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Abstract

Structural magnetic resonance imaging (MRI) provides anatomical information about the brain in 

healthy as well as in diseased conditions. On the other hand, functional MRI (fMRI) provides 

information on the brain activity during performance of a specific task. Analysis of fMRI data 

requires the registration of the data to a reference brain template in order to identify the activated 

brain regions. Brain templates also find application in other neuroimaging modalities, such as 

diffusion tensor imaging and multi-voxel spectroscopy. Further, there are certain differences (e.g., 

brain shape and size) in the brains of populations of different origin and during diseased 

conditions like in Alzheimer’s disease (AD), population and disease-specific brain templates may 

be considered crucial for accurate registration and subsequent analysis of fMRI as well as other 

neuroimaging data. This manuscript provides a comprehensive review of the history, construction 

and application of brain atlases. A chronological outline of the development of brain template 

design, starting from the Talairach and Tournoux atlas to the Chinese brain template (to date), 

along with their respective detailed construction protocols provides the backdrop to this 

manuscript. The manuscript also provides the automated workflow-based protocol for designing a 

population-specific brain atlas from structural MRI data using LONI Pipeline graphical workflow 

environment. We conclude by discussing the scope of brain templates as a research tool and their 

application in various neuroimaging modalities.
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INTRODUCTION

A brain template is a specific anatomical presentation of the brain depicting finer anatomical 

details (e.g., nuclei, cortical areas) [1]. Digital brain templates, or atlases, generated either 

from a single-subject or from multiple subjects, have begun to replace the conventional 

printed brain template (e.g., Talairach and Tournoux atlas) [2, 3]. The more advanced brain 

templates using multiple subjects have higher signal-to-noise ratio, provide better contrast 

between grey matter and white matter [4], and quantify typical variations within the study 

cohort or the population of interest.

This article provides a comprehensive review of the nine most commonly used brain 

templates from the Talairach and Tournoux atlas to the Chinese brain template, describes the 

rationale behind the atlas construction protocols, and provides examples of specific 

computational neuroscientific studies. The article falls under the following headings: (i) a 

detailed review of available brain templates; (ii) steps involved and the rationale in creating 

a new population-specific brain template using LONI pipeline [5–7]; (iii) brain atlas 

applications in various imaging modalities; and (iv) clinical application.

BRAIN ATLASING AND BIOMARKERS

Neuroimaging atlases were initially intended to provide transformation framework for 

aligning 2D slices (e.g., cryotomographic, immunohistochemical) or transforming a 3D data 

(e.g., low resolution CT, CAT, SPECT, positron emission tomography (PET) volumes) to a 

higher-resolution common space like the one used in MRI magnetic resonance imaging 

(MRI). These transformations from one space (subject) to an atlas space provide localization 

of structural, functional, and physiological data into a well-understood template space.

NEED FOR POPULATION-SPECIFIC BRAIN TEMPLATES

Overall brain features (e.g., brain volume, shape, and size) vary across different populations 

due to phenotypic, genetic, developmental, and environmental factors [8]. Therefore, 

population-specific brain templates that capture, quantify, and visualize the varying brain 

anatomy are required for many structural, functional, and physiological studies to provide 

finer details which leads to better interpretation [9]. This concept can be extended further to 

create disease-specific brain templates, in conditions like Alzheimer’s disease (AD), which 

may aid in crucial neuroimaging data analysis.

REVIEW OF EXISTING HUMAN BRAIN TEMPLATES

There are nine most commonly used brain templates which are depicted in Fig. 1 and the 

characteristic features of each brain template is presented in Table 1.

Talairach and Tournoux atlas

The first stereotactic atlas of grey nuclei was published by Talairach and coworkers in the 

year 1957 [10], followed by a second atlas in 1967 [11]. Talairach and Tournoux then 

constructed the third human brain atlas (in printed form) in 1988 from the single postmortem 

brain of a 60 year old French woman [12]. This atlas has become one of the standard 
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reference systems in human brain mapping [13]. It introduced a coordinate system to 

identify and label different brain regions (Fig. 2) which was based on two reference 

landmarks, the anterior commissure (AC) as its origin and the posterior commissure (PC) 

[14, 15]. The x-axis was defined by the line passing through the AC point and perpendicular 

to the AC-PC line, y-axis was defined by the line connecting the most superior point of the 

AC and the most inferior point of the PC. In this coordinate system, z-axis was defined by 

the line on a vertical plane (horizontal plane defined by the x-axis and y-axis) passing 

through the inter-hemispheric fissure and the AC point [14]. Talairach and Tournoux also 

introduced a spatial transformation to match a general brain image to their brain atlas [13].

Although the Talairach and Tournoux atlas provides accurate descriptions of areas around 

the origin (AC) of the coordinate system (e.g., the basal ganglia, pituitary gland, and 

thalamus), it has certain drawbacks [3]. The brain used by Talairach and Tournoux was 

relatively smaller [16]. Furthermore, this atlas was created from a single subject 

(postmortem brain). The slice thickness was also very large (2–5 mm), and almost fifteen 

slices were left unaccounted for while creating the atlas [8, 17, 18]. This generated wide 

gaps in the atlas and hence, did not reflect the complete neuro-anatomical features. The 

anatomical locations can only be identified by comparing the Talairach and Tournoux brain 

atlas with the Brodmann map. Furthermore, the anatomical mapping from 3D MRI images 

to this version of Talairach and Tournoux atlas is not possible, as no 3D image of the 

original brain was used in its construction [3]. Hence, primary application of this template is 

limited to two dimensional (2D) analyses. Another drawback associated with the earlier 

version of the Talairach and Tornoux atlas is that the anterior tip of the temporal lobe is 1 

cm anterior to the AC plane. It has to be noted that in moderately demented AD patients, it 

is 1 cm posterior to the AC plane [19–21].

MNI-305

In 1995, the Montreal Neurological Institute (MNI) created a new standard population-

specific brain template, MNI-305, to address the limitations of the Talairach and Tournoux 

atlas. The MNI-305 brain template was generated by averaging 3D brain MRI images (n = 

305 right-handed subjects, M = 239, F = 66 having average age of 23.4 ± 4.1 years) [22, 23]. 

The construction procedure involved two stages. In the first stage, 3D brain MRI images of 

250 subjects were taken, and each image was registered manually to the Talairach and 

Tournoux brain atlas [23]. The two reference landmarks, the AC and the PC, were defined 

manually to identify the AC-PC line and the edges of the brain. Each input brain MRI image 

was scaled to match the manually defined landmarks (AC and PC) to the equivalent 

positions on the Talairach and Tournoux atlas [23]. These scaled images were then averaged 

to construct the MNI-250 brain template [23]. The second stage consisted of taking another 

set of 3D brain images of 55 normal subjects, and registering each brain image to the 

MNI-250 brain template using automatic linear registration [24]. These 55 automatically 

registered brain MRI images and manually registered 250 brain images were then averaged 

together to create the MNI-305 brain template.

Although the MNI-305 brain template is based on the Talairach and Tournoux brain atlas, 

there are some significant differences between the two. The MNI-305 brain template is 
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comparatively larger than the Talairach and Tournoux brain template [16, 25]. Also, for 

creating the MNI-305 brain template, brains were not scanned to cover the top of head and 

the cerebellum and consequently lacked cortical details. Furthermore, the accuracy of 

MNI-305 brain template is constrained by the limiting resolution of the input brain MRI 

images [26].

Colin-27

In 1998, a high-resolution MRI brain template, Colin-27, was constructed by acquiring 

twenty-seven high-resolution (seven images at 0.78 mm3 and twenty images at 1.0 mm3) T1-

weighted 3D brain images from a single subject [26]. The brain images were then 

automatically registered to a common stereotactic space in which they were sub-sampled 

and image intensities were averaged. Due to availability of high-resolution brain images, the 

Colin-27 brain template provides finer anatomical details. Due to its excellent contrast and 

signal-to-noise ratio, this brain template is being used as a target for regional spatial 

normalization in many laboratories [26].

In 2001, a French research group used Collin-27 brain template to develop a tool for 

automated anatomical labeling of activated areas in the brain [27]. The aim was to establish 

the relationships between brain structures and their functions, and to minimize the 

anatomical and functional variability between subjects.

MNI-152

The International Consortium for Brain Mapping (ICBM) adopted MNI-152 as their 

standard template [25, 28]. It is included in different functional imaging analysis packages, 

including the statistical parametric mapping package (SPM), and the expanded FMRIB 

Software Library (FSL) [9, 29]. MNI-152 template was created in 2001 from 3D brain MRI 

images of 152 normal subjects [30]. In MNI-152 brain template, Talairach and Tournoux 

coordinate system was selected as the reference coordinate space.

To construct the MNI-152 brain template, automated image registration (AIR) algorithms 

were used to align brain MRI images with the reference brain image (target image). The 

brain MRI images were linearly registered to the target image (using a 9-parameter affine 

transformation) followed by a non-linear registration to overcome the inter-subject 

anatomical differences in shape, size, and relative orientation [25, 28]. The advantage of 

MNI-152 brain template is that it provides a full head coverage and also provides more 

detailed information from the top portion of the brain to the bottom portion of the 

cerebellum [16]. However, MNI-152 template lacks cortical details.

ICBM-452

The ICBM-452 brain template was created in 2003, by averaging T1-weighted brain MRI 

images of 452 normal young subjects in a coordinate space which was defined using the 

average position, orientation, scale, and shear of all individual subjects [31]. Two versions 

of ICBM-452 brain template were defined, namely, the air-12 and the warp-5. The air-12 

version of ICBM-452 brain template was constructed by linearly transforming all brain MRI 

images from 452 subjects to the MNI-305 brain template space using a 12-parameter affine 
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transformation and subsequently taking the average of all the transformed brain images [31]. 

On the other hand, the warp-5 version of ICBM-452 was created using AIR to perform 

linear affine transformation followed by a fifth-order polynomial non-linear warping. The 

warp-5 version of the ICBM-452 brain template provides more cortical details due to more 

accurate alignment compared to the air-12 version of ICBM-452 [31].

Korean brain template

The Korean brain template was constructed in 2005 using MRI and PET images of 78 

normal right-handed Korean subjects (49 males and 29 females) with age ranging from 18 to 

77 years (mean age = 44.6 ± 19.4 years) [17]. The MRI and PET brain images of these 

subjects were spatially normalized to the target brains using linear transformations. The 

brain templates corresponding to the young and elderly were created by subdividing the 

subjects into two groups for each gender, the young/midlife group (<55 years-old; 35 males 

and 13 females) and the elderly group (>55 years-old; 14 males, 16 females) [17].

In this template design process, the overall length (anterior commissure margin to posterior 

commissure margin), height (inter commissural margin to superior cortical margin), and 

width (left cortical margin to right cortical margin) of the standard Korean brains were 

calculated. The anterior-posterior length and height of the Korean standard brain template 

were lower compared to the MNI-152 and Talairach and Tournoux brain atlas. However, the 

left-right widths of Korean brain templates were found to be equivalent to those of the 

MNI-152 brain template and the Talairach and Tournoux brain atlas [17]. For the standard 

Korean male brain template, length was 10% lesser, height was 9% shorter, and width was 

1% greater compared to the MNI-152 brain template. However, in the case of standard 

Korean female brain template, length was 10% lesser, height was 4% shorter, but the width 

was equal when compared to the Talairach and Tournoux brain atlas.

These differences between Korean brain template and other brain templates (e.g., MNI-152 

brain template and the Talairach and Tournoux atlas) reflect the differences in shape and 

size of the brains of Koreans and Caucasians [17], emphasizing the need for population-

specific templates.

French brain template

In 2009, a French brain template was constructed by averaging fifteen T1-weighted brain 

MRI images acquired using multiple scans from a 45 year old French male. Subsequently, a 

T2-weighted template was constructed by averaging seven brain MRI images from the same 

subject [32]. One T1-weighted native image was randomly chosen as the target image. 

Subsequently, all T1 and T2 weighted images acquired were linearly registered to the target 

image [32]. In this brain template, the voxel size was significantly reduced to 0.25 mm3, 

after sub-sampling the resulting averaged volumes using a cubic B-spline algorithm, which 

helped to observe fine brain structures as well as white matter/grey matter intensity 

crossings [32].
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Chinese brain template

The Chinese brain template was constructed from high-quality brain MRI images acquired 

from 56 right-handed Chinese male subjects (mean age = 24.46 ± 1.81 years) [8]. The 

acquired brain MRI images were then registered linearly to the selected target image (to 

account for global deformations), followed by non-linear registration (to account for local 

deformations). The target image was selected randomly from the 56 brain MRI images, and 

all the images were linearly registered using a 12-parameter affine transformation. The non-

linear registration of the linearly aligned MRI images was performed using fifth order 

polynomial transformation. The registered images were then averaged to construct the brain 

template [8].

The Chinese brain template [8] is relatively shorter in both length and height, but greater in 

width in comparison to the MNI-152 brain template. In addition, brain features such as brain 

shape, size, and the length of AC-PC line were significantly different from the MNI-152 

brain template. This once again validates the need for population-specific brain templates for 

different populations [8].

STEPS FOR DESIGNING A NEW POPULATION SPECIFIC BRAIN 

TEMPLATE

Acquisition of MRI data in different brain template design processes

High quality MRI images are very important for the generation of brain templates. Table 2 

presents the detailed specifications (e.g., slice thickness, flip angle, echo time, repetition 

time, inversion time, field of view, acquisition matrix, and voxel size) used for acquiring 

MRI data for the above-mentioned brain templates. Brain MRI images are generally 

acquired in vendor-specific formats but usually it is saved in Digital Imaging and 

Communications in Medicine (DICOM) format [33]. The general internal structure of 

DICOM file is provided in Fig. 3. Other formats (e.g., ANALYZE [34], Neuroimaging 

Informatics Technology Initiative (NIfTI) [35], etc.) are also used for brain MRI image 

storage. Figure 4 illustrates the salient features of different brain MRI image formats.

Steps involved in brain template design

The steps involved in the design of a population-specific brain template, using LONI 

pipeline, are depicted in Fig. 5 [8, 36]. The complete pipeline workflow is also available 

online for community testing and validation via the LONI Pipeline Web-Start interface 

(http://pipeline.loni.ucla.edu/PWS, http://ucla.in/qECrrp). The LONI pipeline processing 

environment is a visual programming interface consisting of various modules (e.g., AIR [37, 

38], BrainSuite [39], FSL [40]) [5–7]. The desired work-flow for the design of a brain 

template can be created by adding the required modules to the pipeline. At first, the high 

resolution structural brain MRI images are acquired in DICOM format. These images are 

then converted to ANALYZE format. The next image pre-processing steps include skull 

stripping, by selecting/masking the desired brain region, followed by reorientation of the 

brain MRI images [41, 42].
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The skull-stripped brain MRI images are processed in three steps: (i) the averaged raw brain 

template is constructed first by selecting an image as a target image [8]. The target image 

can be selected in three different ways. First, it can be done by subjective, objective, or 

random selection of the best brain image. Second, a target image can be selected from the 

standard human brain template database (e.g., MNI-152, ICBM-452, etc.) Third, a target 

image can be chosen as the one which has the best match after linear alignment with a 

standard human brain template (MNI-152 or ICBM-452).

The linear registration between the target image and skull-stripped images is performed 

separately for each image. These registered images are then averaged to create the averaged 

raw brain template. (ii) Second, an average linear brain template is constructed by averaging 

all the skull stripped images after linear registration of each image to the average raw brain 

template. (iii) Finally, an averaged non-linear brain template is constructed by averaging all 

the skull stripped images after non-linear registration of each image to the average linear 

brain template.

Automatic image registration

The AIR module in the LONI pipeline is commonly used to register human brain MRI 

images [36, 43–49]. The construction of human brain template involves linear (global) 

transformation (Ti, linear (x, y, z)) followed by non-linear (local) transformation 

(Ti, non-linear(x, y, z)) [30]. The global transformation is accomplished by an affine 

transformation to address overall (global) differences in the brain MRI images. On the other 

hand, the local transformation allows more detailed deformation of the brain MRI images 

and is accomplished by non-linear alignment techniques [30, 48].

Affine transformation

An affine transformation is a linear geometric transformation that involves translation, 

rotation, scaling, and shearing as depicted in Fig. 6 [43, 50]. This operation requires 

alignment of the source image to the target image to retain certain geometric features 

(parallel lines remain parallel but size and orientation may change) [50]. An affine 

transformation of a 3D coordinate (Ti, linear (x, y, z)) in the source image to a new 3D 

coordinate (Ti, linear (x, y, z) [43] in the transformed source image (linearly registered image) 

is accomplished using a transformation matrix as shown in Equation-1.

(1)

Here, m14, m24, and m34 are the translation parameters in x-, y-, and z-directions, 

respectively. The remaining 3 × 3 matrix ([mij]; i, j = 1, 2, 3) represents the rotation, scaling, 

and shearing parameters. Figure 7 illustrates an example of an affine transformation on a 2D 

image. The number of parameters required in transformation matrix depends upon the type 

of images used (e.g., registering fMRI images requires 6-parameter affine transformation, 

whereas MRI images requires up to 12-parameter affine transformation) [50, 51].
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Non-linear alignment

The objective of non-linear alignment is to warp the source brain MRI images, using a high 

dimensional warping transform, such that the homologous regions are aligned accurately to 

the corresponding regions in the target image [43–45, 52–54].

The non-linear alignment of brain MRI images can be performed using spline-based 

deformations [55–57], including thin plate splines [48, 55] and B-splines [55, 58]; and 

physical model-based deformations, including elastic deformations [55, 59, 60] and fluid 

deformations [37, 48, 54, 55, 61]. Neuroimaging studies, using different brain warping 

techniques, have found increased rates of hippocampal volume loss and different patterns of 

hippocampal shape change, during early dementia of Alzheimer type as compared to normal 

aging [62]. This signifies the importance of non-linear registration, for alignment of source 

and target images, in diseases such as AD and other dementias. To make an assessment, the 

AD patient group has to be compared with the normal control group. Hence, analysis of 

normal control group becomes crucial and the use of the population-specific template is 

appropriate to capture better local information.

Refinement of the registration

The reliability of the designed brain template depends on the accuracy of the image 

registration performed during brain template design process [30].

For most registration methods, diffeomorphic warping aside [63], deriving separate 

displacement vector fields for registering θ:A→B and Ψ:B→A, would generate a distinct 

resliced volume: À = Ψ(θ(A)). In other words, the displacement vector fields (Ψ, θ) are not 

inverses of each other. At the same time, even diffeomorphic normalization transformations 

[64], where the identity I(·) = Ψ (θ(·)), do not guarantee exactly the same intensities of the 

original (A) and resliced (À) volumes. This is due to the computational error in interpolation 

of the resliced intensities and smoothing that may be intentionally imposed while generating 

a visually appealing spatially normalized (resliced) result. Certain characteristic metrics can 

be used to determine the accuracy of registration and they are as provided below.

Wavelet based metrics to evaluate non-linear registration

The wavelet-based metrics can be used to evaluate the non-linear registration quantitatively 

[65]. This method uses a concise representation of the native and re-sliced (pre- and post-

warp) data in compressed wavelet space to assess quality of registration. Three different 

approaches can be used to evaluate the performance of non-linear registration in compressed 

wavelet space and they are as follows: 1) Triangle Scheme (Δ) for Warp Classification; 2) 

Cluster Group Classification (CGC); and 3) Spread Group Classification (SGC). The step-

by-step process for quantitative assessment of volumetric image registration according to the 

wavelet-based approach is as follows:

1. Compute the wavelet transform of all data volumes, their warped-resliced 

representations, and the target data.

2. Apply wavelet shrinkage technique to the wavelet transformed data to obtain the 

compressed data.

Mandal et al. Page 8

J Alzheimers Dis. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3. Evaluate the desired warp rankings (triangle Δ, CGC, SGC) according to the pre-

defined relations [65].

4. Smaller values of triangle and CGC, and larger values of SGC are indicative of 

appropriate image registration [65].

Voxel-based similarity metrics

Voxel-based similarity metrics depend on the differences in the voxel intensities from 

corresponding locations in the target (T) and transformed source (S) brain MRI images [66]. 

There are two voxel-based measures (namely cross-correlation and sum of squared 

differences).

Cross-correlation—The cross-correlation method evaluates the correlation between the 

target brain image (T) and the registered image (S) (transformed source brain MRI image). 

The transformation parameters are applied on source images to maximize the correlation 

between the target image and the source images [66]. The cross-correlation coefficient (CC) 

between the target image and the transformed source image is the sum of the product of the 

respective image intensities and is given by Equation-2:

(2)

where iT(x) and iS(x) denotes the intensity at voxel location (x) in the target image and the 

transformed source image respectively. Figure 8 illustrates an example of transformed 

source 2D image after non-rigid registration using cubic B-splines with cross-correlation 

coefficient as the similarity measure used. This measure assumes a linear relationship 

between intensities of the target and source images and is sensitive to differences in 

brightness and contrast of target and source images [55].

To overcome this limitation, the normalized cross-correlation can be used. The normalized 

correlation coefficient (NCC) between the target image (T) and transformed source image 

(S) can be expressed by the Equation 3 [48, 55]:

(3)

where,  and  represent mean intensity of the target image (T) and the transformed source 

image (S), respectively. The value of NCC ranges from zero to one. Low value of NCC 

implies improper alignment of the images and for the perfect alignment of images; NCC 

value is one. Thus, a transformation is estimated in such a way that it maximizes the NCC. 

Figure 9 illustrates the application of NCC on a transformed 2D source image.

Sum of squared differences—The sum of squares of intensity difference (SSD) is 

calculated by taking the summation of all the squared differences of the intensity values in 

the target (T) and transformed source (S) images [55]. It is represented by the following 

Equation:
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(4)

The value of SSD will be zero when the images are perfectly aligned and will increase in 

case of improper alignment. The main limitation of voxel-based similarity metrics is that it 

can be applied only for single modality images [48, 55].

Due to the presence of non-uniform intensities in brain MRI images, the corresponding 

regions in different images may not have the same voxel intensities [67]. This limits the 

application of voxel-based metrics to estimate the reliability of the registration. This 

problem was addressed using entropy-based similarity metrics. Figure 10 illustrates an 

example of non-rigid registration performed on the transformed source image using cubic B-

splines with SSD as the similarity measure.

Entropy based metrics

To check the reliability of the designed brain template, there are three entropy-based 

metrics: joint entropy, mutual information, and, normalized mutual information.

Joint entropy—The joint entropy H(T,S) of the target (T) and transformed source (S) 

images, having intensities iT(x) ∈ T and iS(x) ∈ S respectively, is represented by the following 

Equation [67]:

(5)

where, p(iT, iS) represents the joint probability density function of the target (T) and 

transformed source (S) images. Figure 11 illustrates schematically the relation between the 

partial and joint entropies for a pair of images.

A low value of the joint entropy indicates a better alignment of the images. A detailed 

explanation regarding the minimization of entropy H(T, S) can be found in the literature 

[68]. The limitation of using joint entropy is that lower values of joint entropy can also be 

obtained with poor alignment (for example, when the background of the images is aligned, 

instead of the homologous anatomical features).

Mutual information based method—Mutual information (MI) content between the 

target and transformed source images is an alternative error metric to check the reliability of 

the designed brain template with better performance by considering individual entropies of 

the target and source images along with their joint entropy [68]. The target and source 

images are registered to maximize the mutual information between the images [47].

A joint probability distribution technique can be used to estimate the mutual information 

between the images [47]. The joint probability distribution is estimated by plotting a joint 

histogram of the target and transformed source images [47]. When two images are in proper 

alignment, the resulting histogram will be a diagonal line indicating very tight clusters. On 

the other hand, improper alignment of the images will result in a dispersed histogram [47].
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Based on the reliability results from the above-mentioned procedure, the registration results 

can be improved by maximizing the mutual information of the source and the target images. 

The mutual information I(T, S) of the target (T) and transformed source (S) images can be 

obtained from their respective marginal entropies H(T), H(S) and their joint entropy H(T, S) 

by the following equation [47, 68]:

(6)

The marginal entropies can be calculated using Shan-non definition:

(7)

(8)

where, p(iT) and p(iS) stands for marginal probability distributions of voxels with intensities 

iT and iS occurring in the target (T) and transformed source (S) images, respectively. Thus 

Equation-6 is modified to:

(9)

where, p(iT, iS) denotes the joint probability density function (PDF) of the target (T) and 

source (S) images. The mutual information I(T, S) of the target (T) and transformed source 

(S) images is high when the images are properly aligned [69]. To maximize the mutual 

information I(T, S), the joint entropy H(T, S) needs to be minimized [68]. Figure 12 

illustrates an example of refining the registration on the transformed source image using MI 

as the similarity measure.

Normalized mutual information—Mutual information metric is less sensitive to overlap 

error (only background is aligned and not the anatomical structures), compared to the joint 

entropy metric, due to the addition of the marginal entropies of both images. But, sometimes 

inefficient overlap may also lead to an increase in mutual information. To overcome this 

overlap problem, another entropy based measure called normalized mutual information 

(NMI) [70] can be used and is given by the following equation:

(10)

where H(T) and H(S) represents the marginal entropies of the target and the transformed 

source images and H(T, S) represents the joint entropy of the two images. The images are 

registered such that the normalized mutual information between the images is maximized or 

the joint entropy is minimized [71].
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Overlap based metrics

The accuracy of registration can be evaluated by comparing the corresponding regions in the 

target image and the transformed source image [72]. This comparison can be done using 

three quantifying overlap measures, i.e., target overlap, mean overlap, and union overlap. 

Target overlap (TO) is the ratio of the intersection between the corresponding regions (r) in 

target (T) and transformed source (S) images, to the volume of the region in target (T) image 

and can be computed by taking summation over a set of multiple labeled regions and is 

shown in Equation 11 [72]:

(11)

where, Tr is the set of voxels in the region r in the target image, Sr is the set of voxels in the 

region r in the transformed source image and ∩ indicates volumetric intersection.

TO ranges from zero (when source and target images have no common regions to align) to 

one (when source and target images are in complete overlap). Mean overlap (MO) is the 

ratio of the intersection between two similarly labeled regions (r) of target and transformed 

source images to the mean volume of the two regions summed over multiple labeled regions 

[72]:

(12)

MO is also known as Dice coefficient.

The third overlap measure, union overlap (UO) is the ratio of the intersection between two 

similarly labeled regions (r) in target (T) and source (S) images to their union and can be 

expressed as:

(13)

UO ranges from 0 (when two images have no common regions to align) to 1 (when two 

images are properly aligned). There are two error measures to check the incorrectly labeled 

measures: false-positive (FP) and false-negative (FN) errors [72]. An FN error for a given 

region is the ratio of the volume of the target region outside the corresponding source region 

to the volume of the target region, i.e.,

(14)

where, Tr\Sr indicates the set of elements (voxels) in Tr but not in Sr. An FP error for a given 

region is calculated as the ratio of the volume of a source region outside the corresponding 

target region to the volume of the source region as follows:
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(15)

where, Sr\Tr indicates the set of elements in Sr but not in Tr. The false-negative error and 

false-positive error can range from zero (indicative of perfect overlap) to one (indicative of 

poor overlap). Figure 13 illustrates the concept of false positive, true positive, false negative, 

and true negative through a Venn diagram.

Accuracy of spatial overlap of two images from Dice coefficients/mean overlap

The Dice coefficient [73] can be used as a performance measure to access the extent of 

spatial overlap between two brain MRI images (target image (T) and transformed source 

image (S)). It is commonly used in reporting performance of image registration and is 

defined as the ratio of the intersection between two similarly labeled regions (r) of target and 

transformed source images to the mean volume of the two regions:

The value of Dice coefficient range between 0 (when two images have no common regions 

to align) to 1 (when images are perfectly aligned). Dice coefficient has been frequently used 

for evaluating the quality of image analysis [74, 76–78].

The above methods are used to estimate the accuracy of image registration as well as the 

reliability of a designed brain template. Furthermore, visual inspection may be performed by 

a domain expert to estimate the registration accuracy [48, 79].

APPLICATION: DIFFERENT IMAGING MODALITIES

Due to a number of intrinsic and extrinsic factors, the result of different neuroimaging 

analyses and statistical maps may sometimes be difficult to interpret, validate, or reproduce. 

Intrinsic factors include the significant intra-and inter-subject variability, presence of noise 

during acquisition, and variations in study designs between research groups, scanner type, 

sample sizes and sampling protocols. Extrinsic factors include the mapping technique, 

statistical methodologies, and computational tools used [6]. However, the creation of a 

population-specific template may reduce the inter-subject variability to reflect the brain 

structures from the same population. These population-specific brain templates have 

immense application in various types of neuroimage analysis. Several examples of powerful 

atlas-based neuroimaging studies are summarized below:

Voxel Based Morphometry (VBM)

VBM involves voxel-wise comparison of the local concentration of gray matter between 

groups of subjects. Spatial normalization in VBM is accomplished by transforming all the 

subjects’ data into same stereo-tactic space (an atlas or a standard brain template) [80]. In 

this case, a population-specific template is very much essential and required as differences 

in the standard template may affect the final results.
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fMRI data analysis

The selection of brain template has an effect on the result of fMRI data analysis. An initial 

step in fMRI data analysis involves spatial normalization where individual subject images 

are registered to a common spatial co-ordinate space which is commonly the MNI co-

ordinate space. This normalization also uses information from the structural data. It is 

observed that the size, shape, and position of brain structures are anatomically not uniform 

and show significant differences according to the age, gender, race, and clinical conditions 

[81, 82]. To overcome this situation, researchers have attempted analysis based on specific 

region of interest [83–87]. The study-specific template was initially proposed for voxel-

based morphometric method and it was observed that the results were enhanced when study-

specific template (SST) was used for analyses [88, 89]. Such SSTs were generated by 

averaging all the images after normalizing each of them to the MNI-T1 weighted template. A 

recent study indicated that most small-world parameters are sensitive to the selection of 

parcellation atlases. These differences arise also due to variations in the processes and 

different sample sizes used in preparing the atlases [90]. It is also observed that the 

structural anatomical landmarks were offset or inconsistent with estimated locations of 

corresponding functional activity [82]. Such offsets could change the statistics significantly 

leading to misinterpretation when studying the spatial patterns of brain activity. A 

population-specific template may help to overcome the above-mentioned issues as it reflects 

the anatomical information from that particular population.

Tensor-Based Morphometry (TBM)

TBM creates maps of brain volume and shape differences from sequential MRI scans, which 

aid in understanding the growth/atrophy rates of brain tissues [91]. In TBM, the images 

undergo non-rigid registration to a common reference space. The statistical analysis is 

commonly performed by computing the determinant of the Jacobian matrix of the 

deformation field (which is obtained as a result of registration) [92]. The common TBM 

analysis protocol involves first selecting the reference image as one of the initial subject 

image [93, 94], a standard template, or a study-specific minimum distance template 

generated for the particular study [92, 95–97]. These registrations are not perfect and 

different template or reference image may influence the results [98]. Hence, to reduce the 

amount of false positive or false negative findings in the resulting parametric maps, a 

population-specific template would be the best option.

Diffusion Tensor Imaging (DTI)

DTI is a unique procedure which provides the structural integrity, the orientation of white 

matter fibers in vivo, and the white matter tracts through tractography [99–101]. The 

comparison of the diffusion tensors between the normal control group and patient group is 

performed after spatial normalization of DTI data using a standard template [102]. A DTI 

template generated with limited number of subjects is influenced by the specific 

characteristic of individual subjects [103]. Hence, a population-specific template, generated 

using a larger population size, may be appropriate in this case.
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Magnetic Resonance Spectroscopy (MRS)

MRS technique allows the detection of different metabolites (within the concentration range 

of 0.5–10 mM) in different organs (e.g., brain). These metabolites (e.g., glutathione, N-

acetyl aspartate, myoinositol, phosphocreatine, etc.) in the brain provide crucial information 

on oxidative stress [104] and membrane metabolism [105] as well as brain pH mapping 

[106]. The quantitative determination of these various neurochemicals from different brain 

regions is of immense value in the diagnosis of different brain disorders [6, 107]. Brain 

segmentation into white matter, gray matter, and cerebrospinal fluid helps in the better 

interpretation of metabolite concentration information from each magnetic resonance 

spectroscopic imaging (MRSI) voxel measured through 1H or 31P MRSI [108]. As brain 

segmentation involves normalization to a reference image (template), an appropriate brain 

template would increase the specificity of brain metabolite analysis.

Clinical application

Recently, the goals of transforming and comparing AD data from different phenotypes (e.g., 

races, ages, genders, pathological states, etc.) or genotypes (e.g., APOE4) are extended to 

include longitudinal studies within subjects and morphometric comparison, of localized 

brain anatomy and function, between cohorts longitudinally. For instance, modern AD 

research explores the relation between diverse areas of molecular, morphological, and 

biomedical markers and aims to identify reliable imaging, clinical, neuropsychological 

biomarkers, that represent the progression of dementia, which can be accurately and 

consistently mapped onto a common stereotactic framework like the AD brain atlas [109]. 

Such biomarkers, and their interrelations, are of considerable scientific and clinical interest 

as they have the potential to untangle the biological processes driving the progression of the 

disease and facilitate the theoretical modeling and empirical estimation that is necessary to 

predict the state and course of the disease.

Traumatic brain injury (TBI)

TBI is one of the most common causes of cognitive disability. However, unlike other acute 

or chronic neurological conditions, TBI studies present a serious challenge in construction 

and utilization of pathological brain atlases. Developing an image analysis technique for 

precise quantification of TBI-induced structural changes is a challenging task as no clear 

boundary between two structures exists and they can exhibit severe global and focal atrophy 

[110]. LONI Pipeline package [111] could be used to measure whole brain volume for both 

accurate and chronic time points in the patient as well as in control groups [112, 113]. 

Volumetric analysis such as VBM could be used to study the volume changes after TBI. The 

biggest concern is that during the process of registering each image to a reference image 

(could be a standard template), any mis-registration could lead to falsely identified 

registration errors as true anatomic differences-with poor clinical correlation and serious 

misjudgment.

The structural abnormalities in the brains of TBI subjects violate the basic assumption of 

small deformations and intensity relationships which are used in many existing registration 

methods [114]. As most of the TBIs cases are different due to variation in the type of 

physical injury, interventions, and physical conditions, TBI atlas variability may be 
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enormous and difficult to quantify. Despite the fact that there are common cognitive 

symptoms and physiological presentation, there are many unique variations among injured 

brains. Contemporary TBI atlases attempt to explore the importance of injury impact on 

brain connectivity using diffusion-based imaging. There are efforts to quantify 

probabilistically the integrity of the white tracts by DTI [115, 116].

CONCLUSIONS

Brain template design is crucial for the successful analysis of neuroimaging data in 

neuroscience research. Many laboratories in different institutes are actively involved in the 

development and refinement of the brain templates.

We have made an attempt to present a review of existing human brain templates in 

chronological order along with the description of their features and construction protocols. 

Documentation of the existing brain template design process will lead towards designing a 

new template or refinement of existing templates using additional information.

There are nine human brain templates available to date, of which only seven are population-

specific. Population-specific brain templates are essential for accurate data analysis and 

interpretation. There is an urgent need in the modern neuroscientific community for 

development of such templates, particularly for large and diverse population subsets like the 

Indian subcontinent and African continent. To this end, we have initiated the development of 

an Indian brain template in our laboratory.

It will be particularly interesting to understand how genetic factors might influence brain 

structure, for example by affecting a particular vector associated with dimensional growth. 

Presumably, a general population atlas will accommodate the pressures and vectors with 

which many genetic factors related to the diversity of the world population will affect size 

and shape.

A very recent review article has highlighted the need of brain template for different age 

groups and specific brain areas (e.g., pediatric brain, aging brain, white matter atlas, etc.) 

[117]. Brains expand and stretch along specific cardioid ontogenetic dimensions that 

recapitulate phylogeny, and such growth pressures affect sulcal and gyral shape, as well as 

other brain features. The other end of this continuum is aging, with its unique effect on brain 

structure, while specific problems such as AD and fronto-temporal dementia definitely have 

their own unique pressures related to the progression of their own variations of atrophy. 

There needs to be separate systems for brainstem and cortical mapping, particularly frontal 

and temporal cortices. In conclusion, the enormous scope for further development and 

refinement of template design in neuroscience research needs to be exploited and pursued in 

a goal-oriented manner, as population-and disease-specific brain templates have immense 

applicative potential in neuroscientific research.
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Fig. 1. 
Existing human brain templates presented in chronological order. The first Talairach atlas 

was reported in 1957. In 1988, it was constructed from the postmortem brain of a 60 year 

old French woman. The MNI-305 brain template was constructed in 1995 from the average 

of 305 three dimensional MRI brain images (mean age = 23.4 ± 4.1 years). The MNI-152 

brain template was constructed in 2001 using brain MRI images from 152 normal subjects. 

The ICBM-452 brain template was created in 2003. The Korean brain template was created 

in 2005 from 78 healthy (normal) Korean subjects (mean age 44.6 ± 19.4 years). The French 

brain template (constructed from a 45 year old Frenchman) was reported in 2009, and the 

Chinese brain template was created in 2010 using 56 young Chinese subjects (mean age 

24.49 ± 1.76 years). New brain templates refer to template from Indian subcontinent and 

African continent etc.
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Fig. 2. 
Coordinate system introduced by Talairach and Tournoux. The anterior commissure (AC) 

and posterior commissure (PC) are the landmarks used for developing this standard 

reference coordinate system. Its origin was defined at the AC, with x-and y-axis defining the 

horizontal plane and z-axis defining the vertical axis. The original figure [15] is slightly 

modified and reproduced with permission.
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Fig. 3. 
General representation of brain MRI data in DICOM format. It consists of header which 

contains information relating to the subject and experimental parameters; and the 

corresponding image data.
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Fig. 4. 
Structure of different MRI data formats (e.g., DICOM, ANALYZE, and NIfTI).
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Fig. 5. 
General flowchart for the construction of population-specific brain template using LONI 

pipeline [8, 36]. At first, brain MRI images of the subjects of a population acquired in the 

DICOM format are converted to ANALYZE image format. Image pre-processing steps 

include the skull stripping and reorientation of the brain MRI images. The construction 

protocol includes mainly three steps: The averaged raw brain template is constructed first 

(red block will be in red color), to which each individual brain MRI image is linearly 

registered (to account for global shape and intensity differences) to get an averaged linear 

brain template (the color of green block would be in green color). This is followed by a non-

linear registration (to account for local deformations) of each individual brain MRI images 

to the averaged linear brain template to get averaged non-linear brain template (Blue block 

will be in blue color).
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Fig. 6. 
Effects of affine transformation consisting of translation, rotation, scaling, and shearing 

operation are elaborated. This linear transformation is required to align the source images to 

the target image. This Figure is revised, modified from earlier work [118] and presented 

here.
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Fig. 7. 
Illustration of affine transformation on a 2D MRI image [51].
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Fig. 8. 
A) Transformed source image; B) Target image; C) After application of cubic B-splines 

using CC as the similarity measure on the transformed source image [119]. Source code 

(https://sites.google.com/site/myronenko/research/mirt) was used to convert the images.
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Fig. 9. 
A) Transformed source image; B) Target image; C) Normalized cross-correlation (NCC) 

between the transformed source image and target image displayed as a surface plot. The 

peak of the cross-correlation matrix occurs when the images are best correlated [55].
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Fig. 10. 
A) Transformed source image; B) Target image; C) The transformed source image after 

non-rigid registration using cubic B-splines with SSD as the similarity measure used [119]. 

Source code (https://sites.google.com/site/myronenko/research/mirt) was used to convert 

those images.
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Fig. 11. 
Illustration for the relations between individual (H(X), H(Y)), joint (H(X, Y) and conditional 

entropies for a pair of correlated images X and Y with mutual information I(X, Y) [68].
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Fig. 12. 
A) Transformed source image; B) Target image; (C) Transformed source image after non-

rigid registration of the transformed source image and the target image using cubic B-spline, 

with MI as the similarity measure used Source code (https://sites.google.com/site/

myronenko/research/mirt).
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Fig. 13. 
Illustration of false positive, true positive, false negative, and true negative through the Venn 

diagram [74].

Mandal et al. Page 36

J Alzheimers Dis. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Mandal et al. Page 37

T
ab

le
 1

D
if

fe
re

nt
 c

ha
ra

ct
er

is
tic

 f
ea

tu
re

s 
(e

.g
., 

nu
m

be
r 

of
 s

ub
je

ct
s,

 r
eg

is
tr

at
io

n 
pr

oc
ed

ur
e 

in
vo

lv
ed

, t
yp

e 
of

 s
pa

tia
l t

ra
ns

fo
rm

at
io

n 
us

ed
, c

ov
er

ag
e 

ar
ea

, c
or

tic
al

 d
et

ai
l e

tc
.)

 u
se

d 
to

 c
on

st
ru

ct
 th

e 
ex

is
tin

g 
hu

m
an

 b
ra

in
 

te
m

pl
at

es

F
ea

tu
re

T
al

ai
ra

ch
T

ou
rn

oi
ix

(T
T

)
(1

98
8)

M
N

I-
30

5
(1

99
5)

C
ol

in
-2

7
(1

99
8)

M
M

-1
52

(2
00

1)
IC

B
M

-4
52

(2
00

3)
K

or
ea

n
(2

00
5)

F
re

nc
h

(2
00

9)
C

hi
ne

se
-5

6
(2

01
0)

N
o.

 o
f 

su
bj

ec
ts

1 F-
l

30
5

M
-2

39
, F

-6
6

1 M
-l

15
2

N
A

45
2

N
A

78 M
-4

9,
 F

-2
9

1 M
-1

56 M
-5

6

A
ge

 (
ye

ar
s)

60
23

.4
 ±

 4
.1

N
A

N
A

N
A

44
.6

 ±
 1

9.
4

45
24

.4
9 

±
 1

.7
6

Im
ag

e 
ty

pe
2D

3D
3D

3D
3D

3D
3D

3D

Po
pu

la
tio

n 
sp

ec
if

ic
N

o
Y

es
N

o
Y

es
Y

es
Y

es
Y

es
Y

es

T
yp

e 
of

 a
tla

s
N

on
-d

ig
ita

l
D

ig
ita

l
D

ig
ita

l
D

ig
ita

l
D

ig
ita

l
D

ig
ita

l
D

ig
ita

l
D

ig
ita

l

R
eg

is
tr

at
io

n 
pr

oc
ed

ur
e

M
an

ua
l (

In
tr

a-
su

bj
ec

t)
L

in
ea

r 
(I

nt
er

-s
ub

je
ct

)
L

in
ea

r 
&

 n
on

-L
in

ea
r 

(I
nt

ra
-

su
bj

ec
t)

L
in

ea
r 

&
 n

on
-L

in
ea

r 
(I

nt
er

-s
ub

je
ct

)
L

in
ea

r 
&

 n
on

-L
in

ea
r 

(I
nt

er
-s

ub
je

ct
)

L
in

ea
r 

&
 n

on
-L

in
ea

r 
(I

nt
er

-
su

bj
ec

t)
L

in
ea

r 
&

 n
on

-L
in

ea
r 

(I
nt

er
-s

ub
je

ct
)

L
in

ea
r 

&
 n

on
-L

in
ea

r 
(I

nt
er

-
su

bj
ec

t)

Sp
at

ia
l t

ra
ns

fo
rm

at
io

n
N

A
9-

pa
ra

m
et

er
 L

in
ea

r
A

ff
in

e
9-

pa
ra

m
et

er
 A

ff
in

e
12

-p
ar

am
et

er
 A

ff
in

e
A

ff
in

e
A

ff
in

e
12

-p
ar

am
et

er
 A

ff
in

e

C
ov

er
ag

e
E

xc
lu

de
s 

br
ai

n 
st

em
 &

 
ce

re
be

llu
m

D
oe

s 
no

t f
ul

ly
 c

ov
er

 to
p 

of
 h

ea
d 

&
 c

er
eb

el
lu

m
Fu

ll 
he

ad
 &

 c
er

eb
el

lu
m

Fu
ll 

he
ad

 &
 

ce
re

be
llu

m
Fu

ll 
he

ad
 &

 c
er

eb
el

lu
m

Fu
ll 

he
ad

 &
 c

er
eb

el
lu

m
D

ee
p 

br
ai

n 
re

gi
on

s
Fu

ll 
he

ad
 &

 c
er

eb
el

lu
m

C
or

tic
al

 d
et

ai
l i

nf
or

m
at

io
n

L
ac

k 
of

 c
or

tic
al

 d
et

ai
l

L
ac

k 
of

 c
or

tic
al

 d
et

ai
l

Im
pr

ov
ed

 c
or

tic
al

 d
et

ai
ls

L
ac

k 
of

 c
or

tic
al

 d
et

ai
l

Im
pr

ov
ed

 c
or

tic
al

 d
et

ai
l

Im
pr

ov
ed

 c
or

tic
al

 d
et

ai
l

Im
pr

ov
ed

 c
or

tic
al

 d
et

ai
l

Im
pr

ov
ed

 c
or

tic
al

 d
et

ai
l

C
on

tr
as

t b
et

w
ee

n 
gr

ay
 a

nd
 

w
hi

te
 m

at
te

r
L

es
s 

Si
gn

if
ic

an
t

Si
gn

if
ic

an
t

Si
gn

if
ic

an
t

Si
gn

if
ic

an
t

Si
gn

if
ic

an
t

Si
gn

if
ic

an
t

Si
gn

if
ic

an
t

Si
gn

if
ic

an
t

Si
ze

 (
L

en
gt

h,
 w

id
th

 &
 h

ei
gh

t 
of

 b
ra

in
)

Sm
al

le
r 

th
an

 o
th

er
 b

ra
in

 
te

m
pl

at
es

L
ar

ge
r 

th
an

 T
al

ai
ra

ch
 

T
ou

rn
ou

x
Sa

m
e 

as
 M

N
I-

30
5

Sa
m

e 
as

 M
N

I-
30

5
Sa

m
e 

as
 M

N
I-

30
5

H
ei

gh
t i

s 
sh

or
te

r 
th

an
 I

T
 a

nd
 

M
N

I-
30

5 
bu

t w
id

th
 is

 s
am

e
V

ox
el

 s
iz

e 
re

du
ce

d
L

en
gt

h 
an

d 
he

ig
ht

 a
re

 
sh

or
te

r 
th

an
 M

N
I-

15
2 

bu
t 

w
id

th
 is

 m
or

e

J Alzheimers Dis. Author manuscript; available in PMC 2015 February 11.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Mandal et al. Page 38

T
ab

le
 2

E
xp

er
im

en
ta

l p
ar

am
et

er
s 

us
ed

 to
 a

cq
ui

re
 b

ra
in

 M
R

I 
im

ag
es

 f
or

 th
e 

co
ns

tr
uc

tio
n 

of
 e

xi
st

in
g 

hu
m

an
 b

ra
in

 te
m

pl
at

es

T
em

pl
at

e
M

R
I 

sc
an

ne
r

Sl
ic

in
g

Sl
ic

e 
th

ic
kn

es
s

T
E

/T
R

/T
I 

(m
s)

F
lip

 a
ng

le
 (

°)
F

ie
ld

 o
f 

vi
ew

A
cq

ui
si

ti
on

 m
at

ri
x

V
ox

el
 s

iz
e

C
hi

ne
se

Fr
en

ch
3.

0 
T

es
la

 G
E

A
xi

al
1.

40
 m

m
2.

88
/6

.6
8/

4.
50

25
°

24
×

24
 c

m
2

51
2×

51
2×

24
8

0.
47

×
0.

47
×

0.
70

 m
m

3

(T
1-

w
ei

gh
te

d)
3.

0 
T

es
la

 P
hi

lip
s

Sa
gi

tta
l

1 
m

m
4.

6/
9.

8/
91

5
8°

25
6 

m
m

25
6×

25
6

0.
5×

0.
5×

1 
m

m
3

(T
2-

w
ei

gh
te

d)
3.

0 
T

es
la

 P
hi

lip
s

C
or

on
al

1 
m

m
80

/3
03

5/
N

A
90

°
25

6 
m

m
25

6×
25

6
1×

1×
1 

m
m

3

K
or

ea
n

1.
5 

T
es

la
 G

E
Sa

gi
tta

l
1.

5 
m

m
5.

5/
14

.4
/N

A
20

°
24

×
24

 c
m

2
25

6×
25

6
N

A

M
N

I-
30

5
1.

9 
T

es
la

 G
E

Sa
gi

tta
l

N
A

6/
24

/N
A

25
°

25
6×

25
6 

m
m

2
25

6×
25

6×
12

4
0.

98
×

0.
98

×
1.

20
 m

m
3

M
N

I-
30

5
1.

5 
T

es
la

 P
hi

lip
s

N
A

2 
m

m
30

/4
00

/N
A

N
A

N
A

25
6×

25
6×

16
0

0.
67

×
0.

86
×

0.
75

 m
m

3

J Alzheimers Dis. Author manuscript; available in PMC 2015 February 11.


