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Abstract

The balance of cellular energy levels in response to changes of nutrient availability, stress stimuli 

or exercise is a critical step in maintaining tissue and whole body homeostasis. Disruption of this 

balance is associated with various pathologies, including the metabolic syndrome. Recently, 

accumulating evidence has demonstrated that the AMP-activated protein kinase (AMPK) plays a 

central role in sensing changes in energy levels. The regulation of AMPK activity is currently the 

subject of significant investigation since this enzyme is a potential therapeutic target in both 

metabolic disorders and tumorigenesis. In this review, we present novel evidence of crosstalk 

between Fyn, one member of the Src kinase family, and AMPK.
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Introduction

Regulation of energy levels is a fundamental process for all living organisms. The ability of 

cells and tissues to “energy sense” allows for fine control of cellular AMP and ATP ratios, 

which must be precisely maintained to drive essential metabolic functions. At the whole 

body level, maintaining an appropriate energy balance depends on the ability of molecular 

and cellular mechanisms to efficiently couple the energy intake with that of energy 

expenditure. Thus, obesity and other disorders known collectively as the metabolic 

syndrome (insulin resistance, Type II diabetes mellitus, steatosis, atherosclerosis) are often a 

result of disordered balance between these two components.

For these reasons, interest has recently focused upon the identification of basic cellular 

metabolic pathways involved in energy sensing at the cellular, tissue and organism levels. 
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The molecules controlling this energy sensing mechanism have become the focus of 

significant research given their inherently attractive roles as potential therapeutic targets. At 

present, a variety of molecules have been identified in the energy sensing pathways 

including hypoxia-inducible factor 1 (Ebert et al., 1995), peroxisome proliferator-activated 

receptors (Tanaka et al., 2003), Sirt1 (Chung et al., 1992) and mTORC complex 

(Wullschleger et al., 2006). However, much interest has been given to the AMP-activated 

protein kinase (AMPK) and its downstream signalling pathway (Sim and Hardie, 1988). 

Many studies have described AMPK as one of the main energy sensors and a key regulator 

of the energy homeostasis at cellular level. More recently, evidence also points to AMPK’s 

role in whole body energy balance by its response to nutrient and hormonal signals that 

modulate feeding behaviour thereby regulating energy expenditure (Lage et al., 2008).

Clearly, the identification of upstream factors regulating AMPK is likely to have a 

significant impact on future therapeutic and medical interventions for insulin resistance, 

obesity and other related disorders.

AMPK structure

AMPK is a heterotrimeric complex composed of one catalytic α-subunit and two regulatory 

subunits, β and γ (Davies et al., 1994). This structure is highly conserved and orthologues 

are found in all eukaryotic species (Stapleton et al., 1994). Each functional AMPK complex 

is composed of multiple isoforms (α1, α2, β1, β2, γ1, γ2, γ3) that are encoded by different 

genes and have overlapping tissue distribution (Kajita et al., 2008). Muscle primarily 

expresses the α2 subunit as well as both β and all three γ isoforms whereas adipose tissue 

primarily expresses the α1 subunit with both β and the γ1 and 2 isoforms (Woods et al., 

1996a, 1996b, 2000). Although the precise role of the different subunits of the AMPK is not 

known, hetero-trimeric complexes containing the catalytic α1 subunit appear to be less AMP 

sensitive (Salt et al., 1998). The β-subunit appears to function as part of the heterotrimeric 

assembly mechanism though its C-terminus. In addition, the β-subunit contains a glycogen-

binding domain (GBD/KIS) closely related to that of enzymes which metabolize glycans 

such as starch and glycogen. It has been suggested that the GBD domain of the β subunit 

localizes AMPK, at least in part, to glycogen particles (Polekhina et al., 2003). The γ-

subunit has a variable N-terminus and contains two pairs of a structural module called 

cystathionine-β-synthase (CBS) but the function of these modules is still not clearly defined 

(Hardie and Hawley, 2001).

AMPK activity regulation

The primary mechanism for AMPK activation occurs from an increase in the AMP/ATP 

ratio. AMP first binds to the γ subunit inducing a conformational change in AMPK (Hawley 

et al., 1995; Hardie et al., 1999) structure and triggers an upstream kinase to phosphorylate 

T172 on the α subunit. AMP also appears to prevent α subunit dephosphorylation (Davies et 

al., 1995), thereby maintaining AMPK in an activated state.

While AMP was originally thought to be solely responsible for this activation, it has become 

increasingly clear that AMPK is regulated to a far more complex level. For example, 

changes in the NAD/NADH ratio have been shown to activate AMPK independently of the 
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adenine nucleotide levels (Hawley et al., 2002; Rafaeloff-Phail et al., 2004). In addition, 

AMPK activity is negatively regulated by Akt. Akt-dependent phosphorylation of the S485 

and S491 residues inhibits AMPK T172 phosphorylation (Kovacic et al., 2003).

AMPK activity is also regulated by other serine/threonine protein kinases. Among them is 

TAK1 (transforming factor beta activated kinase 1) which was identified as an AMPK 

kinase in yeast (Momcilovic et al., 2006) and subsequently in mice (Xie et al., 2006). It has 

been shown to associate with TAK-1 binding proteins (TAB1, 2 or 3) to form heterotrimeric 

complexes that involve TAK1-TAB-1 and either TAB 2 or TAB3.

However, there are two other AMPK kinases that have also been shown to directly 

phosphorylate the AMPKα subunit resulting in its activation. CAMKKs appear to function 

as upstream AMPK kinases in neuronal cells (Hawley et al., 2005). The activity of 

CAMKKα requires an increase in intracellular calcium levels suggesting that AMPK may 

have a role in calcium mediated signal transduction pathways (Woods et al., 2005).

Given that the CAMKK family is poorly expressed in peripheral tissues (liver, skeletal 

muscle and adipose) the identity of the primary kinase that phosphorylates AMPK at T172 

in these tissues has been ascribed to LKB1. LKB1 is a serine/threonine kinase multi-tasking 

enzyme, which is involved in cell polarity, tumour growth, and energy metabolism (Alessi et 

al., 2006). In this role, LKB1 has been shown to regulate glucose uptake and fatty acid 

oxidation as well as multiple metabolic actions via AMPK. LKB1 itself is regulated by 

phosphorylation on diverse serine and threonine residues by protein kinase A (PKA) and 

p90 S6 kinase (Collins et al., 2000; Sapkota et al., 2001). LKB1 is assembled into a 

functional hetero-trimeric complex composed of Ste20 related adaptor protein (STRAD) and 

mouse protein 25 (MO25) (Baas et al., 2003; Boudeau et al., 2003; Alessi et al., 2006). 

STRAD, although able to bind ATP molecules, appears to function as a pseudo-kinase since 

it lacks intrinsic catalytic activity. Nevertheless, STRAD is essential for LKB1 to 

phosphorylate AMPK and appears to re-localize LKB1 from the nucleus into the cytoplasm. 

MO25 stabilizes the LKB1/STRAD complex into a heterotrimeric structure that has 

approximately 100-fold more kinase activity towards substrates than LKB1 alone (Hawley 

et al., 2003).

AMPK phosphorylation is also regulated by protein phosphatases 2A and 2C (PP2A, PP2C) 

(Davies et al., 1995; Marley et al., 1996). PPC2A and PP2C dephosphorylate AMPK at 

T172 in a process regulated by AMP and palmitate (Wu et al., 2007). AMP regulates PP2A 

and PP2C dephosphorylation by blocking the action of these phosphatases at T172.

More recently, we have uncovered a novel signalling pathway regulating AMPK activity 

(Bastie et al., 2007). The remainder of this review will focus on the role of Fyn kinase, a 

member of the Src family kinase, in AMPK activity and regulation.

Fyn kinase structure

Fyn is a tyrosine specific phospho-transferase that is a member of the large Src family of 

non-receptor tyrosine kinases. Although no formal crystal structure exists for the full length 

Fyn protein, the mode of regulation of Fyn tyrosine kinase activity is likely to be similar to 
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that of other Src family kinases. The members of this family share a conserved structure 

consisting of consecutive SH1, SH2 and SH3 domains (Figure 1). The SH1 domain is the 

catalytic tyrosine kinase and the SH2 domain binds to tyrosine-phosphorylated substrates. In 

particular, the SH2 domain of Fyn binds the phosphorylated tyrosine Y528 residue in its 

carboxyl terminal tail under basal conditions in vivo (Zheng et al., 2000), thereby stabilizing 

the structure into an inactive conformation and inhibiting the tyrosine kinase SH1 domain 

(Sicheri and Kuriyan, 1997; Boggon and Eck, 2004). Additionally, repression of Fyn kinase 

activity is achieved by intra-molecular interactions between the SH3 domain and a 

polyproline type II linker helix that connects the SH2 and the SH1 domains.

In Fyn kinase, the tyrosine Y528 negative regulatory site is phosphorylated by C-terminal 

src Kinase (Csk), a cytoplasmic protein-tyrosine kinase, first isolated from neonatal rat brain 

(Nada et al., 1991). Csk homology kinase (CHK) is a second enzyme that catalyses the 

phosphorylation of this inhibitory tyrosine Y528 (Chong et al., 2005a). While Csk is 

expressed in all mammalian cells, CHK expression is limited to breast, haematopoietic cells, 

neurons and testes (Brown and Cooper, 1996). CHK binds to Src family members with a 

high affinity, independent of CHK catalytic activity. This binding may be sufficient to 

inhibit Src family kinase activity (Chong et al., 2004). The dephosphorylation of the Y528 

residue by protein tyrosine phosphatases rPTPα, SHP1/2, PTP1B, PTPε and CD45 (Chan et 

al., 1994; Sefton and Taddie, 1994; Asante-Appiah and Kennedy, 2003; Chong et al., 

2005b; Poole and Jones, 2005; Roskoski, 2005) can release the SH2 domain and activate the 

enzyme.

In addition, the subfamily composed of Fyn, Src and Lyn kinases contains dual acylation 

sites in the amino-terminal SH4 domain, which is thought to be partially responsible for 

lipid raft micro-domain association (Boggon and Eck, 2004). Studies have observed that 

disruption of adipocyte lipid raft organization can have large effects on adipocyte function 

and differentiation (Saltiel and Pessin, 2002). In the case of Fyn, the amino terminal glycine 

residue, in the SH4 domain, is modified by myristoylation and cysteine 3 is S-acylated with 

palmitate (as well as palmitoleate, stearate or oleate) (van’t Hof and Resh, 1997; Liang et 

al., 2001, 2004). Alterations in the sub-cellular localization of Fyn can also modulate its 

activity by regulating its accessibility to substrates localized in membranes or membrane 

microdomains sometimes referred to as lipid rafts (Sicheri and Kuriyan, 1997). 

Depalmitoylation or substitution of the palmitate by un-saturated fatty acids, results in the 

release of Fyn from the membrane and the subsequent inhibition of Fyn-mediated 

phosphorylation of membrane bound substrates (Liang et al., 2001, 2004). It has also been 

recently demonstrated that nonpalmitoylated Src-family tyrosine kinase is rapidly exchanged 

between the plasma membrane and late endosomes, suggesting that Fyn (and other src 

kinases) trafficking is specified by the palmitoylation state of the SH4 domain (Sato et al., 

2009).

Role of Fyn protein kinase in insulin signalling

Studies have suggested that the Src kinase family plays a significant regulatory role in 

propagating a subset of insulin signalling events. For example, IGF-1 stimulated adipocyte 

differentiation was reported to activate Csk and inhibit Src kinase activity (Sekimoto and 
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Boney, 2003). The Src kinase family has also been implicated in the activation of the 

MAPkinase cascade and as transducers of signals via G protein coupled receptors (Della 

Rocca et al., 1997; Luttrell et al., 1999). The Src kinase family has been reported to cross 

talk with insulin and IGF1 receptors as well as IRS1 by inducing tyrosine phosphorylation, 

mimicking their downstream biological action (Muller et al., 2000). In addition, the Src 

kinase family activates the PI3-kinase signalling pathway, this being a well established link 

to the stimulation of glucose uptake in skeletal muscle and adipocytes (Choudhury et al., 

2006). More recently, it has been shown that a constitutively active form of Src inhibits 

pyruvate kinase (Christofk et al., 2008a, 2008b). Additionally, the role of Fyn was further 

strengthened by a study using a pharmacological approach which showed that Src family 

kinase inhibitors prevented 3T3L1 adipocyte differentiation (Sun et al., 2005).

Interestingly, several studies have implicated Fyn in the regulation of insulin signalling 

through lipid raft dependent signalling (Mastick and Saltiel, 1997; Newcomb and Mastick, 

2002). The integrity of the lipid raft micro-domain organization plays an important role in 

insulin signalling, independently of the classical IRS/PI3K/Akt pathway (Saltiel and Pessin, 

2002, 2003). Disruption of the lipid raft microdomains result in a marked reduction of 

adipogenesis associated with a drastic impairment of insulin signalling and subsequent 

marked insulin resistance in mice (Cohen et al., 2003; Oshikawa et al., 2004; Capozza et al., 

2005). Fyn localizes in the lipid raft micro-domains of the plasma membrane where it is 

associated to lipid raft proteins such as flotilin and CD36 (Huang et al., 1991; Bull et al., 

1994). CD36, also known as FAT (fatty acid translocase), facilitates long-chain fatty acid 

uptake in skeletal muscle and adipose tissue and is linked to phenotypic features of the 

metabolic syndrome including insulin resistance and dyslipidemia (Pravenec et al., 2003; 

Drover and Abumrad, 2005; Meex et al., 2005). Loss of CD36 expression was also observed 

to impair adipogenesis in cultured pre-adipocytes (Sfeir et al., 1999). The physical 

association of Fyn with CD36 suggests a functional coupling between lipid raft organization 

and the regulation of fatty acid translocation.

Role of Fyn protein kinase in peripheral tissue fatty acid oxidation

Despite the apparent relationship between insulin signalling, lipid raft organization and Fyn 

function in cultured adipocytes, only a limited analysis of Src kinase family function in 

insulin sensitivity and action in vivo has been performed. To date, studies of Src family 

kinase knockout mice have only been investigated in terms of immunological function, 

neuronal development or tumorigenesis. In particular, Fyn null mice display various defects 

in immune signalling such as reduced capacity of natural killer T cells to proliferate and 

reduced mast cell degranulation (Parravicini et al., 2002; Gadue et al., 2004). In addition, 

Fyn null mice display aberrant oligodendrocyte morphogenesis and hypomyelination 

(Colognato et al., 2004; Perez et al., 2008). However, these are generally mild phenotypes 

since these mice have a normal lifespan and are fertile.

Our initial studies demonstrated that the Fyn null mice have reduced body weight and 

decreased total fat volume quantified by microcomputed tomography (microCT). This 

decrease was due to a 60% reduction in adipocyte size. Interestingly, the Fyn null mice 

showed markedly improved (reduced) triglyceride and non-esterified-fatty-acid content in 
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both plasma and tissue. In addition, Fyn null mice displayed improved glucose tolerance and 

increased insulin sensitivity as assessed by conscious non-stressed euglycemic-

hyperglycemic clamps. Tissue lipid accumulation is often coupled to states of insulin 

resistance (Shulman, 2000). Thus, it is likely that the decrease of tissue lipid accumulation 

accounts, at least in part, for the increased insulin sensitivity observed in the Fyn null mice.

In addition, Fyn null mice demonstrated increased whole body fatty acid utilization, with 

specific increases in both skeletal muscle and adipose tissue, resulting in a greater state of 

catabolism in the fasted state. Taking the above data, and coupling it to the observation that 

these animals have reduced adiposity, suggests that the likely cause for the decreased tissue 

lipids is increased fatty acid oxidation.

It is well established that fatty acid oxidation is co-ordinately regulated by the allosteric 

regulation of CPT-1 (carnitine palmitoyl-transferase) activity, the rate-limiting step in the 

transport of acyl-CoA across the outer mitochondrial membrane. CPT-1 activity is inhibited 

when malonyl-CoA levels are high and activated when malonyl-CoA levels are low. The 

two isoforms of acetyl-CoA carboxylase (ACC1 and ACC2) catalyze the production of 

malonyl-CoA from acetyl-CoA. The ACCs are regulated by an inhibitory phosphorylation 

on the serine 221 in ACC1 and serine 79 in ACC2 by AMPK (Figure 2). Consistent with the 

increased fatty acid oxidation, the phosphorylation of ACC on these inhibitory residues was 

increased in skeletal muscle and adipose tissue of Fyn null animals. This was directly 

correlated with increased AMPK T172 α subunit phosphorylation and increased AMPK 

activity in these tissues. In addition, acute inhibition of Fyn by different Src-family 

inhibitors resulted in the phosphorylation of the activating site of AMPK in 3T3L-1 

adipocytes, strongly suggesting that Fyn activity, and not its expression, is coupled to a 

signalling pathway leading to the repression of AMPK activity.

Fyn kinase decreases T172 phosphorylation on AMPK, activating ACC. This results in 

increased malonylCoA levels that inhibit CPT1 activity and decrease fatty acid oxidation.

Conclusion

While these studies demonstrate a connection between Fyn kinase and AMPK, the precise 

molecular mechanisms underlying their coupling requires further characterization. Whether 

Fyn kinase directly interacts with AMPK or represses the upstream cascade of events 

activating AMPK remains to be determined. In addition, although there is only one fyn gene, 

three splice variants generate mRNAs presumably encoded for three distinct Fyn proteins. 

Non-quantitative PCR has indicated that FynB (exon 7A) is expressed in the brain with 

much reduced expression in lymphoid tissue (Picard et al., 2002). In contrast, FynT (exon 

7B) is primarily expressed in cells of the hematopoietic lineage with reduced levels in the 

brain (Sudol et al., 1993; Takeuchi et al., 1993). The mRNA for a third splice variant that is 

devoid of exon 7 (FynΔ7) has been detected in cultured cells (Goldsmith et al., 2002). FynT 

isoform appears to have increased catalytic activity compared to the FynB isoform 

(Goldsmith et al., 2002). Experimental evidence has demonstrated that different Fyn 

isoforms couple to distinct signalling pathways leading to tissue-specific biological 

responses (Cooke and Perlmutter, 1989). Therefore, the regulation of AMPK may be 
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differently modulated, accordingly to the Fyn isoform present in a particular tissue. Thus, 

additional work is required to understand the mechanism linking Fyn activity to AMPK 

regulation and to determine the role of the different Fyn isoforms in this process. 

Nevertheless, these findings support a model in which Fyn signalling limits fatty acid 

oxidation in the fasted state due to decreased activation of AMPK. Consequently, the loss of 

Fyn function allows increased energy production from lipid stores. In turn, the integrated 

physiological response to these changes in fatty acid oxidation improves metabolic lipid 

profiles and insulin sensitivity. Importantly, this study implicates Fyn kinase as a novel 

nutrient-sensor system coupled to AMPK.
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Figure 1. 
Fyn kinase structure and regulation. Fyn kinase consists of SH1-4 domains. The SH2 

domain binds the phosphorylated Y528 in the C-terminus, locking Fyn in an inactive 

conformation. Y528 is dephosphorylated by phosphatases (PTPs), opening the structure and 

allowing Y416 in the catalytic SH1 domain to be phosphorylated.
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Figure 2. 
Fyn kinase regulates fatty acid oxidation. Fatty acid oxidation is co-ordinately regulated by 

the allosteric regulation of carnitine palmitoyl-transferase (CPT-1) activity. CPT-1 activity is 

inhibited when malonyl-CoA levels are high and activated when malonyl-CoA levels are 

low. The acetyl-CoA carboxylase (ACC) is the enzyme catalysing the production of 

malonyl-CoA from acetyl-CoA. ACC is inhibited by AMPK that phosphorylates ACC. 

AMPK itself is activated when phosphorylated on T172.
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