
Predicting survival in head and neck squamous cell carcinoma 
from TP53 mutation

David L. Masica,
Department of Biomedical Engineering, Institute for Computational Medicine, The Johns Hopkins 
University, Baltimore, MD, USA

Shuli Li,
Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, 
MA, USA

Christopher Douville,
Department of Biomedical Engineering, Institute for Computational Medicine, The Johns Hopkins 
University, Baltimore, MD, USA

Judith Manola,
Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, 
MA, USA

Robert L. Ferris,
Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Barbara Burtness,
Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA

Arlene A. Forastiere,
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Wayne M. Koch,
Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of 
Medicine, Baltimore, MD, USA

Christine H. Chung, and
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Rachel Karchin
Department of Biomedical Engineering, Institute for Computational Medicine, The Johns Hopkins 
University, Baltimore, MD, USA. Department of Oncology, Johns Hopkins University School of 
Medicine, Baltimore, MD, USA

David L. Masica: david.masica@gmail.com; Rachel Karchin: karchin@jhu.edu

Abstract

© Springer-Verlag Berlin Heidelberg 2014

Correspondence to: Rachel Karchin, karchin@jhu.edu.

Electronic supplementary material The online version of this article (doi: 10.1007/s00439-014-1470-0) contains supplementary 
material, which is available to authorized users.

HHS Public Access
Author manuscript
Hum Genet. Author manuscript; available in PMC 2015 May 01.

Published in final edited form as:
Hum Genet. 2015 May ; 134(5): 497–507. doi:10.1007/s00439-014-1470-0.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For TP53-mutated head and neck squamous cell carcinomas (HNSCCs), the codon and specific 

amino acid sequence change resulting from a patient’s mutation can be prognostic. Thus, 

developing a framework to predict patient survival for specific mutations in TP53 would be 

valuable. There are many bioinformatics and functional methods for predicting the phenotypic 

impact of genetic variation, but their overall clinical value remains unclear. Here, we assess the 

ability of 15 different methods to predict HNSCC patient survival from TP53 mutation, using 

TP53 mutation and clinical data from patients enrolled in E4393 by the Eastern Cooperative 

Oncology Group (ECOG), which investigated whether TP53 mutations in surgical margins were 

predictive of disease recurrence. These methods include: server-based computational tools SIFT, 

PolyPhen-2, and Align-GVGD; our in-house POSE and VEST algorithms; the rules devised in 

Poeta et al. with and without considerations for splice-site mutations; location of mutation in the 

DNA-bound TP53 protein structure; and a functional assay measuring WAF1 transactivation in 

TP53-mutated yeast. We assessed method performance using overall survival (OS) and 

progression-free survival (PFS) from 420 HNSCC patients, of whom 224 had TP53 mutations. 

Each mutation was categorized as “disruptive” or “non-disruptive”. For each method, we 

compared the outcome between the disruptive group vs. the non-disruptive group. The rules 

devised by Poeta et al. with or without our splice-site modification were observed to be superior to 

others. While the differences in OS (disruptive vs. non-disruptive) appear to be marginally 

significant (Poeta rules + splice rules, P = 0.089; Poeta rules, P = 0.053), both algorithms 

identified the disruptive group as having significantly worse PFS outcome (Poeta rules + splice 

rules, P = 0.011; Poeta rules, P = 0.027). In general, prognostic performance was low among 

assessed methods. Further studies are required to develop and validate methods that can predict 

functional and clinical significance of TP53 mutations in HNSCC patients.

Introduction

Cancer arises from the accumulation of genetic alterations selected to confer a growth 

advantage relative to healthy tissue (Vogelstein et al. 2013). Because these alterations 

impact cancer progression, there is much effort to isolate prognostic genetic markers 

(Ludwig and Weinstein 2005). TP53 is among the most commonly altered genes in human 

cancers, and is found altered in high frequency across many diverse cancer types (Muller 

and Vousden 2013). This high prevalence positions TP53 as a potentially powerful 

prognostic marker, if the differential impact of specific TP53 mutations can be quantified. 

Indeed, a large body of work has investigated the use of TP53-based markers for cancer 

diagnosis, prognosis, and treatment (Olivier 2013; Robles and Harris 2010).

The prognostic value of TP53 mutation appears to be highly context dependent. For 

instance, multiple independent groups have found that TP53 mutation is associated with 

significantly reduced survival in chronic lymphocytic leukemia. (Dohner et al. 1995; Zenz et 

al. 2010; Rossi et al. 2009; Gonzalez et al. 2011) Conversely, multiple studies show no 

significant correlation between TP53 status and survival in patients with glioblastoma. 

(Simmons et al. 2001; Newcomb et al. 1998; Weller et al. 2009) In a systemic review of 74 

published studies of TP53 status and survival in lung cancer patients, Steels et al. concluded 

that TP53 alteration correlated with poorer survival in non-small-cell lung cancer, but data 

were insufficient to draw conclusions with regard to survival in small-cell lung cancer 
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(Steels et al. 2001). And, there is conflicting evidence about the role of TP53 in ovarian 

carcinoma, including correlations with increased survival, decreased survival, and no 

observed correlation (Graeff 2009; HØGdall 2008; Darcy 2008; Ahmed et al. 2010; Bartel et 

al. 2008; Wang 2003); these different findings could arise from the methodologies used, 

small sample sizes, and mixed histological subtypes/grades (Wang 2003). Poeta et al. found 

a significant association between the presence of TP53 mutation and decreased survival in 

head and neck squamous cell carcinoma (HNSCC) (Poeta et al. 2007). The authors further 

classified TP53 mutations as “disruptive” or “non-disruptive”, and found an even greater 

correlation between TP53 mutations classified as disruptive and decreased survival; 

mutations classified as non-disruptive and survival were not significantly correlated. This 

implies that biomarker development can benefit from the classification of specific mutation, 

rather than treating all TP53 mutations as causative. This is reasonable, because different 

TP53 mutations are known to have a differential impact on carcinogenesis. (Bisio et al. 

2014)

Many methods exist for evaluating the impact of specific genetic mutation on protein 

function. When assessed across large-scale multi-gene/multi-disease databases, popular 

computational methods typically achieve classification accuracies of ~60 % to ~80 % 

(Thusberg et al. 2011; Chan et al. 2007; Shihab et al. 2013). Unfortunately, classifier 

performance can vary significantly between specific genes and diseases, for a given method 

(Thusberg et al. 2011; Chan et al. 2007; Shihab et al. 2013; Hicks et al. 2011). This could 

result because methods are often developed and benchmarked for generalizability, and are 

agnostic to specific phenotype. This convention is important, because the probability that a 

mutation is “functional” or “deleterious” does not necessarily account its role in the context 

of a specific disease or cancer subtype. CHASM is a successful computational approach for 

identifying mutations that “drive” cancer (Carter et al. 2009; Integrated genomic analyses of 

ovarian carcinoma (2011); Parsons et al. 2011), and the authors of Align-GVGD provide 

highly curated sequence alignments for cancer-related genes (Tavtigian et al. 2008); 

however, even these methods do not necessarily discriminate distinct cancer-related 

phenotypes (e.g., survival, drug response, etc.). And, supervised learning approaches that 

classify the effect of mutation on specific phenotypes can be limited when training data are 

insufficient for the phenotype under consideration. In the era of genomic medicine and “big 

data”, computational approaches for assessing the impact of mutation are indispensable, but 

the context in which they are applied can influence performance.

In this study, we classified TP53 mutation as disruptive or non-disruptive using 15 different 

methods, and compared classification with survival in HNSCC patients harboring those 

mutations. The tested methods utilize diverse criteria for predicting the relative severity of 

mutations, including sequence, structure, and annotation, as well as an experimental assay of 

TP53 function. These results contribute to the evolving role of TP53 mutation as a potential 

prognosticator of HNSCC patient survival.

Materials and methods

We classified TP53 mutation as “disruptive” or “non-disruptive” using 15 different 

classification approaches, and compared classification with overall and progression-free 
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survival in HNSCC patients harboring those mutations. All classifier predictions were 

submitted to the Eastern Cooperative Oncology Group (ECOG) to assess the prognostic 

power of each classifier. To control bias in a double-blind fashion, algorithm names were 

blinded before submission to ECOG and the authors that provided classification were 

blinded to all survival data, which are kept at the ECOG. Detailed information regarding the 

clinical trial E4393 was previously published (Poeta et al. 2007).

Classifiers

We classified TP53 mutations as “disruptive” or “non-disruptive” using popular missense 

mutation prediction webservers, in-house algorithms, TP53 protein structure, an 

experimental assay, and the rules devised in Poeta et al. (2007) with and without special 

consideration for splice sites. Some of these methods only classify missense mutations, and 

could not provide classification for other mutation types (e.g., stop codons or frame shifts). 

Therefore, to help make final assessments as comparable as possible, classification for any 

mutation other than missense defaulted to the “Poeta rules” (see below) (Poeta et al. 2007). 

Of the 224 patients with TP53 mutation, 148 had missense mutations, which included 75 

unique missense mutations. A brief description of each classifier follows.

Sorting intolerant from tolerant (SIFT) (Kumar et al. 2009)—SIFT calculates the 

probability of each of the 20 amino acids occurring at each position in a multiple sequence 

alignment (MSA); probabilities are normalized based on the most frequently observed 

amino acid at that position in the alignment. Variants with a normalized probability ≤0.05 

are considered disruptive, with all other variants considered non-disruptive. For this study, 

we used the SIFT webserver (http://sift.jcvi.org/) with default parameters and the default 

MSA.

PolyPhen-2 (Adzhubei 2010)—PolyPhen-2 combines sequence- and structure-based 

features to predict the impact of amino acid substitution using a naïve Bayes classifier. 

Sequence-based features include identity and conservation at the position in an MSA, and 

location of the variant at a hypermutable site or in a Pfam domain. Structure-based features 

include residue burial and crystallographic B-factor. For this study, we used the Poly-Phen-2 

webserver (http://genetics.bwh.harvard.edu/pph2/) with default parameters and MSA. 

PolyPhen-2 classifies variants in one of three categories: benign, possibly damaging, and 

probably damaging. We submitted two independent sets of PolyPhen-2 predictions for 

ECOG assessment: (1) possibly damaging and probably damaging grouped together to 

define the disruptive class, and (2) probably damaging alone defines the disruptive class (all 

others considered non-disruptive).

Align grantham variation grantham deviation (Align-GVGD) (Tavtigian et al. 
2008)—Align-GVGD considers biochemical variation at the relevant position in the MSA 

(Grantham Variation) and biochemical difference between reference and variant amino acids 

(Grantham Deviation). Variant predictions belong to one of seven classes (C0, C15, C25, 

C35, C45, C55, C65), where C0 is the least likely pathogenic and C65 is the most likely 

pathogenic. The server provides highly manually curated sequence alignments for more than 

a dozen cancer-related genes, including TP53; for this study, we selected the TP53 sequence 
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alignment with zebrafish as the most distant homolog (http://agvgd.iarc.fr/agvgd_input.php). 

We submitted two independent sets of Align-GVGD predictions for ECOG assessment: (1) 

C65, C55, and C45 classes define the disruptive group, and (2) C65, C55, C45, and C35 

classes define the disruptive group (all others considered non-disruptive).

Variant effect scoring tool (VEST) (Carter et al. 2013; Douville et al. 2013)—
VEST uses a supervised machine-learning algorithm, Random Forest, to identify missense 

mutations that are functional, i.e., they alter protein activity sufficiently to contribute to a 

clinically observable phenotype. Of all the tested methods, it uses the richest feature set, 

including properties of evolutionary conservation, biochemical properties of amino acid 

residues, predicted protein local structure, curated functional annotations, and protein 

sequence composition in the vicinity of a mutation. VEST reports a score for each mutation 

that ranges from 0 (least likely to be functional) to 1 (most likely to be functional). For this 

study, we used the CRAVAT web server (http://cravat.us) v.2.0 (VEST v.1.1.0, SNVBox v.

2.0.0) to obtain scores. We submitted two independent sets of VEST predictions for ECOG 

assessment: (1) VEST score ≥0.4 define the disruptive group, and (2) VEST score ≥0.8 

define the disruptive group.

Phenotype-optimized sequence ensembles (POSE) (Masica et al. 2012)—POSE 

is a supervised learning approach that isolates sequences, from an input MSA, that facilitate 

an optimal classification of variants of known impact. Input data are a pre-computed MSA, a 

list of mutations, and the classification of each input mutation; the classification can be 

binary (e.g., disease causing or benign) or continuous valued (e.g., time-to-event data). The 

optimized MSA that results from training is then used to predict the impact of mutation 

using the POSE score function. POSE score is based on amino acid and physiochemical 

conservation derived from the MSA, and location of mutation in the target protein’s 3D 

structure, if available. For this study, POSE was trained using continuous valued, mutation-

specific WAF1 transactivation (see below). From a database of 2,314 TP53 mutations with 

associated WAF1 transactivation, we selected 487 mutations to train POSE. Mutations used 

for training were associated with ≤20 % wild-type WAF1 transactivation and observed at 

least 10 times in cancer-specific databases (putatively cancer-causing class), or were 

associated with ≥50 % wild-type activity and found fewer than three times in cancer-specific 

databases (putatively benign class). A DNA-bound structure of TP53 was used for training 

and prediction (PDB ID: 3EXJ).

Rules devised in Poeta et al. (2007)—Poeta et al. devised a simple rule-based method 

to classify a TP53 mutation as disruptive or non-disruptive in the context HNSCC patient 

survival. Disruptive variants are those that introduce a stop codon anywhere in the gene, or 

any mutation in the L2 or L3 DNA-binding domains (codons 163-195 or 236-251) that 

replaces an amino acid from one charge/polarity category with an amino acid from different 

charge/polarity category (Poeta et al. 2007); all other variants are classified as non-

disruptive.

Classification of TP53 splice sites—All variants were mapped to the TP53 transcript 

ENST00000269305. The percent change in splice-site strength caused by the mutation was 
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calculated using Maximum Entropy Scan (Yeo and Burge 2004) and Human Splice Finder 

(Desmet 2009). Mutations causing significant changes in splice-site strength are likely to 

produce aberrant splicing and therefore not produce a functional protein. A change greater 

than 20 % for Maximum Entropy Scan (Bonnet et al. 2008) and 10 % for Human Splice 

Finder (Desmet 2009) will likely produce aberrant splicing.

The dominant isoform of TP53 requires all the exons in which splice-site mutations were 

observed. The dominant isoform is the only transcript to fully express the full N-terminal 

transactivation domain, which is crucial for TP53 function (Marcel et al. 2011). Even if 

other isoforms were produced as a result of the damaging splice mutations, the other 

isoforms will have differing functions from the dominant isoform.

Classification derived from the TP53 protein structure—We applied two simple 

structure-based rules, separately, to classify TP53 mutations using a DNA-bound TP53 

crystal structure (PDB ID: 3EXJ). First we considered residue Euclidian distance to the 

bound DNA, which is a known correlate of carcinogenesis (Gentile et al. 1999; Lothe et al. 

1995; Powell et al. 2000); two sets of predictions were submitted using the distance criteria: 

(1) any residue ≤20 Å or (2) any residue ≤10 Å to the bound DNA were defined as 

disruptive with all others defined as non-disruptive. Distances were calculated from closest 

residue–DNA atomic pair, for each residue. This calculation only considered the site of 

mutation, not the specific amino acid substitution.

Second, we investigated whether disruptive mutations cluster together in the TP53 protein 

structure more than non-disruptive mutations. This was accomplished by calculating the 

pairwise residue–residue distance for all sites that had a missense mutation, and counting the 

number of neighboring sites of mutation within 10 Å; distances were calculated from each 

residue’s center of geometry (based on atomic coordinates). A relative clustering density 

was calculated by normalizing all sites relative to the site with the greatest number of counts 

(i.e., max clustering density = 1.0, with decreasing values corresponding to decreasing 

clustering density). This calculation only considered the site of mutation, not the specific 

amino acid substitution. All sites of mutation with a clustering density ≥0.5 were classified 

as disruptive, with all other sites classified as non-disruptive.

Classification derived from WAF1 transactivation—The WAF1 gene is thought to 

be transcriptionally activated by TP53 (El-Deiry 1993). WAF1 expression is induced in cells 

harboring wild-type TP53, but attenuated to varying degrees in TP53-mutated cells, 

including strong attenuation in cells harboring tumor-derived TP53 mutations (El-Deiry 

1993; Kato et al. 2003). Kato et al. (2003) quantified WAF1 transactivation in yeast for 

2,314 individual TP53 amino acid substitutions, using a GFP-reporter assay. Here, we used 

the author-recommended cutoff of ≤20 % wild-type activity to define disruptive mutations, 

with all others defined as non-disruptive (Soussi et al. 2005). In addition, we submitted 

predictions with a more conservative cutoff of ≤10 % wild-type activity to define disruptive 

variants.
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Assessment of model performance

Patient characteristics at baseline by mutation status were analyzed descriptively. Fisher’s 

exact (Cox 1970) test or Mehta’s exact test (Mehta et al. 1984) were used to evaluate the 

distribution of patient characteristics across mutation categories. Overall survival (OS) and 

progression-free survival (PFS) were estimated using the Kaplan–Meier method (Kaplan 

and Meier 1958). OS was defined as the time from study entry to death or to the last follow-

up, and PFS was defined as the time from study entry to disease recurrence or death, 

whichever occurred first. Log-rank test (Peto and Peto 1972) and C-statistics (Uno et al. 

2011) were used to evaluate each classifier univariately. Proportional hazard cox models 

(Cox 1972) were used to evaluate the significance of the following two classifiers: Poeta 

rules and the Poeta rules + Splice, after adjusting for important covariates.

Results

We classified 224 TP53 mutations as “disruptive” (D) or “non-disruptive” (ND) using 15 

different methods, and compared classification for overall survival (OS) and progression-

free survival (PFS) in head and neck squamous cell carcinoma (HNSCC) patients. The 

supplementary Table S1 summarizes patient characteristics. Table 1 shows performance 

statistics for HNSCC OS, and classification distribution (D vs. ND), for each of the tested 

classifiers. Considering a significance threshold of P ≤ 0.05, association between OS and 

disruptive vs. non-disruptive classification is not significant for any algorithm. Similarly, all 

hazard ratio 95 % confidence intervals include 1.0. And, C-statistics were low for all 

algorithms, showing classification accuracy slightly better than random. Seven of the 

classifiers, the rules devised in Poeta et al. with or without rules for splice-site mutations, 

both WAF1 classifiers, site-specific cluster density, PolyPhen-2 possibly damaging, and 

VEST ≥0.4 achieved a hazard ratio >1.0 (i.e., disruptive mutations are associated with 

reduced survival). Conversely, the other eight classifiers associate disruptive mutations with 

increased survival.

Figure 1 shows Kaplan–Meier survival curves for all seven classifiers that had hazard ratios 

(D vs. ND) >1.0, and are therefore consistent with the direction that disruptive mutations 

have reduced overall survival. For the Poeta rules with or without additional splice-site 

rules, the survival curves show reasonable separation between disruptive and non-disruptive 

classes (Fig. 1a, b), while for the remaining five classifiers, the curves are less well 

separated (Fig. 1c–g).

Table 2 shows performance statistics for HNSCC progression-free survival (PFS) for each 

of the tested classifiers. For PFS, only five classifiers estimated HR (D vs. ND) to be >1.0 

(i.e., consistent with the direction that disruptive mutations to have decreased PFS). While 

the C-statistic remained low among all 15 algorithms, classification using Poeta rules with 

or without splice-site rules was significantly associated with patient PFS (HR (D vs. ND) = 

1.43, 1.50; P = 0.027 and 0.011, respectively); none of the other classifiers reached 

significance. When evaluated in a multivariable setting adjusting for pathological T stage, N 

stage, and treatment, the mutation classifications using Poeta rules with or without splice-

site rules remain significant for PFS (HR (D vs. ND) = 1.40, 1.46; P = 0.040, 0.020, 

respectively). Notably, Poeta rules with or without splice-site modification are the strongest 
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predictors of both OS and PFS, and these classifiers were more conservative with respect to 

classifying mutations as disruptive, compared with other classifiers (Table 1, final two 

columns). This result suggests that performance of the other 13 algorithms might suffer from 

over classifying mutations as disruptive.

Figure 2 shows Kaplan–Meier survival plots for all classifiers with hazard ratios (D vs. ND) 

>1 in the context of PFS. As with OS, classification via Poeta rules with or without splice-

site rules results in survival curves with good separation between disruptive and non-

disruptive classes (Fig. 2a, b). All five algorithms that had a hazard ratio >1 for PFS (Fig. 2) 

also had a hazard ratio >1 for OS (Fig. 1); however, classification using the WAF1 or cluster 

density classifiers was not statistically significant.

Next, we evaluated classifier performance on different subgroups of HNSCC patients, 

defined by: (1) newly diagnosed patients who underwent surgery only, (2) newly diagnosed 

patients who underwent surgery followed by postoperative therapy, (3) the surgery-only 

group combined with patients who underwent surgery followed by postoperative therapy 

(i.e., groups 1 and 2 combined), and (4) patients with recurrent disease who were treated 

with salvage surgery (Table 3). As with survival in the total study population, classification 

using the Poeta rules with or without splice-site rules resulted in the most significant 

correlation with survival in each of the patient subgroups, compared to the other 13 

methods. Table 3 shows performance using these two classifiers for the patient subgroups, 

for both OS and PFS; performance statistics for the total study group are included for 

comparison, and are the same as in Tables 1 or 2.

For the surgery-only subgroup, including splice-site modification resulted in better 

correlation with both OS and PFS, compared with Poeta rules alone (Table 3). However, this 

correlation was only significant for PFS. Similarly, including splice-site modification 

resulted in significant correlation with PFS when the surgery only and surgery-plus 

postoperative therapy patients were grouped together; no significant correlation was 

observed for this grouping using the Poeta rules alone. And, classification was not 

significant for predicting survival in the surgery-plus postoperative-therapy subgroup, 

regardless of the classifier employed. Taken together, the observations from Table 3 indicate 

that the additional splice-site rules provide their greatest utility for predicting PFS, and 

treatment variation can influence the correlation.

Comparing hazard ratios and P values among the different subgroups, it is clear that the 

greatest correlation between classification and survival occurred in the recurrent subgroup 

(Table 3). Classification with either of the two algorithms was significantly correlated with 

PFS in the recurrent (salvage surgery) subgroup (HR = 2.12, 2.08; P = 0.031, 0.038, 

respectively). Classification using the Poeta rules also had significant correlation with OS in 

the salvage surgery subgroup (HR = 2.50 and P value = 0.015). Conversely, classification 

using the Poeta + splice-site rules was not significantly correlated with OS in the recurrent 

subgroup (P = 0.081).

Finally, we sought to the better understand the general discordance observed between 

survival and classifier predictions. The authors testing the classifiers were blinded to the 
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ECOG survival data, which are important for benchmarking classifiers and to prevent 

overfitting. To some extent, this limits our ability to determine the exact causes of the 

observed discordance. However, some potential origins of discordance can be inferred by 

comparing classification among the methods. Because Poeta-rule classification had higher 

correlation with survival than other tested classifiers, and have a distinct classification 

distribution (final column, Table 1), we compare all classifiers to the Poeta rules. Note that 

comparison with the splice-site rules is not relevant because no other classifier considered 

splice sites.

The IARC TP53 database is the “gold standard” database of TP53 mutations (Petitjean et al. 

2007). The IARC uses WAF1 ≤ 20 % as a criterion for defining TP53 loss-of-function 

mutations. Table 4 provides a comparison of mutation classification between the WAF1 ≤20 

% classifier and the other classifiers. Correlation was extremely high for all classifiers, with 

the possible exception of the Poeta rules (Table 4), suggesting that these algorithms are 

classifying TP53 loss-of-function mutations as disruptive. Similarly, Table 5 shows 

mutations that were the greatest source of disagreement between Poeta rules and WAF1 ≤20 

% classification. In all cases, Poeta rules classified the mutation as non-disruptive and 

WAF1 ≤20 % classified the mutation as disruptive. Table 5 also shows which other 

algorithms classified the mutations as disruptive. Importantly, each of these mutations is 

among the most frequently observed TP53 somatic missense mutations in human cancers. 

Furthermore, they are frequent in the dataset used here, accounting for more than one-third 

of all missense mutations (53/148). Taken together, Tables 4 and 5 suggest that most 

classifiers tested here might suffer from identifying cancer-causing mutations, which does 

not necessarily correlate with reduced survival and treatment response.

Discussion

We classified TP53 mutation as “disruptive” or “non-disruptive” using 15 different 

classification schemes to predict survival in 224 HNSCC patients harboring those mutations. 

Importantly, the tested approaches utilize diverse classifiers that include sequence, structure, 

annotation, or a mixture of these three. And, the WAF1 classifiers rely entirely on an 

experimental functional assay and a threshold for defining a TP53 mutation as disruptive or 

not. In general, classification of TP53 mutation by the tested approaches was not highly 

correlated with HNSCC patient survival. Only the rules devised in Poeta et al. with or 

without additional splice-site classification resulted in statistically significant correlation. 

And, even these two classifiers had only marginally significant correlation, with low C-

statistics and highly variable performance among the patient subgroups.

It is important to note that none of the classifiers tested here were developed specifically to 

predict the impact of mutation on survival. VEST, SIFT, Align-GVGD, and Poly-Phen-2 

were developed to predict the impact of missense mutation, where “impact” describes broad 

categories such as “functional” or “deleterious”. The POSE algorithm was developed, 

ostensibly, to predict any specific phenotype a user wishes to predict. However, there is no 

publically available dataset relating TP53 mutation to HNSCC survival; here we trained 

POSE with mutation-specific WAF1 transactivation data. The annotation- and structure-

based classifiers tested utilize common rules for identifying mutations that might destabilize 
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protein structure or intermolecular interactions. Poeta rules utilize similar annotation/ 

structure-based features, and also consider the physiochemical change imparted by the 

specific amino acid substitution. And, the WAF1 transactivation assay was designed to 

predict loss-of-function mutation in TP53. Correlation between the WAF1 loss-of-function 

assay and that of most other tested classifiers was highly significant (Table 4). Similarly, 

many of the tested methods classified the most canonical, cancer-causing TP53 mutations as 

disruptive (Table 5); these mutations account for over one-third of the missense mutations in 

this study. Therefore, it appears to some extent, that the tested methods are working “as 

advertised” and identifying mutations that alter TP53 function.

For some HNSCC patient subgroups, Poeta-rule classification was significantly associated 

with survival. Continued development of this classifier could result in improved prognostic 

markers for HNSCC patient survival. For instance, in this study we included new rules for 

classifying TP53 splice-site mutations, and tested Poeta rules with or without the new splice-

site classifier. Indeed, for some patient subgroups, the splice-site classifier added significant 

benefit. It may also be useful to add clinical variables for classification. As an example, 

Poeta-rule classification was most correlated with survival for the patient subgroup that 

underwent salvage resection. Based on the fact that these patients had recurrence, the set of 

mutations associated with these patients may have been enriched to predict poor survival. It 

is possible that Poeta-rule classification worked particularly well for these mutations by 

increasing the incidence within the group and improving the positive predictive value. 

Therefore, an improved classifier might include information about patient subgroup, such as 

newly diagnosed vs. recurrent, for classifying mutation as disruptive or non-disruptive.

Another possibility would be to train a classifier using HNSCC patient survival data. For 

proper benchmarking, and to prevent classifier overfitting, sufficiently large training and 

testing datasets would be required. This could include leave-some-out cross validation using 

a dataset as large as the ECOG dataset, which we used here solely for testing purposes. 

Another, perhaps more revealing strategy, would be to train and test using two independent 

clinical studies of HNSCC patient survival, where patient TP53 sequence information was 

also available.

Potential confounding factors in our analysis include limitations in the sequencing assay, the 

absence of resected normal tissue adjacent to patient tumors, and absence of sequencing data 

from tumor subclones. In this cohort, insertion–deletion mutations greater than one base 

cannot be detected by the employed sequencing method. A patient with undetected TP53 

mutations could cause a false positive in our study, because the observed survival could be 

falsely attributed to that patient’s detected mutation. In addition, TP53 sequencing was 

restricted to the bulk of the tumor cells. This approach would not be able to detect mutations 

at the surgical margins or in subclones, which could be important because HNSCC 

heterogeneity can influence survival outcome. Similarly, our data do not provide any 

prognostic information regarding the presence of mutations in the adjacent normal mucosa 

due to the field cancerization (Bradley et al. 2007; Tabor et al. 2001).

It is also possible that there is a significant limitation to the use of single-gene markers. 

Cancer is complex disease progressing via the concerted impact of multiple genetic 
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alterations that can vary among individual tumors, even of similar histology. From this 

perspective, genetic context could affect the prognostic value of a single-gene marker. 

Furthermore, single-cell sequencing techniques are confirming that individual tumors are 

often heterogeneous mixtures of subclonal genotypes, where the competing populations can 

cause genotypic shifts over time (Greaves 2012; Marusyk et al. 2012; Keats et al. 2012). If 

the measured genotype is significantly different than that at later stages in progression, false 

inference could be drawn about the value of the biomarker under consideration. And of 

course, personal, environmental, and other exogenous factors can exacerbate an already poor 

genetic prognosis, which if not accounted for by the model can be confounding. To that end, 

improved prognostic biomarker selection will likely benefit from combining multiple 

genetic factors and clinical variables. Future prospective trials may be useful to determine 

whether particular mutations are predictive as well as prognostic, regarding use of cytotoxic 

chemotherapy or p53-directed immunotherapy (Ferris et al. 2014).
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Fig. 1. 
Kaplan-Meier survival curves for top-predicting classifiers of HNSCC overall survival. 

Survival curves for all classifiers that predicted a causative effect for disruptive mutations 

(i.e., hazard ratio >1.0) from Table 1. Overall survival among HNSCC patients with wild-

type TP53 shown for comparison
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Fig. 2. 
Kaplan-Meier survival curves for top-predicting classifiers of HNSCC progression-free 

survival. Survival curves for all classifiers that predicted a causative effect for disruptive 

mutations (i.e., hazard ratio >1.0) from Table 2. Progression-free survival among HNSCC 

patients with wild-type TP53 shown for comparison
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Table 4

Correlation of predictions made by each classifier and the WAF1 ≤20 % classifier

Classifier FDR-adjusted P value

Poeta rules 2.03 × 10−3

Density ≥0.5 1.31 × 10−10

Distance ≤20 Å 3.58 × 10−11

Distance ≤10 Å 1.99 × 10−8

PPH-2 possibly 3.58 × 10−11

PPH-2 probably 3.58 × 10−11

VEST ≥0.4 4.37 × 10−11

VEST ≥0.8 3.77 × 10−11

AGVGD C45 1.20 × 10−8

AGVGD C35 5.22 × 10−10

SIFT 3.58 × 10−11

POSE 1.48 × 10−10

The Poeta + splice and WAF1 ≤ 20 % predictions were not significantly co-occurring. The WAF1 ≤ 10 % classifier was not included in the 
calculation to prevent an artificially conservative FDR adjustment

Two-tailed Fisher’s exact P values were calculated by populating a two-by-two contingency table with predictions made by each classifier and 
those made by the WAF1 ≤20 % classifier (disruptive = 1; non-disruptive = 0); P values were adjusted using the Benjamini and Hochberg false-
discovery rate (FDR)
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Table 5

Highest-frequency mutations from this cohort that were predicted disruptive using the WAF1 ≤20 % classifier 

and non-disruptive using Poeta rules

Missense mutation Classified “disruptive” by:

R175H (8) VEST, SIFT, PPH-2, POSE, density, distance

H193R (3) VEST, SIFT, PPH-2, POSE, density, distance

Y205C (4) VEST, SIFT, PPH-2, AGVGD, POSE

Y220C (8) VEST, SIFT, PPH-2, AGVGD, POSE

G245S (3) VEST, SIFT, PPH-2, AGVGD, POSE, density, distance

V272M (4) VEST, SIFT, PPH-2, POSE, density, distance

R273C (8) VEST, SIFT, PPH-2, AGVGD, POSE, density, distance

R273H (8) VEST, SIFT, PPH-2, POSE, density, distance

R280K (3) VEST, SIFT, PPH-2, POSE, density, distance

R282W (4) VEST, SIFT, PPH-2, AGVGD, POSE, density, distance

Parenthetical values indicate the number of patients from this cohort with the mutation

For each mutation, algorithms that classified that mutation as disruptive are listed in the second column
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