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Abstract

Directed acyclic graphs (DAGs) and associated probability models are widely used to model 

neural connectivity and communication channels. In many experiments, data are collected from 

multiple subjects whose connectivities may differ but are likely to share many features. In such 

circumstances it is natural to leverage similarity between subjects to improve statistical efficiency. 

The first exact algorithm for estimation of multiple related DAGs was recently proposed by Oates 

et al. (2014); in this letter we present examples and discuss implications of the methodology as 

applied to the analysis of fMRI data from a multi-subject experiment. Elicitation of tuning 

parameters requires care and we illustrate how this may proceed retrospectively based on technical 

replicate data. In addition to joint learning of subject-specific connectivity, we allow for 

heterogeneous collections of subjects and simultaneously estimate relationships between the 

subjects themselves. This letter aims to highlight the potential for exact estimation in the multi-

subject setting.

1 Introduction

Probabilistic graphical models are widely used to model neural connectivity and the transfer 

of information between regions of the brain (Poldrack et al., 2011). In brief, vertices indexed 

by 1, …, P in a directed acyclic graph (DAG) G are identified with random variables Yi that 

represent neural activity at a particular region and edges between the vertices describe 

conditional independence statements, whose interpretation depends on both the underlying 

statistical model for the data and the context in which data are obtained. In many 

neuroscience applications, subject-specific connectivity (i.e. the set of edges) itself is 

uncertain and an important challenge is to infer this structure from experimental data 

(Friston, 2011). There has been considerable statistical research into inference for graphical 

models in general over the last decade, with particular emphasis on Bayesian networks 

(BNs; Chickering, 2003; Friedman and Koller, 2003; Ellis and Wong, 2008), Gaussian 

graphical models (GGMs; Meinshausen and Bühlmann, 2006; Chandrasekaran et al., 2012) 

and discrete graphical models (Loh and Wainwright, 2013). Nevertheless there remain two 

substantive barriers to the inference of graphical models from data: Firstly, inferred 

graphical structure is often not robust to reasonable perturbation of the underlying data 
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(Claassen and Heskes, 2012). This is due to a combination of the high variance of graphical 

estimators themselves and any additional variance that is introduced if the structure learning 

algorithm returns only an approximation to the intended estimator. Secondly, conventional 

model selection criteria for graphical models are often biased towards selecting more 

complex models (i.e. more edges), since there are typically very many models in which the 

data-generating model is nested; these models are also able to fit the data well (albeit with 

some coefficients close or equal to zero; Consonni and La Rocca, 2010). Consequently 

many more data are required to exclude more complex alternatives. Taken together, these 

factors limit the extent to which neural connectivity can be accurately recovered from data.

Many experimental designs in neuroscience involve data collected on multiple subjects, 

indexed by 1, …, K, that may differ with respect to neural connectivity, such that 

corresponding graphs G(k) may be subject-specific (Sugihara et al., 2006; Li et al., 2008). 

Efforts to analyse multi-subject experimental data have previously focussed on hierarchical 

models and imaging data, rather then connectivity per se (Mumford and Nichols, 2009; 

Sanyal and Ferreira, 2012; Badillo et al., 2013; Marquand et al., 2014). Given that elements 

of neural architecture are largely conserved between subjects, it is natural to leverage this 

similarity in order to improve statistical efficiency, by addressing both the robustness of 

inferred graphical structure and reducing small sample bias (Mechelli et al., 2002). The 

statistical chellenge of estimating multiple related graphical models has recently received 

much attention: For GGMs, Danaher et al. (2014) and others exploited L1 penalties, such as 

the fused graphical LASSO, to couple together inference for multiple related subjects. Such 

penalised likelihood methods are computationally tractable and scale well to high 

dimensions. These studies demonstrate that it is possible to increase statistical efficiency, 

often considerably, by formulating an appropriate joint model that couples together multiple 

graphs. Likewise, the methodology improves robustness by requiring that graphical structure 

is approximately invariant to perturbations of the data that are, in effect, provided by the 

subjects themselves.

Whilst useful in many applications, GGMs are undirected graphs and hence cannot not 

represent the direction of information flow between neural regions. More fundamentally, 

GGMs do permit causal inference that is typically the scientific objective (Valdes-Sosa et 

al., 2011). For this reason we focus attention on graphical models, such as BNs, that are 

based on DAGs and have an associated theory of inferred causation (Pearl, 2009). Research 

focussing on DAGs in this setting includes Ramsey et al. (2009), who constructed a 

hierarchical model in which graph structure was conserved between subjects but the 

parameters that describe the data-generating process were subject-specific. Waldorp et al. 

(2011) went further by permitting subject-specific graph structure and parameters in the 

context of Gaussian ancestral graphs whose parameters are constrained by a hierarchical 

model. This latter work is closest in spirit to the methodology that we discuss below, but we 

do not restrict attention to either stationary data or Gaussian data, rendering our approach 

considerably more flexible.

Until very recently, estimation of more general DAGs required either the strong assumption 

that an ordering of the variables 1, …, P applied equally to all subjects (Oyen and Lane, 

2013), or the use of expensive computational approximations such as Markov chain Monte 
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Carlo that scale extremely poorly as either the number P of variables or number K of 

subjects grows (Werhli and Husmeier, 2008). An exact algorithm that facilitates the joint 

estimation of multiple DAGs was recently developed in the sister paper Oates et al. (2014), 

viewing the estimation problem within a hierarchical Bayesian framework (somewhat 

similar to a random effects model for the graph structure) and applying advanced techniques 

from integer linear programming to obtain a maximum a posteriori estimate of all DAGs 

simultaneously. The availability of exact algorithms offers the opportunity to analyse multi-

subject neural connectivity using causal DAG models, whilst leveraging the similarity 

between subjects in order to improve statistical efficiency and robustness. This letter 

illustrates the scope and applicability of these exact algorithms within neuroscience, using a 

small functional magnetic resonance imaging (fMRI) time course dataset obtained on six 

subjects, coupled with multiregression dynamical models (MDMs; Queen and Smith, 1993) 

that permit statistically rigorous causal inference (Queen and Albers, 2009). It is envisaged 

that exact algorithms will play an important rôle in future studies of neural connectivity and 

this letter serves to illustrate their application by example.

2 Results

2.1 fMRI data and experimental setup

Exact algorithms are illustrated here with a small fMRI dataset consisting of six subjects 

from the Human Connectome Project (Van Essen et al., 2013). Scans were acquired on each 

subject while they were in a state of quiet repose; data from one 15 minute session were 

used, with a spatial resolution of 2 × 2 × 2 mm and a temporal resolution of 0.7 secs; see 

Smith et al. (2013) for full details. After correcting for head motion, all data was registered 

to a common reference atlas space and 100-dimensional independent component analysis 

(ICA) was conducted on the temporally concatenated data. The result of this ICA was 100 

spatial modes (common to all subjects) and 100 corresponding temporal modes (subject-

specific); at this high dimension, the 100 spatial modes are sparse and spatially compact 

(though possibly bilaterally symmetric) and so essentially provide a data-driven parcellation 

of the brain. Hierarchical clustering was used on the ICA temporal modes following 

Beckmann and Smith (2002), and the 10-mode cluster corresponding to motor cortex was 

selected for study here. Thus our data consists of 10 nodes, with a time series for each node 

for each subject. Figure 1a displays the neural regions that we consider and Figure 1b shows 

the approximate description of each region; note that region 4 was spatially diffuse and 

difficult to characterise, and thus is likely to be an artefactual component.

The goal here is to understand neural information transfer at resting state and establish 

subject-specific connectivity. By its very nature, estimation of resting state connectivity is 

challenging due to limited information content in the fMRI time series. Indeed, Smith et al. 

(2011) reported that whilst the presence or absence of connections can sometimes be 

estimated from fMRI time series data, estimating the direction of edges from data remains 

extremely challenging. The integration of data from multiple related subjects offers one 

route to increased statistical power and this is the approach that we pursue here.
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2.2 MDMs for fMRI time series data

Following data preprocessing we are left with a collection of random variables 

representing the observed activity in subject k at region i and time point n. Following recent 

research by Costa et al. (2013a) into causal inference based on such fMRI time course data, 

we model the  as arising from a causal MDM. Specifically, an MDM is defined on a 

multivariate time series Y(k) is characterised by a contemporaneous DAG G(k), with 

information shared across time through evolution of the model parameters . We 

consider the case where Y(k)(n)|θ(k)(n) satisfies linear Gaussian structural equations, though 

any formulation would be compatible with the methodology that we present. Write 

 for the parents of vertex i in the DAG G(k) and write  for the 

collection of univariate time series corresponding to the variables . This MDM 

is described by the following observation equations

(1)

where , together with the system equations

(2)

where Γ(k)(n) is a matrix of autoregressive coefficients and w(k)(n) ~ N(0, W(k)(n)). Default 

choices for , Γ(k)(n), W(k)(n) were assumed following Costa et al. (2013a). Model 

selection for MDMs is based on Bayes factors (see e.g. West and Harrison, 1997). The 

evidence in favour of the DAG G(k) under the MDM likelihood can be calculated as

(3)

In practice Eqn. 3 is evaluated using simple Kalman filter recurrences and we refer the 

reader to Costa et al. (2013a) for further details. Costa et al. (2013b) reports that the MDMs 

above are well-suited to the analysis of resting-state fMRI data, outperforming the methods 

surveyed by Smith et al. (2011) in both the detection of edges and also the orientation of 

edges. This promising performance appears to be driven by the information present in 

temporal spike patterns, as exploited directly in recent work by Diekman et al. (2014).

The MDMs here are reified with the interpretation that edges correspond to neural 

connectivity (Dawid, 2010). Independent estimation for the subject-specific DAGs G(k) 

based on the MDM score (Eqn. 3) yields graphs that display high between-subject 

variability (Fig. 2a). Thus the causal semantics that are associated with MDMs imply that 

neural connectivity is highly variable between subjects. This is unreasonable on 

neuroscientific grounds and likely reflects the lack-of-robustness and small sample bias that 

are often associated with graphical analyses. This motivates a hierarchical statistical model 

and exact estimation, as we describe below.
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2.3 A hierarchical model for multi-subject analysis

Following unsatisfactory independent estimation, we now proceed to explore exact joint 

estimation as enabled by the recent methodological advances of Oates et al. (2014). We note 

that, providing that the quantities used to compute Eqn. 3 above have been cached, the joint 

analysis below does not require any further computation involving the MDM model 

equations. Write  for the collection of all DAGs on the vertices 1, …, P and write G(1:K) ∈ 
K for the collection of all the DAGs G(1), …, G(K). Joint estimation proceeds within a 

hierarchical Bayesian framework that is specified by the “multiple DAG prior”

(4)

The functions r and m are defined below. Here A denotes an undirected network on the 

indices 1, …, K that will be used to encode a similarity structure between subjects; the first 

product factorises along the edges of A. When A is complete, Eqn. 4 encodes an 

exchangeability assumption that any DAG G(k) is equally likely a priori to be similar to any 

other DAG G(l) (k ≠ l). Such an exchangeability assumption is implicit in much of the recent 

literature on multiple graphical models (Werhli and Husmeier, 2008; Oyen and Lane, 2013; 

Danaher et al., 2014). However, exchangeability will be inappropriate when the collection 

of subjects is heterogeneous, for instance containing groups or subgroups that correspond to 

differential neural connectivities. The methodology that we present below allows for 

arbitrary (and even uncertain) A, relaxing this exchangeability assumption and permitting 

more flexible estimation.

The function r :  ×  → [0, ∞) is used to encode regularity between pairs of DAGs, with 

larger values corresponding to a priori more similar DAG structures. Oates et al. (2014) 

showed that a particularly convenient form of regularity function is obtained by considering 

hyper-Markov properties (Dawid and Lauritzen, 1993):

(5)

Here ⊕ is the logical XOR operator and [E] is used to denote an indicator function for the 

event E. The constants  can be used to encode which aspects of structure are more 

likely to be conserved across subjects, based on subjective prior information, or indeed to 

encode which subjects are more likely to share similar connectivity, based on ancillary 

covariates such as age, gender, disease status etc. For example one could exploit a penalty 

 for some λ > 0 that encourages sharing of graph structure among 

subjects of similar ages, but treats edges (j, i) as exchangeable. The function m(G) in the 

multiple graphical model prior (Eqn. 4) provides an adjustment for the fact that the size of 

the space  grows super-exponentially with the number P of vertices (Consonni and La 

Rocca, 2010). In this paper we follow Chen and Chen (2008); Scott and Berger (2010); 

Foygel and Drton (2013) and control multiplicity using the binomial correction
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(6)

Here dmax is a fixed upper bound on the in-degree of vertices in G that encodes prior 

knowledge on the support of the graphical models (e.g. Hill et al., 2012). For all examples in 

this paper we made the subjective choice dmax = 3 that reflects the degree of connectivity 

observed in previous literature (e.g. Ramsey et al., 2009).

2.4 Exact estimation of graphical structure

Bayesian estimation of graphical structure is based on the maximum a posteriori (MAP) 

estimate that is obtained jointly over all DAGs as

(7)

More generally, the network A that expresses similarity between the subjects may be subject 

to uncertainty. Write  for the set of undirected networks on the vertices 1, …, K. In this 

setting we impose a hyperprior distribution over  given by

(8)

where  denotes equality up to an unspecified additive constant. Here constants η(k, l) can 

again be used to encode prior similarity between subjects on the basis of ancillary 

covariates. The hyperprior distribution in Eqn. 8 has the effect of detering sparsity in the 

network A, leading to increased regularisation between DAGs and a more conservative 

estimate of between-subject variability. In this extended setting, our focus is now an 

extended MAP estimator

(9)

that simultaneously estimates subject-specific DAGs G(k) and the network A that relates 

subjects.

For each of the optimisation problems in Eqns. 7, 9, Oates et al. (2014) describes how 

techniques from integer linear programming, including constraint propagation and cutting 

planes, may be used to exactly locate the MAP estimate with a minimal computational 

burden. Define the “local scores”

(10)
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that are sufficient statistics for structure learning in the MDM model. Specifically, s(k)(i, π) 

is equal (up to an additive constant) to the log-posterior probability associated with the 

parent set configuration  for node i in subject k, based only on the subject's own data 

Y(k). The joint MAP estimators introduced above seek to maximise the sum of these terms 

subject to the hierarchical penalty (Eqn. 5) and the requirement that G(1), …, G(K) are each 

well-defined DAGs.

In brief, the computational methodology exploits the fact that Eqns. 7, 9 can be encoded as 

an integer linear program of the form

(11)

through careful choices of the integer-valued matrices A, C and integer-valued vectors b, d. 

Specifically, the entries of the vector x are taken to be binary indicators corresponding to 

events that include , [(k, l) ∈ A] and , whilst 

the vector f contains the local scores s(k)(i, π) and the constants  and η(k, l). By 

inspection of Eqns. 3, 5 and 8 we see that the posterior log-probability

(12)

can be written as an inner-product fTx. The inequality constraints Ax ≤ b and equality 

constraints Cx = d are carefully chosen to ensure that the feasible region for x consists of 

precisely those vectors that correspond to well-defined (multiple) DAG models. This final 

point is somewhat technical and we refer the reader to Oates et al. (2014) for full details.

2.5 Elicitation of tuning parameters; theory

The class of statistical models that is amenable to exact inference is substantial, but here we 

focus on particularly tractable prior specifications that allows us to clearly illustrate the 

methodology. Specifically, we reduce the number of hyperparameters to two by making the 

assumption that all edges are a priori equally likely to be shared between all pairs of 

subjects (  for all i, j, k, l) and that all pairs of subjects are a priori equally likely to 

share similar graph structure (η(k, l) = η for all k, l). Prior elicitation in this reduced class of 

models therefore requires the specification of hyperparameters λ and η. The impact of the 

choice of hyperparameters on the MAP estimators is clarified in the following:

Property 1. (a) When η = 0, Ĝ(1:K) consists of DAGs equal to those computed using 

independent estimation. (b) For η > 0 we have (k, l) ∉ Â ⇒ Ĝ(k) ≠ Ĝ(l). (c) For fixed η there 

exists λ* ∈ [0, ∞) such that whenever λ > λ*we have (k, l) ∈ Â ⇒ Ĝ(k) = Ĝ(l). (d) There 

exists η* ∈ [0, ∞) such that Â is the complete network whenever η > η*.
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The above result deals with the extremes of the parameter space; intuitively we would 

expect non-trivial values of (λ, η) to interpolate “smoothly” between these extremes. The 

following shows that this intuition is not strictly true. Specifically, as λ is monotonically 

increased, it is possible for a particular edge to enter and exit the MAP estimator Ĝ(k) 

multiple times and furthermore, non-monotonicity is also exhibited by the network estimator 

Â:

Property 2. (a) Fix a network A ∈  and consider varying the hyperparameter λ. If A is 

non-empty, then there exist values of the sufficient statistics s(k)(i, π) such that  is 

not monotonic in λ. (b) Fix the hyperparameter λ, and consider unknown A with 

hyperparameter η. Then there exist values of the sufficient statistics s(k)(i, π) such that [(j, i) 

∈ Â] is not monotonic in η.

Thus the joint MAP, like other penalised likelihood approaches (including the GLASSO for 

GGMs; Friedman et al., 2008) does not obey a monotonicity property. Property 2 makes it 

surprising that exact algorithms exists in this nontrivial setting. In practice and in results 

below we have found that, like the GLASSO, monotonicity holds approximately.

2.6 Elicitation of tuning parameters; practice

The elicitation of hyperparameters such as λ, η should principally be driven by the scientific 

context, the nature of the data and the rôle that inferences are to play in future work. For 

example, if the estimated networks are the basis for features within a classification 

algorithm, then elicitation of hyperparameters should target the classification error. However 

in some settings, including our illustrative example, the non-availability of relevant ancillary 

data (e.g. the class labels in classification) precludes such an objective elicitation. Below we 

therefore illustrate diagnostics that could form the basis for subjective elicitation in quite 

general settings, based on retrospective inspection of the posterior.

The analysis of resting state fMRI data is an emerging area of research (Cole et al., 2010) 

and currently neither the source nor the extent of subject-specific variation are well-

understood. If the extent of variability at resting state was known, this could be directly 

leveraged to facilitate the objective elicitation of hyperparameters. However this is not 

currently the case and subjective elicitation is required. The biological knowledge that forms 

the basis for elicitation is qualitative in nature, as we explain below: Firstly, connectivity 

should not change within a subject over the brief time period under which the fMRI 

experiments were conducted. Secondly, recent studies (e.g. Ringach, 2009) indicate that the 

notion of “resting state” is poorly defined and can correspond to several contrasting 

neurological activity profiles; we would therefore not expect to obtain identical DAGs under 

a replication experiment that is unable to control for the precise nature of the resting state.

A subjective analysis can be obtained using diagnostics based on retrospective examination 

of the posterior, that we describe below. Specifically, for our fMRI dataset, we performed 

exact estimation of the joint MAP based on four technical replicate datasets obtained from 

the first two subjects under identical laboratory conditions. To inform elicitation for the 

regularity parameter λ, we fixed the network A such that (k, l) ∈ A if and only if datasets k 
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and l were both technical replicates derived from the same subject (Fig. 4a). This 

corresponds to placing an exchangeability assumption on the technical replicates, but 

prohibiting the sharing of information between subjects. We then computed the total 

structural Hamming distance (SHD; Tsamardinos et al., 2006) between all pairs of DAGs 

that are technical replicates (Fig. 4b). This diagnostic could be used as the basis for 

subjective elicitation of λ in general situations where replicate data are available. Below for 

illustration we focus on one such value, λ = 4, that attributes approximately 50% of 

variability between technical replicates to extrinsic noise resulting from the experimental 

design. Examination of the Bayes factor as a function of λ provides a second diagnostic to 

assist with elicitation that may be useful to highlight over-regularisation. In this case the 

value λ = 4 scores considerably better compared to the alternative that assigns the same 

DAG to all replicate datasets (log-Bayes factor ≈ 900, Fig. 4c). Additional diagnostics for 

the subjective elicitation of η are discussed in the subsequent sections.

2.7 Learning multiple DAGs with exchangeability

Based on the elicitation λ = 4, for illustration, we employed exact estimation for the joint 

MAP Ĝ(1:K)|A under the exchangeability assumption that A is the complete network (Eqn. 

7). In order to limit scope, here we simply consider one dataset per subject (i.e. no technical 

replicates were included), but data aggregation is naturally accommodated in the 

methodology we present (see discussion). Results in Figure 2b demonstrate that the 

estimated DAG structures are substantially more similar that our original estimate obtained 

using independent inference (Fig. 2a), with a 23% decrease in total SHD between DAGs. 

This estimate can be expected to more closely represent the true subject-specific neural 

connectivity patterns, based on the empirical conclusions of Oates et al. (2014). We note 

however that validation of this inferred connectivity remains extremely challenging (e.g. 

Stein et al., 2007).

2.8 Learning multiple DAGs without exchangeability

The scientific motivation for multi-subject analysis is typically to elucidate differential 

connectivity between subjects, either in a purely unsupervised context for exploratory 

investigation, or in a supervised context to determine whether certain features of 

connectivity are associated with auxiliary covariates of interest such as disease status. In 

these cases a statistical model that assumes exchangeability between subjects may be 

inappropriate and “regularise away” the differential connectivity that is of interest. We 

therefore proceed to jointly estimate both subject-specific DAGs G(k) and the network A that 

describes relationships between the subjests themselves (Eqn. 9).

Elicitation of the hyperparameter η, that controls density of the network A, could again be 

performed by retrospective inspection of the posterior. For our resting state fMRI dataset we 

would proceed by requiring (i) a moderate amount of similarity between subjects, motivated 

by expectation that connectivity should not differ substantially between subjects, and (ii) a 

moderate amount of heterogeneity between subjects, since we aim to highlight any potential 

differences between the neural connectivity of different subjects. Results in Figure 3 

demonstrate that for η = 60 the six subjects are regularised into three distinct components 

{1, 4}, {2, 3}, {5, 6}, whilst for the higher value η = 70 the subjects are regularised into two 
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distinct components {1, 2, 3, 4}, {5, 6}. (When η = 80 the network A is complete and 

subject-specific DAGs coincide with Fig. 2b.) Examination of the Bayes factor as a function 

of η demonstrates that the values η = 60, 70 provide considerably better estimates compared 

to the DAGs obtained under an exchangeability assumption (log-Bayes factor ≈ 200, 180 

respectively). This suggests that group and sub-group structure may be present amoung the 

subjects at the level of neural connectivity and provides evidence against exchangeability of 

the subjects.

Finally we illustrate an alternative and novel approach to learning similarities between 

subjects, called k-means clustering of DAGs, that does not assume exchangeability of the 

subjects. In brief, additional latent DAGs G(K+1), …, G(K+L) are introduced that represent 

cluster centres or “prototypes”, summarising the typical DAG structure within their cluster. 

The (unknown) network A on the extended vertex set 1, …, K + L is constrained to have 

edges that connect each of the vertices 1, …, K to precisely one of the vertices K+1, …, K

+L, so that estimation of A corresponds exactly to Bayesian model-based clustering. Our 

methodology thereby facilitates joint estimation of both subject-specific DAGs and their 

optimal cluster assignment (Oates et al., 2014). (Note that, like in any mixture model, the 

optimal cluster assignment A is defined only up to permutation of the cluster labels K + 1, 

…, K + L.) Here we applied k-means clustering of DAGs to the six subjects using L = 2 

clusters (Fig. 5a) and L = 3 clusters (Fig. 5b). The optimal cluster assignment with L = 3 

recovers the three distinct components {1, 4}, {2, 3}, {5, 6} that were obtained above via 

joint estimation of A, whilst the optimal cluster assignment with L = 2 was {1, 2, 3}, {4, 5, 

6} which differs from the assignment obtained above in the position of the fourth subject 

only. This analysis provides an alternative route to investigate similarity between the 

subjects and offers an alternative route to subjective elicitation of the η hyperparameter. We 

note that the prototypes that summarise cluster-specific graphical structure may be useful as 

summary statistics for the purposes of dimensionality reduction.

3 Discussion

In neuroscience experiments it is increasingly common for data to be collected from 

multiple subjects whose neural connectivities are likely to be related but non-identical. To 

uncover the causal mechanisms that underpin neural signalling it is necessary to work within 

a formal statistical theory for inferred causation, the most well-studied of which is rooted in 

DAGs (Pearl, 2009). Yet until recently exact estimation for multiple related DAGs was 

computationally infeasible. In this letter we have illustrated, using a small fMRI dataset, 

how recent algorithmic advances enable sophisticated causal inference using multi-subject 

experimental data. In particular we have seen how novel statistical models, that do not 

assume exchangeability between subjects, achieve both a better description of the data (in 

terms of Bayes factors) and enable the more robust inference of subject-specific 

connectivity.

The model class that we discuss is large and allows for multiple opportunities to integrate 

prior knowlege, pertaining to both (i) the connectivity between specific neural regions, and 

(ii) additional covariates that might associate with subject-specific connectivity, such as age, 

gender or disease status. The integration of auxiliary covariate data and the more general 
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experimental validation of our techniques require an extensive and thorough investigation 

involving many more subjects than we analyse here; this is now the focus of our ongoing 

research.

We focused on a particularly simple formulation with two tuning parameters and illustrated 

through application how both tuning parameters could be elicited retrospectively through 

examination of MAP estimates. This methodology extends naturally to highly structured 

datasets, for example where each subject is asked to provide multiple fMRI time courses. In 

these cases a combination of the techniques discussed above would permit all data on a 

particular subject to be aggregated into a single “prototype” and then estimation to proceed 

on the basis of these prototypes.

At present an analysis involving K ≤ 10 subjects and DAGs of size P ≤ 10 requires a few 

minutes' serial computation on a 2.10GHz Intel Core i7 CPU Windows host with 8GB 

memory. Our ongoing research focuses on reducing this computational burden so that exact 

estimation becomes feasible for much larger datasets that include hundreds of neural 

regions. Recent advances in estimation of single DAGs involving thousands of nodes 

suggests that much progress can be made in this direction (Bartlett and Cussens, 2013; 

Sheehan et al., 2014).

Causal inference for neural connectivity is central to the study of brain functionality (Smith 

et al., 2011; Friston, 2011) and we envisage that the techniques presented here will play an 

important rôle in the future analysis of multi-subject experimental data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Proof of Property 1. (a) This follows since when η = 0 the DAGs G(1), …, G(k) are a priori 

independent. Since the likelihood also factorises over k it follows that the DAGs G(1), …, 

G(k) are independent in the posterior.

(b) The objective that we wish to maximise can be written as

(13)
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where η > 0 and C does not depend on [(k, l) ∈ A]. When Ĝ(k) = Ĝ(l) it follows that the 

middle term is zero and hence to maximise this objective we must take Â such that [(k, l) ∈ 

Â] = 1.

(c,d) To prove both statements we can take

(14)

For (c) note that if λ > λ* and (k, l) ∈ A, then the choice G(k) = G(l) strictly maximises the 

objective function, since a selection G(k) ≠ G(l) incurs a penalty of at least λ* that cannot be 

compensated for by an increase in the likelihood term 

. Similarly for (d), we have that (k, l) ∉ A incurs 

a penalty of at least η* that cannot be compensated for by an increase in the likelihood term.

Proof of Property 2. (a) Consider the following simple system with two variables and two 

individuals. Individual 1 has parent set scores s(1)(1, {}) = 0, s(1)(1, {2}) = −3 for variable 1 

and s(1)(2, {}) = 0, s(1)(2, {1}) = 1 for variable 2. Individual 2 has parent set scores s(2)(1, 

{}) = 0, s(2)(1, {2}) = 4 for variable 1 and s(2)(2, {}) = 0, s(2)(2, {1}) = 1 for variable 2. Then 

it is directly verified that for 0 ≤ λ< 1, Ĝ(1) = 1 → 2 and Ĝ(2) = 2 → 1, for 1 < λ < 2, Ĝ(1) 

has no edges and Ĝ(2) = 2 → 1 and for λ > 2, Ĝ(1) = 1 → 2 and Ĝ(2) = 1 → 2. In particular, 

the edge (1, 2) is present in Ĝ(1) for λ ∈ [0, 1) ∪ (2, ∞) but absent for λ ∈ (1, 2).

To embed the above example in a larger system with P variables and K individuals we 

proceed as follows: Without loss of generality, assume A(1, 2) = 1. For all variables in G(1) 

and G(2), assign scores −∞ to any parent set π that contains variables from both {1, 2} and 

{3, …, P}. For variables {3, …, P} in G(1) and G(2), and all variables in individuals {3, …, 

K}, take all scores to be zero (i.e. non-informative). Then the above proof demonstrates that 

the edge (1, 2) is present in Ĝ(1) for λ ∈ [0, 1) ∪ (2, ∞) but absent for λ ∈ (1, 2).

(b) Consider the following simple system with two variables and four individuals. Individual 

1 has parent set scores s(1)(1, {}) = 0, s(1)(1, {2}) = 0 for variable 1 and s(1)(2, {}) = 0, 

s(1)(2, {1}) = 1 for variable 2. Individual 2 has parent set scores s(2)(1, {}) = 0, s(2)(1, {2}) = 

0 for variable 1 and s(2)(2, {}) = 0, s(2)(2, {1}) = 2 for variable 2. Individual 3 has parent set 

scores s(3)(1, {}) = 0, s(3)(1, {2}) = 2 for variable 1 and s(3)(2, {}) = 0, s(3)(2, {1}) = 0 for 

variable 2. Individual 4 has parent set scores s(4)(1, {}) = 0, s(4)(1, {2}) = 3 for variable 1 

and s(4)(2, {}) = 0, s(4)(2, {1}) = 0 for variable 2. Take λ > λ*, as defined in Property 1, so 

that Ĝ(k) = Ĝ(l) whenever k ~Â l. Then it is directly verified that for 0 ≤ η < 1, Ĝ(1) = 1 → 2, 

Ĝ(2) = 1 → 2, Ĝ(3) = 2 → 1, Ĝ(4) = 2 → 1, and Â = {(1, 2), (3, 4)}; for 1 < η < 3/2, Ĝ(1) = 2 

→ 1, Ĝ(2) = 1 → 2, Ĝ(3) = 2 → 1, Ĝ(4) = 2 → 1, and Â = {(1, 3), (3, 4), (4, 1)}; for η > 3/2, 

Ĝ(1) = 2 → 1, Ĝ(2) = 2 → 1, Ĝ(3) = 2 → 1, Ĝ(4) = 2 → 1, and Â is the complete network. In 

particular, the edge (1, 2) is present in Â for λ ∈ [0, 1) ∪ (3/2, ∞) but absent for λ ∈ (1, 3/2).
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Figure 1. 
Illustrative resting-state fMRI dataset. We consider 10 spatial modes obtained using ICA, 

show in (a) and described in (b), each having a corresponding time series for each subject. 

All graphs that we present will adopt the vertex layout shown in (c). [A colour version of 

this figure is available in the online supplemental material.]
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Figure 2. 
Illustrative fMRI dataset; here time course data were obtained on six subjects. The subject-

specific connectivity between ten distinct regions of the brain was estimated using 

multiregression dynamical models applied (a) to each subject separately, (b) to all subjects 

jointly with regularity hyperparameter λ = 4. The graphs in (b) are 23% more similar 

compared to the graphs in (a), as explained in the main text. [Figure 1c provides a key.]
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Figure 3. 
Illustrative fMRI dataset; diagnostics for eliciting the regularity parameter λ based on 

technical replicate data and retrospective inspection of the posterior. (a) Here two subjects 

each provided four technical replicate datasets. The DAGs shown are joint MAP estimates 

for varying λ, such that replicates were assumed to be exchangeable but subjects were 

treated independently. As λ is increased the DAGs corresponding to technical replicates 

become increasingly similar until they are identical at λ ≥ 17. (b) Here we plot the total SHD 

between DAGs corresponding to technical replicates against the regularity parameter λ. The 
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dashed line indicates the value λ = 4 that reduces the between-subject variability by 

approximately 50%. (c) Comparing the Bayes factor corresponding to model λ = 4 against 

independent estimation (λ = 0) and estimation that forces all DAGs to be identical (λ ≥ 17).
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Figure 4. 
Illustrative fMRI dataset; learning multiple DAGs without an exchangeability assumption. 

[Here we simultaneously estimate both subject-specific DAGs and the network A that relates 

subjects. The regularity hyperparameter λ = 4 was fixed whilst the density hyperparameter η 

was varied.]
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Figure 5. 
Illustrative fMRI dataset; k-means clustering of DAGs with (a) L = 2 clusters and (b) L = 3 

clusters. [We simultaneously estimate subject-specific DAGs, their cluster assignments 

(dashed edges) and the prototypes that summarise graphical structure within each cluster. 

The regularity hyperparameter was fixed at λ = 4.]

Oates et al. Page 20

Neural Comput. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


