estimated the total and directs effects (they coincide as note above) of a judge's 

state court experience and identified a 8% decrease in the likelihood of a judge voting for 

the plaintiff and this finding is statistically significant at the p ≤ .10 level. Cox and Miles 

also estimated the effects of state court experience to be negative but not at a statistically 

significant level—an imprecise estimate most likely due to the decision to exclude the 

confounding variables, race, gender, age, and education.

Finally, Cox and Miles' findings suggest that age plays no direct role in a judge's propensity 

to vote for or against the plaintiff (see table 2, column 2 above), but we consistently find a 

positive and statistically significant effect for age in every model we estimate. For every 

year a judge grows older, our models suggest that the likelihood of voting for Section 2 

liability increases by .3% - .6%.16 This means that the oldest judge in the database (90 years 

of age) is 18% - 34% more likely to render a pro-plaintiff vote that the youngest judge (31 

years of age). Without the proper controls for race, gender, and education in the estimation 

of this direct effect, this finding was not observed.

We summarize the differences between our findings and Cox and Miles' findings in table 5 

below. As the table indicates, our methodology slightly weakens the authors' conclusions 

with respect to ideology, but strengthens the conclusions with respect to race. Moreover, we 

identify a statistically significant role for both age and past service on a state court—

findings left hidden in Cox and Miles' study due to bias and confounding. In short, while we 

admire Cox and the Miles' work, we believe the comparisons presented below confirm our 

claim that empirical researchers should spend more time and energy considering the 

underlying causal relationships of the variables of interest prior to specifying and fitting 

statistical models. This will help assure scholars' claims about causality are justifiable, will 

avoid problems of under- and overestimation of target parameters, and will potentially 

enable more precise estimates.

7. Conclusion

Recent methodological advances associated with graphical modeling of causal relationships 

have made it possible to address the barriers to causal inference in a remarkably simple and 

straightforward, yet rigorous, manner. Specifically, directed acyclic graph methods or causal 

DAGs, developed primarily in statistics, epidemiology and computer science, enable 

empirical researchers to construct diagrams that not only make modeling assumptions 

explicit, but also to determine when these assumptions are sufficient for obtaining consistent 

estimates, and how to specify a closed-form model for determining the quantity of interest 

when identification is possible (Pearl 2009; Greenland, Pearl, and Robins 1999). We 

discussed these methods in the context of empirical legal research and show how 

16The total effects of age can be estimated by regressing judicial decisions on age and case characteristics. This models produces a 
coefficient of .003 and statistical significance at p ≤ .10.
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investigators can use DAGs to address the most basic and fundamental tasks of empirical 

research.

We have described the formal rules governing inferences about confounding that can be 

drawn from the causal directed acyclic graph. The graphs themselves encode structural 

assumptions. Legal researchers will use substantive knowledge and potentially prior studies 

to draw these graphs. In cases in which the causal structure of the graph is not clear, it is 

possible to draw several graphs and consider how conclusions about confounding varies 

with each graph and how the results of empirical analyses vary when control is made for 

different variables based on conclusions drawn from each graph.

Several broad intuitive conclusions emerge from the use of these causal directed acyclic 

graphs in reasoning about confounding. First, if the total effect of a particular variable is of 

interest, then control should generally not be made for intermediates on the pathway from 

the variable of interest to the outcome but for total effects control should be made for 

variables that affect both the exposure variable of interest and the outcome. If controlled 

direct effects are of interest, and control for one or more intermediates along the pathway is 

made then it is also necessary to make control for variables that confound the relationship 

between the intermediates and the outcome. An important implication of these guidelines is 

that separate regressions will often be required for different effects of interest. Variables that 

confound one effect of interest may not confound another; variables that are on the pathway 

for a certain effect of interest may not be on the pathway for some other effect. For each 

effect of interest, a researcher should use the guidelines given above to determine for what 

variables control should be made. If the effect of interest changes the variables for which 

control is to be made will often change as well.

It should be noted that to obtain valid estimates of causal effects, control needs to be made 

for a set of variables that suffice to control for confounding; if there are important 

unmeasured variables on a causal direct acyclic graph for which control cannot be made 

then it may not be possible to identify the causal effect of interest. In such cases sensitivity 

analysis techniques (Rosenbaum and Rubin, 1983; Imbens, 2003; VanderWeele and Arah, 

2011) can be useful in assessing the extent to which an unmeasured confounding variable 

would have to be related to both the treatment or exposure of interest and the outcome in 

order to invalidate the qualitative conclusions drawn from the analysis.

These intuitive rules described above can help legal researchers in their decisions about 

which variables to include in a model when seeking to identify the particular effect is of 

interest. In cases in which it is not clear whether control should be made for a variable the 

precise rules described in section 4 concerning blocked paths can be used to guide the 

researcher's decision-making. We demonstrated how these rules could be applied to an 

empirical study of judicial decision-making in the voting rights context. Specifically, with 

the help of the DAG framework, we demonstrated how even widely admired studies can be 

plagued with problems of over- and underestimation of coefficients and imprecise results 

when the underlying causal structure of the variables is not rigorously investigated. 

Importantly, the methodology can be applied to a wide range of empirical legal studies, not 

only to those investigating judicial decision making: indeed, virtually every legal empirical 
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researcher who estimates a statistical model would benefit by making qualitative 

assumptions about their data explicit with the help of a DAG.

This paper is merely an introduction to the topic; many other extensions to the causal DAG 

framework are possible (Pearl 2009; Hernán et al. 2004; VanderWeele & Robins,2007; 

VanderWeele et al. 2008; White & Chalak, 2009; Shpitser et al., 2010) and we encourage 

empirical legal researchers to consult the literature further.
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Online Appendix

A causal DAG, such as that in figure 3, can be viewed as a set of non-parametric structural 

equations (Pearl, 2009) such that each variable Xi is given by the equation

(1)

where pai are the parents of Xi on the graph and the εi are mutually independent random 

variables that the researcher chooses not to include in the graph. Put differently, equation (1) 

indicates that the variable Xi is a function of its direct causes (its parents) as well as a 

disturbance term. This equation is completely nonparametric in the sense that it does not 

assume anything about the functional form of the relationships among and between the 

variables. Moreover, it can be interpreted as a generalization of the linear structural equation 

model that has become popular in the legal and social science, namely

(2)

As Pearl notes, a set of equations (in either form (1) or (2) above) is a structural model if 

each equation represents an autonomous process or mechanism (Pearl 2009, 27). If each 

process determines the value of exactly one variable (the dependent variable) then the model 

is a structural causal model. Figure 3 represents a causal model with each node representing 

an autonomous process and thus can be represented by the following equations

For purposes of constructing a causal graph it is important to recall that the error terms in the 

model are assumed to be mutually independent. The requirement that the error terms are 

mutually independent is essentially equivalent to the requirement that any common cause of 
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two or more variables on the graph must also be on the graph (Pearl 2009). If any factors are 

believed to influence two or more variables (thus violating the independence assumption) 

then they must enter the analysis as an unmeasured variable and must be depicted on the 

graph. Figure A.1 uses dotted lines to indicate that the error terms, ε2 and εY, are not 

mutually independent (perhaps we believe that people who use sprinkler systems are 

particularly prone to sidewalk accidents).

Figure A.1. Directed Acyclic Graph with Mutually Independent Errors but with an Unobserved 
Variable, U

Correlated errors could substantially change the conclusions drawn from a diagram. With 

respect to figure 3, for example, we claimed that knowing X4 renders Y independent of the 

set {X1, X2, X3} but this no longer holds true if we thought there were correlated errors as in 

figure A.1. Typically instead of using correlated errors as in figure A.1 we would represent 

these relations by adding an unmeasured common cause U of X2 and Y as in figure A.2

Figure A.2. Directed Acyclic Graph with Unobservable Errors that Violate the Mutual 
Independence Assumption; Errors, ε2 and εY, are Correlated

Recall that Xi is a node in a causal diagram and pai are the parents or direct causes of that 

node. The joint probability function for a causal DAG can be given by

(3)

Specifically, with respect to figure 3 above, we can calculate the joint probability function as 

follows

(4)
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The joint probability function, along with the functional relationships depicted in the DAG 

(such as those in equation (1) above), enable a researcher to identify exactly how an 

intervention, policy change, or new medical procedure will change the distribution of 

interest. Consider a simple intervention in which a variable, say Xi, is forced to take on a 

fixed value, xi. Formally, when we fix the value of Xi or intervene we effectively remove the 

equation xi = fi(pai, εi) from the model and substitute Xi = xi in all the remaining equations, 

which in turn allows for a prediction of the effects of the intervention on the new probability 

function. In effect, (3) above would be transformed as follows

(5)

With respect to figure 3, if we fix the variable X2 = 1 (i.e. we fix the sprinkler system to be 

“on”) the resulting joint distribution for the remaining variables is

(6)

Examining the joint distribution after intervening on some variable is valuable because it 

highlights the fact that only descendants of the variable intervened upon, here X2, are 

affected by this action and thus the marginal probabilities are unaltered for the ancestors of 

the intervention variable. An examination of the difference between equations (4) and (6) 

clearly shows this. Moreover, these properties lead directly to a formula that allows 

researchers to identify the casual effects on a specific variable. For example, the distribution 

and expected value of the variable Y in figure 3, intervening to set X2 =1, is

(7)

(8)

The implication of the analyses above is significant. The above results show that if all the 

direct causes of the treatment variable are observable, then it is possible to infer post-

intervention distributions from pre-intervention distributions. In short, causal DAGs allow 

us to estimate the causal effects of an intervention from non-experimental or observational 

data—the very point of many empirical legal studies. The backdoor path criterion stated in 

section IV above allows for the derivation of simpler expression for causal effects and 

allows one to potentially identify the causal effects of an intervention in which some 

members of pai might be unobserved.
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Figure 1. A Simple Underlying Causal Structure
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Figure 2. A More Complex Set of Structural Relationships
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Figure 3. A Directed Acyclic Graph with Five Variables (Pearl 2009, 15)
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Figure 4. Causal Directed Acyclic Graph with Unobserved Variable, U1
Note: Controlling for X2 satisfies the back-door criterion for the effect of X2 on Y.
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Figure 5. 
Directed Acyclic Graph with Two Unobserved Covariates.

Note: Adjusting for X3, a “collider” variable induces correlation between U1 and U2 and 

confounds the results of X4 on Y.
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Table 1

Cox and Miles (2008), Table 5, Columns 1-3 Reporting Probit Findings on the Likelihood of Voting for 

Section 2 Liability.

Variable (1)
Cox & Miles Table 5, col. 

1

(2)
Cox & Miles Table 5, 

col. 2

(3)
Cox & Miles Table 5,col. 

3

Judge was Democratic Appointee .145** (.035) .151** (.039) .158** (.044)

Judge was Democratic Appointee * Year After 1994 - - .004 (.06)

Year Was After 1994 -.123** (.035) - -

Case Occurred in South .016 (.043) - -

Appellate Case -.084 (.038) -.102* (.042) -.101** (-.053)

Challenge to At-large Election .104 (.049) .078 (.054) .077 (.055)

Challenge to Reapportionment Plan .054 (.049) .034 (.055) .034 (.055)

Challenge to Local Election Practice .005 (.043) -.018 (.05) -.018 (.05)

Plaintiffs Were African-American .027 (.046) .114* (.049) .114** (.049)

Case Occurred in Jurisdiction Covered by §5 .046 (.044) .045 (.05) .044 (.055)

Note:

*
indicates significant P<.10 and

**
indicates significant at P<.05. With the exception of Model (1), all regression include fixed-effects controls for judicial circuits and years.
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Table 2
Cox and Miles (2008), Table 6, Columns 1-3 Reporting Probit Findings on the Likelihood 
of Voting for Section 2 Liability

Variable (1)
Cox & Miles 

Table 6, col. 1

(2)
Cox & Miles Table 

6, col. 4

(3)
Cox & Miles Table 

6, col. 5

(4)
Cox & Miles Table 

6, col. 6

Judge was Democratic Appointee .125** (.04) .140** (.037) .166** (.039) .155** (.038)

Judge was African-American .300** (.09) - - -

Judge was Female -.020 (.056) - - -

Age - .003 (.002) - -

Judge Attended Ivy League College - - .018 (.051) -

Judge Attended Elite Law School - - -.078* (.041) -

Judge Previously Served as Law Clerk - - .016 (.044) -

Judge Previously Served in State Leg or Exec 
Branch

- - - .021 (.039)

Judge Previously Served on State Court - - - -.056 (.040)

Judge Previously Served in Federal Leg. or 
Exec. Branch

- - - .002 (.04)

Note:

*
means significant P<.10 and

**
indicates significant at P<.05. The regressions include the same controls as in Model (2) of Table 5: controls for whether the case occurred in a 

jurisdiction covered by section 5, whether the case was an appeal, whether the plaintiffs were African-American, whether the challenge was to an 
at-large lection scheme or a reapportionment plan, whether the governing body challenged was local, and fixed-effect controls for judicial circuits 
and years.
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Table 5
Summary of Conclusions with Respect to Cox and Miles' Study on the Voting Rights Act

Variable Cox & Miles' Coefficients Change in Statistical Significance

Judge was Democratic Appointee Overestimated by 19-50% Yes; while still statistically significant 
not always at p≤ .05 as authors 
suggest

Judge was African-American Underestimated by 17-20% No

Judge was Female Sign change: estimated negative when in 
fact positive

No

Age Underestimated by 0-50%% Yes; finding is statistically significant 
but authors argued it was not

Judge Attended Ivy League College Underestimated by 9% No

Judge Attended Elite Law School Overestimated by 11% No

Judge Previously Served as Law Clerk Underestimated by 80% No

Judge Previously Served in State Leg or Exec Branch Overestimated by 210% No

Judge Previously Served on State Court Underestimated by 30% Yes; finding is statistically significant 
but authors argued it was not

Judge Previously Served in Federal Leg. or Exec. 
Branch

Sign Change: estimated positive when in 
fact negative

No
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