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Abstract

The connective tissue of any organ in the body is generally referred to as stroma. This complex 

network is commonly composed of leukocytes, extracellular matrix components, mesenchymal 

cells and a collection of nerves, blood and lymphoid vessels. Once viewed primarily as a structural 

entity, stromal cells of mesenchymal origin are now being intensely examined for their ability to 

directly regulate various components of immune cell function. There is particular interest in the 

ability of stromal cells to influence the homeostasis, activation and proliferation of T lymphocytes. 

One example of this regulation occurs in the lymph node (LN) where fibroblastic reticular cells 

(FRCs) support the maintenance of naïve T cells, induce antigen-specific tolerance and restrict the 

expansion of newly activated T cells. In an effort to highlight the varied immunoregulatory 

properties of FRCs, we have reviewed the most recent advances in this field and provide some 

insights into potential future directions.

Introduction

The life cycle of T lymphocytes begins in the thymus as immature precursor T cells undergo 

positive and negative selection to mature into CD4+ and CD8+ single-positive cells (1). 

Following migration from the thymus, T cells recirculate from the blood through lymph 

nodes (LN) into lymphatics and back into the blood, searching for the presence of their 

target antigen (2). When a naïve T cell becomes activated in the LN by a professional 

antigen-presenting cell (APC) presenting its cognate antigen, the T cell will either mount an 

effector response or will become tolerant to avoid autoimmunity. In the presence of 

appropriate co-stimulation, activated T cells undergo rapid clonal expansion in the LN, 

acquire effector functions and gain the ability to migrate to their antigen source in peripheral 

tissues. The vast majority of effector T cells will die during the contraction phase of an 

immune response but a small fraction will remain as circulating long-lived effector or 
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central memory cells, poised to mount a robust recall response in non-lymphoid and 

lymphoid tissues (3). As such, the LN serves as a central site for every stage of the T cell life 

cycle by: recruiting naïve T cells from the blood, promoting naïve T cell survival, providing 

an environment for T cell differentiation or tolerance and by influencing the homing 

properties of memory T cells.

In addition to hematopoietic cells, the LN contains specialized stromal cells including: blood 

endothelial cells (BECs), lymphatic endothelial cells (LECs), follicular dendritic cells 

(FDCs), marginal reticular cells (MRCs), integrin α7
+ pericytes (IAPs) and fibroblastic 

reticular cells (FRCs) (4–6). LN-resident stromal cells were long viewed simply as structural 

determinants, uninvolved in immune cell homeostasis or ongoing immune responses. A 

series of publications over the past decade, however, have uncovered several fascinating 

immunoregulatory properties of LN stromal cells. In particular, FRCs are concentrated in 

the paracortical region (T cell zone) of the LN and are endowed with several functions that 

regulate the activity of T lymphocytes.

FRCs are thought to originate from mesenchymal preadipocyte precursors in the 

microenvironment of the LN anlagen during ontogeny (7). Engagement of the lymphotoxin-

β receptor on these precursors drives their differentiation into lymphoid-tissue organizing 

cells, which ultimately leads to the development of myofibroblastic precursors that give rise 

to mature FRCs in the postnatal LN (7–11). The T cell zone of the adult LN is especially 

enriched with the presence of mature FRCs characterized by the expression of podoplanin 

(gp38) and extracellular matrix proteins such as ERTR-7 and collagens (6). We now know 

that naïve T cell recruitment to and survival within LNs are maintained by FRC-derived 

chemokines and cytokines (12, 13). FRCs also directly induce deletional T cell tolerance and 

can restrict the expansion of newly activated T cells (14–19). In the following, we will 

review the immunoregulatory characteristics of LN FRCs with particular emphasis on how 

these cells organize and regulate several phases of the T lymphocyte life cycle.

FRCs facilitate lymphocyte arrival and organization in the lymph node

The random joining of T cell receptor (TCR) regions during T cell development produces a 

naïve T cell repertoire with only a few cells with high affinity for any individual peptide-

major histocompatibility complex (MHC) (20, 21). To trigger an effective immune response, 

this rare population of T cells must initially engage an APC presenting its cognate antigen. 

To increase the likelihood of encountering its target antigen, naïve T cells continuously 

circulate between lymphoid organs, such as the Peyer’s patches (PP), spleen and LN (22). 

Circulating T lymphocytes enter the LN through specialized blood vessels named high 

endothelial venules (HEVs) (2, 23). FRCs surround HEVs and interact with extravasated 

platelets in the perivenular space to maintain HEV integrity during lymphocyte trafficking 

(24). This regulation requires the ligation of FRC-bound gp38 to the C-type lectin receptor 

CLEC-2 on platelets. Activated platelets then release sphingosine-1-phosphate in the 

perivenular space, which maintains adherens junctions between HEVs (24). Loss of FRC-

bound gp38 or CLEC-2 expression on platelets compromises LN vascular integrity at steady 

state and during immune responses (24). The absence of CLEC-2 on platelets also leads to a 

defect in T and B cell recirculation through the LNs after repeated immunizations (25).
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Lymphocyte chemoattractants CCL19, CCL21, and CXCL12 are all expressed by LN FRCs 

and function to support naïve T cell trafficking across HEVs and retains T cells in the LN 

paracortex through their ligation to CCR7 and CXCR4 (6, 12, 26–28) (Fig. 1A). After 

exiting the HEVs, naïve T cells use the FRC network as a defined structural path to migrate 

within the paracortex according to the chemokine gradients. The survival and homeostasis of 

naïve T cells that reach the T cell zone is also supported by FRC-derived interleukin-7 

(IL-7) (13) (Fig. 1B). Accordingly, disruption of the FRC network during human 

immunodeficiency virus (HIV)-associated LN fibrosis significantly correlates with a 

reduced number of naïve CD4+ T cells in the LN (29). Indeed, LN fibrosis in models of 

simian immunodeficiency virus (SIV) in rhesus macaques restricts T cell access to FRC-

derived IL-7, which drives apoptosis in both naïve CD4+ and CD8+ T cell populations (30). 

Treatment of SIV-infected macaques with agents that reduce LN fibrosis preserves the FRC 

network and is associated with larger CD4+ T cell populations in the LNs compared to 

untreated controls (31, 32). Genetic ablation of LN FRCs in mouse models alters T cell 

localization in the paracortex, decreases T cell survival and impairs antigen-specific T cell 

priming (33). By maintaining HEV integrity and secreting soluble mediators to facilitate 

migration and survival, FRCs place T cells in position to locate their cognate antigen.

FRCs support the interactions between antigen-presenting dendritic cells and T cells

After arrival in the LN via HEVs, naïve T cells spend ~8–12 hours exploring the LN 

parenchyma for their cognate antigen (34). FRCs directly facilitate antigen availability to T 

cells by: 1) creating a conduit system that extends deep into the LN parenchyma; and by 2) 

supporting migratory dendritic cell (DC) entry, maturation and trafficking into the LN from 

peripheral tissues. FRCs secrete and ensheathe extracellular matrix (ECM) components to 

form a reticular conduit network within the T cell zone of the LN and spleen (6, 35–38). 

This system functions as a molecular sieve, allowing expedited delivery of chemokines and 

small soluble antigens from upstream tissues into the parenchyma of draining LNs (37, 39) 

(Fig. 1). Small lymph-borne antigens from the conduit are sampled by LN-resident DCs and 

subsequently presented to T cells (37, 40). Under inflammatory conditions, a second flux of 

antigen-loaded migratory DCs arrive in the LN and present antigen to primed T cells (40). 

This trafficking and upregulation of co-stimulatory molecules is induced by the ligation 

between the CCR7 receptor on DCs and FRC-derived chemokines CCL19 and CCL21 (41, 

42) (Fig. 1C). Upon arrival in the LN, migratory DCs cross the floor of the subcapsular sinus 

and infiltrate the parenchyma. Similar to naïve T cells, DCs also use the reticular FRC 

network as a scaffold to navigate within the T cell zone (26), which increases potential 

interactions between antigen-bearing DCs and naïve T cells. In addition to chemokine 

gradients (41), DC migration along FRC networks also depend on signaling between 

CLEC-2 and its ligand gp38 (43). Engagement of DC-expressed CLEC-2 to gp38 on FRCs 

promotes actin polymerization in DCs, which facilitates spreading, protrusion extension and 

migration along FRC networks (43). Disruption of this signaling pathway causes impaired 

DC trafficking to and within the LN, ultimately leading to reduced T cell priming (43). In 

addition to modulating DC motility, the CLEC-2-gp38 axis also influences the contractility 

of FRCs (44, 45). At steady state, gp38 maintains FRCs in a highly tense and contracted 

state within the LN reticular network. CLEC-2 ligation inhibits gp38 signaling which causes 

FRCs to stretch and expand due to the relaxation of their actomyosin cytoskeleton (44, 45). 
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Effectively, the same antigen-bearing DCs that initiate T cell priming during an immune 

response also causes relaxation of the FRC network which allows space for T cell influx and 

clonal expansion (44, 45).

Antigen presentation by FRCs induces peripheral tolerance

The priming instructions received by naïve T cells in the LN will either trigger effector T 

cell differentiation or produce functionally inert clones that remain in a hyporesponsive state 

or eventually become deleted. The immune system has evolved such that this priming fate 

depends primarily on whether naïve T cells harbor a TCR specific for a potentially 

dangerous foreign antigen or contain receptors that recognize self-peptides. Despite the 

immune system’s design to eliminate self-reactive clones in the thymus during negative 

selection, a relatively high frequency of T cells with auto-reactive potential will escape into 

the periphery (46). Therefore, mechanisms to enforce peripheral tolerance are critical for the 

prevention of auto-inflammation and tissue destruction. Until recently, steady state 

trafficking of antigen-loaded immature DCs was widely accepted as the primary mechanism 

of peripheral deletional tolerance (47, 48). In 2007 however, a report from Lee et al (14) 

identified an important role for LN stromal cells in inducing CD8+ T cell tolerance (Fig. 

1D). A transgenic model system was used for this study whereby a truncated form of 

ovalbumin (tOVA) was expressed as a self-antigen under the control of the intestinal fatty 

acid-binding protein (iFABP) promoter (49). As expected, adoptive transfer of OVA-

specific CD8+ T cells (OTI) led to proliferation in gut draining tissues such as the 

mesenteric LN and Peyer’s patches. Surprisingly, however, transferred cells also proliferated 

in the non-draining LNs. This proliferation occurred even under conditions when DCs and 

other bone marrow-derived APCs were prevented from presenting antigen (14). These data 

led to the discovery that CD45− gp38+ non-hematopoietic stromal cells were responsible for 

the presentation of tOVA and subsequent activation of OTI cells (14). Most notably, after 

some initial proliferation, the adoptively transferred T cells were subsequently lost from the 

T cell pool, highlighting the tolerogenic capacity of LN stroma (14).

Advances in purification techniques for LN stromal cells (50) led to the identification of 

FRCs as the specific stromal cell population responsible for the ectopic expression of tOVA 

in the iFABP-tOVA mouse (15). These techniques also allowed Malhotra et al (6) to 

conduct a comprehensive transcriptomic analysis of different LN stroma cell subsets. 

Pairwise analyses of ligands and cognate receptors across stroma and hematopoietic cells 

suggested a number of potentially interesting interactions. Notably, upregulation of MHC 

class II (MHC II) by FRCs in response to inflammatory stimuli suggest that FRCs might 

also tolerize class II-restricted CD4+ T cells (6). Dubrot et al (16) substantiated this notion 

with a recent study which showed that FRCs express low levels of endogenous MHC II 

through the PIV promoter region of CIITA, a known master regulator of class II expression. 

The study also provided evidence that MHC class II on FRCs can also be acquired from 

DCs via a contact-dependent mechanism involving the transfer of DC-derived MHC II+ 

exosomes (16). Accordingly, DCs pulsed with FITC-labeled OVA were also able to transfer 

peptide-loaded MHC II (pMHC II) complexes to FRCs (16). To investigate the influence of 

this pMHC II transfer on CD4+ T cells in vivo, the authors used the CD11cDOG mouse 

model in which OVA protein is exclusively expressed by DCs (51). OVA-specific CD4+ T 
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cells (OTII) pre-cultured with FRCs from these mice exhibited a delayed proliferative 

response upon restimulation with anti-CD3/CD28 antibodies (16). Based on these findings, 

it was proposed that FRCs acquired OVA-MHC II complexes from DCs in vivo which 

endowed them with the ability to induce antigen-specific CD4+ T cell hyporesponsiveness 

(16) (Fig. 1D). Altogether, these studies have elucidated a role for FRCs in antigen 

presentation and T cell anergy.

FRCs restrict the expansion of newly activated T cells

In addition to tolerizing T cells through direct antigen presentation, FRCs can also limit T 

cell responses by curtailing the expansion of newly activated T cell pools. This proliferative 

restriction applies to CD4+ and CD8+ T cells and surprisingly occurs independently of 

antigen presentation (17–19). According to several reports, T cells activated by either anti-

CD3/CD28 antibodies or peptide-pulsed DCs experienced delayed division kinetics when 

co-cultured with FRCs (17–19). Additional FRC:T cell co-culture experiments from mice 

deficient for candidate mediators revealed a molecular crosstalk whereby T cell-derived 

IFN-γ and TNF-α act synergistically to endow FRCs with suppressive capabilities that are 

mediated through the activity of inducible nitric oxide synthase (iNOS) (17–19) (Fig. 1E). In 

transwell assays, the suppressive affects of FRCs were significantly diminished, indicating 

contact-dependency or a requirement for close cellular proximity (17–19). The existence of 

FRC-mediated T cell suppression was corroborated in vivo. When compared to WT iFABP-

tOVA mice, Lukacs-Kornek et al (17) showed enhanced proliferation of OTI T cells 

transferred into iFABP-tOVA mice lacking iNOS expression. Similar proliferation trends 

were observed using iNOS−/− mice infected with VSV-OVA (19) or immunized with OVA-

loaded bone marrow DCs (18).

Given the current data, we can only speculate on the reasons for this suppressive 

relationship. One possible clue may come from the in vivo expression profile of iNOS in 

FRCs. As reported by immunostaining of skin-draining LNs (SLN) and mesenteric LNs 

(MLNs), OTI T cells transferred into iFABP-tOVA mice induced iNOS expression in only a 

proportion of FRCs in vivo (17). This result, coupled with the fact that FRCs in vitro 

attenuated T cell proliferation without complete abrogation (17–19), suggests that FRCs 

may exist as a heterogeneous population in regards to their suppressive capacity. Indeed, 

functional heterogeneity of FRCs has been recently described for their B cell homeostatic 

potential (33). Therefore, it is possible that FRCs reside in discrete microdomains that 

promote T cell proliferation in a spatially and temporally restricted fashion, while limiting 

uncontrolled T cell expansion. Ultimately, this mechanism may be required to protect 

lymphoid organs from excessive swelling and damage during ongoing immune responses. 

Although we know that FRCs proliferate and expand to accommodate LN enlargement 

during immune responses (52, 53), whether and how these cells regulate changes in LN 

structure during inflammation remains completely unknown. More in vivo studies are 

needed to test the validity of this hypothesis.

Can FRCs influence the differentiation of T cells?

Differentiation of naïve T cells into regulatory cells; specific helper subsets or long-lived 

memory cells represent the final stages of the T lymphocyte life cycle. The involvement of 
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LN stroma in this final stage can be investigated using a variety of techniques including LN 

transplantation models. Upon LN transplantation, graft-derived LN stroma are largely 

retained in the transplant, whereas all hematopoietic cells migrate out of the LN and are 

replaced by host-derived hematopoietic cells (54, 55). As such, this system has provided a 

useful tool for investigating location-specific properties that are intrinsic to stroma. The 

capacity of LN stroma to induce the generation of de novo regulatory T cells (Tregs) was 

explored in a recent study (56) in which liver draining celiac LNs and gut-draining 

mesenteric LNs were transplanted into the popliteal fossa after excision of the endogenous 

popliteal LN. When compared to transplanted popliteal LN controls, celiac and mesenteric 

LNs represented a significantly superior environment for de novo Treg differentiation from 

adoptively transferred naïve Foxp3− CD4+ OTII T cells (56). Interestingly, the ability to 

induce Tregs was not recapitulated when LNs were transplanted from germ-free mice or 

mice with vitamin A deficiency (56). The phenomenon also required the presence of DCs as 

Treg generation was abolished when DCs were depleted (56). Overall, these data suggest a 

model whereby the intestinal microenvironment imprints LN stroma with Treg inducing 

properties that are ultimately fulfilled via a synergistic relationship with DCs. Given their 

interactions with DCs (43) and their density within the T cell zone (4), FRCs may be the 

main LN stromal population responsible for the Treg induction in this model. It is also 

possible that FRC-derived nitric oxide might act directly on newly activated T cells to 

induce Tregs. In line with this hypothesis, work by Liew and colleagues has shown that 

nitric oxide can promote the generation of CD4+ CD25+ Foxp3− regulatory T cells with both 

in vitro and in vivo suppressive functions (57, 58).

FRCs may also regulate T cell differentiation by supporting the maintenance of memory 

precursor effector cells (MPECs) and long-live memory populations. A recent report by 

Denton et al (59) provided some validation to this hypothesis by showing a modest 

reduction in MPEC percentages following FRC depletion during the late phase of an 

ongoing influenza virus infection. Interestingly, FRC ablation reduced the percentage of 

MPECs without negatively impacting the abundance of short lived effector cells (59). 

Selective reduction of MPECs likely occurred in response to decreased FRC-derived IL-7, 

which is known to support MPEC formation (60) (Fig. 1F). IL-7 along with IL-15 are pro-

survival factors for both CD4+ and CD8+ LN-homing central memory T cells (TCM) (61–

65). Therefore, it is not surprising to find that resting LN CD8+ TCM closely mirror the 

microanatomical distribution of naïve CD8+ T cells (66), whose survival is also supported 

by FRC-derived IL-7 (13). Although CD4+ memory T cells are already known to associate 

with IL-7-expressing VCAM-1+ stroma cells in the bone marrow (67), additional studies are 

needed to formally test if CD4+ memory T cells preferentially reside on IL-7-producing LN 

FRCs. Additionally, FRCs were recently shown to express IL-15 in vivo (68), adding to their 

potential role as supporters of memory T cell maintenance (Fig. 1F).

Conclusions

Over the past decade, understanding of the immunological relevance of the stroma has 

grown significantly. Based on recent and emerging evidence, the role of stromal cells within 

the LN is now appreciated to be more complex than their previous categorization as a mere 

structural entity. We now know that FRCs govern lymphocyte recruitment and organization 
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in the LN and support encounters between antigen-presenting DCs and T cells. FRCs also 

induce deletional tolerance via antigen presentation and are expected to participate in the 

generation of inducible Tregs within gut-draining LNs. During clonal expansion, FRCs 

restrict proliferation within the expanding T cell pool and are involved in the maintenance of 

memory precursor effector cells. By participating in the homeostasis, activation and 

differentiation of T lymphocytes, FRCs are emerging as essential regulators of T cell 

immunity.

Given their diverse immunoregulatory properties, FRCs are now being explored for their 

therapeutic potential in settings with immunological dysregulation. In a recent report from 

Fletcher et al (69), FRCs were used as a novel anti-inflammatory therapy for the treatment 

of high-mortality murine sepsis. In this system, FRCs offer enhanced survival in mice with 

either lipopolysaccharide endotoxemia or cecal ligation and puncture sepsis by dampening 

the expression of proinflammatory cytokines in the peritoneum and blood via a iNOS-

dependent mechanism (69). To fully uncover the therapeutic potential of FRCs, additional 

research will be needed to identify the underlying molecular mechanisms that induce these 

cells to become immuno-stimulatory or immuno-suppressive. Identifying the soluble 

mediators and signaling pathways that control the function of FRCs should allow 

researchers to better predict how these cells might behave in a particular therapeutic setting. 

In the coming years, we anticipate additional discoveries that will expand our understanding 

of the immune functions of FRCs, and inform the development of therapies to treat 

infections, cancer and autoimmune disorders.
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Figure 1. 
LN FRCs regulate several aspects of the T cell life cycle. |A| FRCs facilitate lymphocyte 

arrival and organization in the LN. FRC-derived chemokines CCL19 and CCL21 support 

naïve T cell trafficking across HEVs and retains T cells in the LN paracortex through their 

ligation to CCR7. |B| T cell survival is maintained by FRCs. FRC-derived IL-7 supports the 

survival and homeostasis of naïve T cells that reach the T cell zone. |C| FRCs facilitate the 

interactions between antigen-presenting dendritic cells and T cells. The trafficking of 

migratory DCs to the LN is induced by the ligation between the CCR7 receptor on DCs and 

FRC-derived chemokines CCL19 and CCL21. Upon arrival in the LN, DC migration along 

the FRC network requires the engagement of DC-expressed CLEC-2 to gp38 on FRCs. 

Disruption of this signaling axis ultimately leads to reduced T cell priming. |D| FRCs induce 

T cell tolerance via the expression of peripheral tissue-restricted antigens. Upon antigen 

presentation, FRCs induce deletional tolerance of MHC class I-restricted CD8+ T cells and 

hyporesponsiveness of MHC II-restricted CD4+ T cells. |E| FRCs restrict the expansion of 

newly activated T cells. Activated T cells release IFN-γ and TNF-α, which act 

synergistically to endow FRCs with suppressive capabilities, mediated through the activity 

of nitric oxide. This suppression occurs in an antigen-independent fashion, which may 

ultimately be required to protect the organ from excessive swelling and damage during 

ongoing immune responses. |F| FRCs influence the maintenance of memory precursor 

effector cells. Ablation of FRCs during the late phase of an immune response leads to a 
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modest reduction in the percentage of memory precursor effector cells. The mechanism 

controlling this reduction has not been determined although FRC-derived IL-7 and IL-15 are 

hypothesized to be involved.
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