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Abstract

Diffusion-weighted magnetic resonance imaging (DWI) and fiber tractography are the only 

methods to measure the structure of the white matter in the living human brain. The diffusion 

signal has been modelled as the combined contribution from many individual fascicles of nerve 

fibers passing through each location in the white matter. Typically, this is done via basis pursuit, 

but estimation of the exact directions is limited due to discretization [1, 2]. The difficulties 

inherent in modeling DWI data are shared by many other problems involving fitting non-

parametric mixture models. Ekanadaham et al. [3] proposed an approach, continuous basis 

pursuit, to overcome discretization error in the 1-dimensional case (e.g., spike-sorting). Here, we 

propose a more general algorithm that fits mixture models of any dimensionality without 

discretization. Our algorithm uses the principles of L2-boost [4], together with refitting of the 

weights and pruning of the parameters. The addition of these steps to L2-boost both accelerates 

the algorithm and assures its accuracy. We refer to the resulting algorithm as elastic basis pursuit, 

or EBP, since it expands and contracts the active set of kernels as needed. We show that in 

contrast to existing approaches to fitting mixtures, our boosting framework (1) enables the 

selection of the optimal bias-variance tradeoff along the solution path, and (2) scales with high-

dimensional problems. In simulations of DWI, we find that EBP yields better parameter estimates 

than a non-negative least squares (NNLS) approach, or the standard model used in DWI, the 

tensor model, which serves as the basis for diffusion tensor imaging (DTI) [5]. We demonstrate 

the utility of the method in DWI data acquired in parts of the brain containing crossings of 

multiple fascicles of nerve fibers.

1 Introduction

In many applications, one obtains measurements (xi, yi) for which the response y is related to 

x via some mixture of known kernel functions fθ(x), and the goal is to recover the mixture 

parameters θk and their associated weights:
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(1)

where fθ(x) is a known kernel function parameterized by θ, and θ = (θ1, …, θK) are model 

parameters to be estimated, w = (w1, …, wK) are unknown nonnegative weights to be 

estimated, and εi is additive noise. The number of components K is also unknown, hence, 

this is a nonparametric model. One example of a domain in which mixture models are useful 

is the analysis of data from diffusion-weighted magnetic resonance imaging (DWI). This 

biomedical imaging technique is sensitive to the direction of water diffusion within 

millimeter-scale voxels in the human brain in vivo. Water molecules freely diffuse along the 

length of nerve cell axons, but is restricted by cell membranes and myelin along directions 

orthogonal to the axon’s trajectory. Thus, DWI provides information about the 

microstructural properties of brain tissue in different locations, about the trajectories of 

organized bundles of axons, or fascicles within each voxel, and about the connectivity 

structure of the brain. Mixture models are employed in DWI to deconvolve the signal within 

each voxel with a kernel function, fθ, assumed to represent the signal from every individual 

fascicle [1, 2] (Figure 1B), and wi provide an estimate of the fiber orientation distribution 

function (fODF) in each voxel, the direction and volume fraction of different fascicles in 

each voxel. In other applications of mixture modeling these parameters represent other 

physical quantities. For example, in chemometrics, θ represents a chemical compound and fθ 

its spectra. In this paper, we focus on the application of mixture models to the data from 

DWI experiments and simulations of these experiments.

1.1 Model fitting - existing approaches

Hereafter, we restrict our attention to the use of squared-error loss; resulting in penalized 

least-squares problem

(2)

Minimization problems of the form (2) can be found in the signal deconvolution literature 

and elsewhere: some examples include super-resolution in imaging [6], entropy estimation 

for discrete distributions [7], X-ray diffraction [8], and neural spike sorting [3]. Here, Pθ(w) 

is a convex penalty function of (θ, w). Examples of such penalty functions given in Section 

2.1; a formal definition of convexity in the nonparametric setting can be found in the 

supplementary material, but will not be required for the results in the paper. Technically 

speaking, the objective function (2) is convex in (w, θ), but since its domain is of infinite 

dimensionality, for all practical purposes (2) is a nonconvex optimization problem. One can 

consider fixing the number of components in advance, and using a descent method (with 

random restarts) to find the best model of that size. Alternatively, one could use a stochastic 

search method, such as simulated annealing or MCMC [9], to estimate the size of the model 

and the model parameters simultaneously. However, as one begins to consider fitting models 

with increasing number of components K̂ and of high dimensionality, it becomes 
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increasingly difficult to apply these approaches [3]. Hence a common approach to obtaining 

an approximate solution to (2) is to limit the search to a discrete grid of candidate 

parameters θ = θ1, …, θp. The estimated weights and parameters are then obtained by 

solving an optimization problem of the form

where F⃗ has the jth column f⃗θj, where f⃗θ is defined by (f⃗θ)i = fθ(xi). Examples applications of 

this non-negative least-squares-based approach (NNLS) include [10] and [1, 2, 7]. In 

contrast to descent based methods, which get trapped in local minima, NNLS is guaranteed 

to converge to a solution which is within ε of the global optimum, where ε depends on the 

scale of discretization. In some cases, NNLS will predict the signal accurately (with small 

error), but the parameters resulting will still be erroneous. Figure 1 illustrates the worst-case 

scenario where discretization is misaligned relative to the true parameters/kernels that 

generated the signal.

In an effort to improve the discretization error of NNLS, Ekanadham et al [3] introduced 

continuous basis pursuit (CBP). CBP is an extension of nonnegative least squares in which 

the points on the discretization grid θ1, …, θp can be continuously moved within a small 

distance; in this way, one can reach any point in the parameter space. But instead of 

computing the actual kernel functions for the perturbed parameters, CBP uses linear 

approximations, e.g. obtained by Taylor expansions. Depending on the type of 

approximation employed, CBP may incur large error. The developers of CBP suggest 

solutions for this problem in the one-dimensional case, but these solutions cannot be used 

for many applications of mixture models (e.g DWI). The computational cost of both NNLS 

and CBP scales exponentially in the dimensionality of the parameter space. In contrast, 

using stochastic search methods or descent methods to find the global minimum will 

generally incur a computational cost scaling which is exponential in the sample size times 

the parameter space dimensions. Thus, when fitting high-dimensional mixture models, 

practitioners are forced to choose between the discretization errors inherent to NNLS, or the 

computational difficulties in the descent methods. We will show that our boosting approach 

to mixture models combines the best of both worlds: while it does not suffer from 

discretization error, it features computational tractability comparable to NNLS and CBP. We 

note that for the specific problem of super-resolution, Càndes derived a deconvolution 

algorithm which finds the global minimum of (2) without discretization error and proved 

that the algorithm can recover the true parameters under a minimal separation condition on 

the parameters [6]. However, we are unaware of an extension of this approach to more 

general applications of mixture models.

1.2 Boosting

The model (1) appears in an entirely separate context, as the model for learning a regression 

function as an ensemble of weak learners fθ, or boosting [4]. However, the problem of fitting 

a mixture model and the problem of fitting an ensemble of weak learners have several 

important differences. In the case of learning an ensemble, the family {fθ} can be freely 
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chosen from a universe of possible weak learners, and the only concern is minimizing the 

prediction risk on a new observation. In contrast, in the case of fitting a mixture model, the 

family {fθ} is specified by the application. As a result, boosting algorithms, which were 

derived under the assumption that {fθ} is a suitably flexible class of weak learners, generally 

perform poorly in the signal deconvolution setting, where the family {fθ} is inflexible. In the 

context of regression, L2 boost, proposed by Buhlmann et al [4] produces a path of ensemble 

models which progressively minimize the sum of squares of the residual. L2 boost fits a 

series of models of increasing complexity. The first model consists of the single weak 

learner f⃗θ which best fits y. The second model is formed by finding the weak learner with the 

greatest correlation to the residual of the first model, and adding the new weak learner to the 

model, without changing any of the previously fitted weights. In this way the size of the 

model grows with the number of iterations: each new learner is fully fit to the residual and 

added to the model. But because the previous weights are never adjusted, L2 Boost fails to 

converge to the global minimum of (2) in the mixture model setting, producing suboptimal 

solutions. In the following section, we modify L2 Boost for fitting mixture models. We refer 

to the resulting algorithm as elastic basis pursuit.

2 Elastic Basis Pursuit

Our proposed procedure for fitting mixture models consists of two stages. In the first stage, 

we transform a L1 penalized problem to an equivalent non regularized least squares 

problem. In the second stage, we employ a modified version of L2 Boost, elastic basis 

pursuit, to solve the transformed problem. We will present the two stages of the procedure, 

then discuss our fast convergence results.

2.1 Regularization

For most mixture problems it is beneficial to apply a L1-norm based penalty, by using a 

modified input ỹ and kernel function family f̃θ, so that

(3)

We will use our modified L2 Boost algorithm to produce a path of solutions for objective 

function on the left side, which results in a solution path for the penalized objective function 

(2).

For example, it is possible to embed the penalty  in the optimization problem 

(2). One can show that solutions obtained by using the penalty function  have a 

one-to-one correspondence with solutions of obtained using the usual L1 penalty ||w||1. The 

penalty  is implemented by using the transformed input:  and using modified 

kernel vectors . Other kinds of regularization are also possible, and are 

presented in the supplemental material.
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2.2 From L2 Boost to Elastic Basis Pursuit

Motivated by the connection between boosting and mixture modelling, we consider 

application of L2 Boost to solve the transformed problem (the left side of(3)). Again, we 

reiterate the nonparametric nature of the model space; by minimizing (3), we seek to find 

the model with any number of components which minimizes the residual sum of squares. In 

fact, given appropriate regularization, this results in a well-posed problem. In each iteration 

of our algorithm a subset of the parameters, θ are considered for adjustment. Following 

Lawson and Hanson [11], we refer to these as the active set. As stated before, L2 Boost can 

only grow the active set at each iteration, converging to inaccurate models. Our solution to 

this problem is to modify L2 Boost so that it grows and contracts the active set as needed; 

hence we refer to this modification of the L2 Boost algorithm as elastic basis pursuit. The 

key ingredient for any boosting algorithm is an oracle for fitting a weak learner: that is, a 

function τ which takes a residual as input and returns the parameter θ corresponding to the 

kernel f̃θ most correlated with the residual. EBP takes as inputs the oracle τ, the input vector 

ỹ, the function f̃θ, and produces a path of solutions which progressively minimize (3). To 

initialize the algorithm, we use NNLS to find an initial estimate of (w, θ). In the kth iteration 

of the boosting algorithm, let r̃(k−1) be residual from the previous iteration (or the NNLS fit, 

if k = 1). The algorithm proceeds as follows

1. Call the oracle to find θnew = τ(r̃(k−1)), and add θnew to the active set θ.

2. Refit the weights w, using NNLS, to solve:

where F̃ is the matrix formed from the regressors in the active set, f̃θ for θ ∈ θ. This 

yields the residual r̃(k) = ỹ − F̃w.

3. Prune the active set θ by removing any parameter θ whose weight is zero, and 

update the weight vector w in the same way. This ensures that the active set θ 

remains sparse in each iteration. Let (w(k), θ(k)) denote the values of (w, θ) at the 

end of this step of the iteration.

4. Stopping may be assessed by computing an estimated prediction error at each 

iteration, via an independent validation set, and stopping the algorithm early when 

the prediction error begins to climb (indicating overfitting).

Psuedocode and Matlab code implementing this algorithm can be found in the supplement.

In the boosting context, the property of refitting the ensemble weights in every iteration is 

known as the totally corrective property; LPBoost [12] is a well-known example of a totally 

corrective boosting algorithm. While we derived EBP as a totally corrective variant of L2 

Boost, one could also view EBP as a generalization of the classical Lawson-Hanson (LH) 

algorithm [11] for solving nonnegative least-squares problems. Given mild regularity 

conditions and appropriate regularization, Elastic Basis Pursuit can be shown to 

deterministically converge to the global optimum: we can bound the objective function gap 

in the mth iteration by , where C is an explicit constant (see 2.3). To our knowledge, 
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fixed iteration guarantees are unavailable for all other methods of comparable generality for 

fitting a mixture with an unknown number of components.

2.3 Convergence Results

(Detailed proofs can be found in the supplementary material.)

For our convergence results to hold, we require an oracle function τ : ℝñ → Θ which 

satisfies

(4)

for some fixed 0 < α <= 1. Our proofs can also be modified to apply given a stochastic 

oracle that satisfies (4) with fixed probability p > 0 for every input r̃. Recall that ỹ denotes 

the transformed input, f̃θ the transformed kernel and ñ the dimensionality of ỹ. We assume 

that the parameter space Θ is compact and that f̃θ, the transformed kernel function, is 

continuous in θ. Furthermore, we assume that either L1 regularization is imposed, or the 

kernels satisfy a positivity condition, i.e. infθ∈Θ fθ(xi) ≥ 0 for i = 1, …, n. Proposition 1 states 

that these conditions imply the existence of a maximally saturated model (w*, θ*) of size K* 

≤ ñ with residual r̃*.

The existence of such a saturated model, in conjunction with existence of the oracle τ, 

enables us to state fixed-iteration guarantees on the precision of EBP, which implies 

asymptotic convergence to the global optimum. To do so, we first define the quantity ρ(m) = 

ρ(r̃(m)), see (4) above. Proposition 2 uses the fact that the residuals r̃(m) are orthogonal to 

F̃(m), thanks to the NNLS fitting procedure in step 2. This allows us to bound the objective 

function gap in terms of ρ(m). Proposition 3 uses properties of the oracle τ to lower bound 

the progress per iteration in terms of ρ(m).

Proposition 2—Assume the conditions of Proposition 1. Take saturated model w*, θ*. 

Then defining

(5)

the mth residual of the EBP algorithm r̃(m) can be bounded in size by

In particular, whenever ρ converges to 0, the algorithm converges to the global minimum.

Proposition 3—Assume the conditions of Proposition 1. Then
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for α defined above in (4). This implies that the sequence ||r̃(0)||2, … is decreasing.

Combining Propositions 2 and 3 yields our main result for the non-asymptotic convergence 

rate.

Proposition 4—Assume the conditions of Proposition 1. Then for all m > 0,

where

for B* defined in (5)

Hence we have characterized the non-asymptotic convergence of EBP at rate  with an 

explicit constant, which in turn implies asymptotic convergence to the global minimum.

3 DWI Results and Discussion

To demonstrate the utility of EBP in a real-world application, we used this algorithm to fit 

mixture models of DWI. Different approaches are taken to modeling the DWI signal. The 

classical Diffusion Tensor Imaging (DTI) model [5], which is widely used in applications of 

DWI to neuroscience questions, is not a mixture model. Instead, it assumes that diffusion in 

the voxel is well approximated by a 3-dimensional Gaussian distribution. This distribution 

can be parameterized as a rank-2 tensor, which is expressed as a 3 by 3 matrix. Because the 

DWI measurement has antipodal symmetry, the tensor matrix is symmetric, and only 6 

independent parameters need to be estimated to specify it. DTI is accurate in many places in 

the white matter, but its accuracy is lower in locations in which there are multiple crossing 

fascicles of nerve fibers. In addition, it should not be used to generate estimates of 

connectivity through these locations. This is because the peak of the fiber orientation 

distribution function (fODF) estimated in this location using DTI is not oriented towards the 

direction of any of the crossing fibers. Instead, it is usually oriented towards an intermediate 

direction (Figure 4B). To address these challenges, mixture models have been developed, 

that fit the signal as a combination of contributions from fascicles crossing through these 

locations. These models are more accurate in fitting the signal. Moreover, their estimate of 

the fODF is useful for tracking the fascicles through the white matter for estimates of 

connectivity. However, these estimation techniques either use different variants of NNLS, 

with a discrete set of candidate directions [2], or with a spherical harmonic basis set [1], or 
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use stochastic algorithms [9]. To overcome the problems inherent in these techniques, we 

demonstrate here the benefits of using EBP to the estimation of a mixture models of 

fascicles in DWI. We start by demonstrating the utility of EBP in a simulation of a known 

configuration of crossing fascicles. Then, we demonstrate the performance of the algorithm 

in DWI data.

The DWI measurements for a single voxel in the brain are y1, …, yn for directions x1, …, xn 

on the three dimensional unit sphere, given by

(6)

The kernel functions fD(x) each describe the effect of a single fascicle traversing the 

measurement voxel on the diffusion signal, well described by the Stejskal-Tanner equation 

[13]. Because of the non-negative nature of the MRI signal, εi > 0 is generated from a Rician 

distribution [14]. where b is a scalar quantity determined by the experimenter, and related to 

the parameters of the measurement (the magnitude of diffusion sensitization applied in the 

MRI instrument). D is a positive definite quadratic form, which is specified by the direction 

along which the fascicle represented by fD traverses the voxel and by additional parameters 

λ1 and λ2, corresponding to the axial and radial diffusivity of the fascicle represented by fD. 

The oracle function τ is implemented by Newton-Raphson with random restarts. In each 

iteration of the algorithm, the parameters of D (direction and diffusivity) are found using the 

oracle function, τ(r̃), using gradient descent on r̃, the current residuals. In each iteration, the 

set of fD is shrunk or expanded to best match the signal.

In a simulation with a complex configuration of fascicles, we demonstrate that accurate 

recovery of the true fODF can be achieved. In our simulation model, we take b = 1000s/

mm2, and generate v1, v2, v3 as uniformly distributed vectors on the unit sphere and weights 

w1, w2, w3 as i.i.d. uniformly distributed on the interval [0, 1]. Each vi is associated with a 

λ1,i between 0.5 and 2, and setting λ2,i to 0. We consider the signal in 150 measurement 

vectors distributed on the unit sphere according to an electrostatic repulsion algorithm. We 

partition the vectors into a training partition and a test partition to minimize the maximum 

angular separation in each partition. σ2 = 0.005 we generate a signal

We use cross-validation on the training set to fit NNLS with varying L1 regularization 

parameter c, using the regularization penalty function: λP(w) = λ(c − ||w||1)2. We choose this 

form of penalty function because we interpret the weights w as comprising partial volumes 

in the voxel; hence c represents the total volume of the voxel weighted by the isotropic 

component of the diffusion. We fix the regularization penalty parameter λ = 1. The 

estimated fODFs and predicted signals are obtained by three algorithms: DTI, NNLS, and 

EBP. Each algorithm is applied to the training set (75 directions), and error is estimated, 

relative to a prediction on the test set (75 directions). The latter two methods (NNLS, EBP) 

use the regularization parameters λ = 1 and the c chosen by cross-validated NNLS. Figure 2 

illustrates the first two iterations of EBP applied to these simulated data. The estimated 

fODF are compared to the true fODF by the antipodally symmetrized Earth Mover’s 
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distance (EMD) [15] in each iteration. Figure 3 demonstrates the progress of the internal 

state of the EBP algorithm in many repetitions of the simulation. In the simulation results 

(Figure 4), EBP clearly reaches a more accurate solution than DTI, and a sparser solution 

than NNLS.

The same procedure is used to fit the three models to DWI data, obtained at 2×2×2 mm3, at a 

b-value of 4000 s/mm2. In the these data, the true fODF is not known. Hence, only test 

prediction error can be obtained. We compare RMSE of prediction error between the models 

in a region of interest (ROI) in the brain containing parts of the corpus callosum, a large 

fiber bundle that contains many fibers connecting the two hemispheres, as well as the 

centrum semiovale, containing multiple crossing fibers (Figure 5). NNLS and EBP both 

have substantially reduced error, relative to DTI.

4 Conclusions

We developed an algorithm to model multi-dimensional mixtures. This algorithm, Elastic 

Basis Pursuit (EBP), is a combination of principles from boosting, and principles from the 

Lawson-Hanson active set algorithm. It fits the data by iteratively generating and testing the 

match of a set of candidate kernels to the data. Kernels are added and removed from the set 

of candidates as needed, using a totally corrective backfitting step, based on the match of the 

entire set of kernels to the data at each step. We show that the algorithm reaches the global 

optimum, with fixed iteration guarantees. Thus, it can be practically applied to separate a 

multi-dimensional signal into a sum of component signals. For example, we demonstrate 

how this algorithm can be used to fit diffusion-weighted MRI signals into nerve fiber 

fascicle components.
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Figure 1. 
The signal deconvolution problem. Fitting a mixture model with a NNLS algorithm is prone 

to errors due to discretization. For example, in 1D (A), if the true signal (top; dashed line) 

arises from a mixture of signals from a bell-shaped kernel functions (bottom; dashed line), 

but only a single kernel function between them is present in the basis set (bottom; solid line), 

this may result in inaccurate signal predictions (top; solid line), due to erroneous estimates 

of the parameters wi. This problem arises in deconvolving multi-dimensional signals, such 

as the 3D DWI signal (B), as well. Here, the DWI signal in an individual voxel is presented 

as a 3D surface (top). This surface results from a mixture of signals arising from the 

fascicles presented on the bottom passing through this single (simulated) voxel. Due to the 

signal generation process, the kernel of the diffusion signal from each one of the fascicles 

has a minimum at its center, resulting in ’dimples’ in the diffusion signal in the direction of 

the peaks in the fascicle orientation distribution function.
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Figure 2. 
To demonstrate the steps of EBP, we examine data from 100 iterations of the DWI 

simulation. (A) A cross-section through the data. (B) In the first iteration, the algorithm 

finds the best single kernel to represent the data (solid line: average kernel). (C) The 

residuals from this fit (positive in dark gray, negative in light gray) are fed to the next step of 

the algorithm, which then finds a second kernel (solid line: average kernel). (D) The signal 

is fit using both of these kernels (which are the active set at this point). The combination of 

these two kernels fits the data better than any of them separately, and they are both kept 

(solid line: average fit), but redundant kernels can also be discarded at this point (D).
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Figure 3. 
The progress of EBP. In each plot, the abscissa denotes the number of iterations in the 

algorithm (in log scale). (A) The number of kernel functions in the active set grows as the 

algorithm progresses, and then plateaus. (B) Meanwhile, the mean square error (MSE) 

decreases to a minimum and then stabilizes. The algorithm would normally be terminated at 

this minimum. (C) This point also coincides with a minimum in the optimal bias-variance 

trade-off, as evidenced by the decrease in EMD towards this point.
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Figure 4. 
DWI Simulation results. Ground truth entered into the simulation is a configuration of 3 

crossing fascicles (A). DTI estimates a single primary diffusion direction that coincides with 

none of these directions (B). NNLS estimates an fODF with many, demonstrating the 

discretization error (see also Figure 1). EBP estimates a much sparser solution with weights 

concentrated around the true peaks (D).
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Figure 5. 
DWI data from a region of interest (A, indicated by red frame) is analyzed and RMSE is 

displayed for DTI (B), NNLS(C) and EBP(D).
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