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Abstract

Automated reconstruction of the cortical surface is one of the most challenging problems in the 

analysis of human brain magnetic resonance imaging (MRI). A desirable segmentation must be 

both spatially and topologically accurate, as well as robust and computationally efficient. We 

propose a novel algorithm, LOGISMOS-B, based on probabilistic tissue classification, generalized 

gradient vector flows and the LOGISMOS graph segmentation framework. Quantitative results on 

MRI datasets from both healthy subjects and multiple sclerosis patients using a total of 16 800 

manually placed landmarks illustrate the excellent performance of our algorithm with respect to 

spatial accuracy. Remarkably, the average signed error was only 0.084 mm for the white matter 

and 0.008 mm for the gray matter, even in the presence of multiple sclerosis lesions. Statistical 

comparison shows that LO-GISMOS-B produces a significantly more accurate cortical 

reconstruction than FreeSurfer, the current state-of-the-art approach (p ≪ 0.001. Furthermore, 

LOGISMOS-B enjoys a run time that is less than a third of that of FreeSurfer, which is both 

substantial, considering the latter takes 10 h/subject on average, and a statistically significant 

speedup.
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I. Introduction

Segmentation of the cerebral cortical surface is one of the fundamental problems in human 

neuroimaging. In particular, accurate cortical reconstruction is important for quantitative 

analysis including volume, surface area, thickness and sulcal depth of the cortex, which have 

been shown to be important clinical endpoints. However, accurate and robust segmentation 

of the cortex remains a challenging task due to the very complex geometry of the cortical 

surface, large inter-subject variability of the folds as well as partial voluming effects. The 

main goal of this manuscript is to present a novel method to obtain more accurate and robust 

cortical segmentations compared to existing techniques. A more accurate segmentation 

would improve the results of many subsequent processing pipelines, including shape 

analysis, cortical thickness and other studies.

FreeSurfer [1] is a commonly used software suite for addressing this task; its approach is 

based on skull-stripping followed by segmentation via surface deformation with topological 

constraints to prevent self-intersections. In the FreeSurfer approach, an initial tessellation is 

deformed to produce a smooth representation of the WM and GM surfaces. The surface 

deformation is based on a spring-like term that regularizes the surfaces along the tangential 

and normal directions, and an intensity-based term that drives the boundary to the desired 

location based on intensity profiles. Gradient descent is used to optimize the deformation 

energy; however, self-intersections are detected and avoided by reducing the step size 

accordingly. Note that this method, like all optimization-based methods, is prone to local 

minima, unlike our proposed method which guarantees a globally optimal solution with 

respect to the employed cost function.

Many other algorithms have been developed for accurate cortical surface reconstruction 

incorporating techniques such as Markov random fields [2], deformable models [2]–[4], 

PDE-based methods [5], active contour models [6], probabilistic methods [7], Reeb analysis 

[8], [9], atlas-based registration [10], region growing [11], Bayesian segmentation [12], and 

implicit surface evolution [13], [14].

We present a novel approach based on the LOGISMOS graph segmentation [15] framework. 

LOGISMOS allows for simultaneous segmentation of multiple interacting surfaces in a 

robust and computationally efficient manner. While it has been previously applied to a 

number of medical image analysis tasks [16], [15], [17]–[20], including the neuroimaging 

domain in rodent brains [21], the original LOGISMOS method is not suitable for the human 

cortical reconstruction task, both because it is strongly dependent on the geometric accuracy 

of an initial segmentation and because its graph construction can not readily handle the 

tightly folded cortical geometry.

We report a novel approach that makes use of generalized gradient vector flows (GGVF) 

[22] in the LOGISMOS context to address both these challenges. Furthermore, we expand 

the LOGISMOS framework to allow regionally-aware graph construction and segmentation, 

which is a novel methodological contribution of this manuscript. Additionally, while the 

steps included in the pre-processing stage already exist in the literature, we present a 
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complete and carefully engineered novel pipeline that combines these techniques to create 

the most suitable input for the main segmentation stage.

II. Methods

Our cortical segmentation method LOGISMOS-B1 consists of four main steps: 1) pre-

processing of the raw input image to create a rough preliminary segmentation; 2) graph 

construction; 3) LOGISMOS segmentation; and 4) post-processing for removal of brain 

stem and cerebellum. An overview of the pipeline is given in Fig. 1.

A. Image Pre-Processing

The input to our algorithm is a single T1-weighted structural MR image. First, this T1w 

image is input to the BRAINSABC software2 [23] for pre-processing. BRAINSABC 

deformably registers the input image to an atlas and performs atlas-based tissue 

classification and bias-field correction using an expectation-maximization algorithm for 

simultaneous probabilistic tissue classification and bias-field correction [24]. This 

classification is limited to high-level tissue classes such as white matter (WM), gray matter 

(GM), cerebellar white, and gray matter, as well as nonbrain tissue types such as the skull.

All voxels that were classified as brain tissue (WM, GM, subcortical, etc.) are combined, 

and the resulting binary image is morphologically dilated using a spherical structuring 

element (r = 1 mm) to create a skull-strip mask. Next, the cerebral cortex is split into two 

hemispheres. This is done by detecting the plane of maximal symmetry, using the 

implementation in the BRAINS package. Note that performing the segmentation separately 

per hemisphere removes any complications that may arise from the interactions between the 

two hemispheres near the midsagittal plane.

The largest connected component of the WM tissue segmentation in each hemisphere is used 

as the preliminary segmentation for the LOGISMOS-based segmentation after two 

topological correction steps. The first step is to fill “holes” in the WM pre-segmentation 

such that its boundary only consists of the inner surface of the cortical ribbon. This means 

any “holes” in the white matter that would create additional boundaries, such as the 

subcortical structures and ventricles, are filled in. Next, handles are detected and removed 

following the methodology in [25], [26]. Briefly, this technique detects handles and removes 

them by either filling them in or cutting them apart, based on the route that modifies the 

least number of voxels. This creates a binary map of spherical topology, the boundaries of 

which form an approximation of the inner surface of the cortical ribbon.

B. Graph Construction

Given an approximate preliminary segmentation, the LOGISMOS approach [15] provides a 

framework for optimal segmentation of multiple interacting surfaces. This is achieved by 

modeling the problem as a complex geometric graph. With a properly-ordered multicolumn 

graph, the segmentation task has been shown to reduce to a V-weighted net surface search 

problem which can be efficiently solved.
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To this end, the preliminary segmentation is converted to a triangular mesh using the 

marching cubes algorithm. This mesh representation of the preliminary segmentation is 

referred to as the “base graph” in the LOGISMOS framework. From each node of this base 

graph (i.e., the vertices of the triangle mesh), a “column” is built, such that the final 

segmentation will “choose” exactly one node from each column. Consecutive nodes within a 

column are connected to each other by intra-column arcs. Nodes in neighboring columns are 

connected to each other by inter-column arcs, which introduce hard constraints on the 

smoothness of the final surface. Fig. 2 illustrates this graph structure.

The choice of method for building a single column of the geometric graph is crucial to the 

successful segmentation of complex objects such as the highly convoluted human cortex. 

We propose a new approach for building the columns of this geometric graph, based on the 

generalized gradient vector flows (GGVF [22]), which allow for spatially varying amount of 

smoothing based on the magnitude of the input gradient field. As discussed in detail in 

Section V-B, this technique is fundamental to the successful segmentation of the human 

cortex.

The gradient of the bias-field corrected T1-weighted image is computed, masked with the 

skull-strip mask and rescaled such that the maximum vector magnitude is equal to 1. This 

rescaled gradient field is used as the initial edge map in the following.

Given such an initial edge map f, the GGVF field v͂ is given by the equilibrium solution of

(1)

where g() and h() are the two weighting functions which govern the trade-off between the 

smoothing term and the data term. The smoothing term alone will produce a smoothly 

varying vector field. In contrast, the data term penalizes against large deviations from the 

input. The weighting functions are clearly dependent on the gradient of the edge map, which 

can be leveraged to reduce smoothing near strong gradients.

In practice, the recommended choice of weighting functions for GGVF are given by

(2)

(3)

In this setup, κ is the only remaining free parameter for controlling the amount of global 

smoothing.

As in [22], we implemented the partial differential equation specifying GGVF using an 

explicit finite difference scheme. Such an implementation has been shown to be numerically 

stable if the time step Δt is sufficiently small, specifically, if Δt ≤ (ΔxΔy)/(4gmax), where Δx 

and Δy are the spatial sample intervals and is the maximum value of the weighting function 

over the input edge map.
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Once the GGVF field is computed, starting from each node in the base graph obtained from 

the preliminary segmentation, the graph columns are built by following the GGVF field 

using a step size Δ, which determines node spacing along a column.

Multiple surfaces are represented by introducing duplicates of this entire graph (base graph 

and the associated GGVF columns) and introducing inter-surface arcs which encode hard 

constraints on minimum and maximum surface separation. In the proposed method, we use 

the white matter surface (i.e., the WM-GM boundary) as the base graph, and both the WM 

surface and the pial surface (i.e., the GM-CSF boundary) are considered to be mutually 

interacting, nonintersecting surfaces of the same object. The surface separation constraints 

are set by considering the expected range of cortical thickness from the literature. Note that 

the two hemispheres are considered separately.

C. Regionally-Aware Segmentation

The gradient vector field (and its flow) are inherently better behaved near strong edges 

rather than inside regions of homogenous intensity. To minimize the effect of meaningless 

gradient directions on the graph construction in these flat regions, any nodes along a column 

that require more than 180 rotation of the gradient direction may typically be discarded. 

However, in certain thick parts of the cortex, such as the cingulate, the image intensity 

remains flat for a relatively long distance between the two gradient peaks corresponding to 

the WM and GM boundaries. Our heuristic for reducing noise may therefore prevent the 

desired GM boundary from being included in the search space.

However, removing this heuristic globally may result in zigzags in the columns as they 

travel through the flat intensity regions; these columns may intersect each other and 

potentially lead to self-intersecting surface segmentations. Instead, we introduce regional-

awareness: in regions that are known a priori to have a thick cortical mantle, the exclusion 

heuristic is locally relaxed. The inter-column smoothness constraint is also relaxed in these 

regions as well as at the boundary of the region to allow for the graph behavior to change 

locally. This allows for accurate segmentation of the GM boundary in the cingulate and 

similarly thick regions, without adversely affecting the segmentation elsewhere.

The definitions of regions for this purpose is obtained using a registration-based approach. 

The BRAINSABC tissue classification software maps an external atlas to the subject image 

as part of the pre-processing stage. This mapping is used to carry the atlas labels to the 

subject space. Then, each graph column is assigned a label by considering the label at the 

pre-segmentation mesh vertex. However, the pre-segmentation mesh is not the final, 

accurate WM surface and is not guaranteed to lie on the cortex. If this vertex does not have a 

cortical label (i.e., it falls in a subcortical ROI), then we consider the label of a second node 

that corresponds to the minimum separation constraint between the two surfaces. Any graph 

columns that are still not assigned labels (e.g., because the second node falls outside the 

brain) are assigned via majority voting from the neighboring columns. Note that the goal is 

not to create a perfect parcellation, but rather to provide an estimate of the current region 

that can be used to adjust segmentation parameters locally.
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The 35 ROIs defined in our atlas are, for each hemisphere, as follows: insula, anterior and 

posterior parts of middle frontal gyrus, cuneus, ambiens gyrus, fusiform gyrus, inferior 

parietal lobule, inferior temporal gyrus, isthmus of cingulate gyrus, lateral occipital gyrus, 

lateral orbital gyrus, lingual gyrus, straight gyrus, middle temporal gyrus, parahippocampal 

gyrus, paracentral lobule, opercular part of inferior frontal gyrus, orbital part of inferior 

frontal gyrus, triangular part of inferior frontal gyrus, visual cortex, postcentral gyrus, 

posterior cingulate gyrus, precentral gyrus, precuneus, caudal and rostral parts of anterior 

cingulate gyrus, superior frontal gyrus, superior parietal lobule, superior temporal gyrus, 

supramarginal gyrus, frontal pole, temporal pole, transverse temporal gyrus, limen insulae. 

These ROIs are illustrated in Fig. 3. The mapping on a typical subject is shown in Fig. 4.

D. LOGISMOS Segmentation

Each node in the graph is assigned a cost related to the segmentation task such that a 

desirable segmentation has a low cost. Our cost function is based on edge strength, as 

defined by the first and second derivatives of image intensity [27]. Then, LOGISMOS finds 

the minimum closed set of this graph, which is equivalent to the minimum-cost cut or the 

optimal surface segmentation.

The bias corrected T1-weighted image is de-noised using gradient anisotropic diffusion 

filtering for five iterations using the ITK implementation with the default conductance value 

of 1. For the white matter surface, the gradient magnitude of the T1-weighted image is used 

as the cost function. For the gray matter surface, a weighted sum of the first and second 

order derivatives of the T1-weighted image is used, as given by the gradient magnitudes. 

Specifically

(4)

(5)

(6)

All gradients were computed via convolution with recursive Gaussians with a kernel size of 

σ = 0.2 mm. To account for different image intensity magnitudes and to simplify the 

weighting of these costs against each other, all gradient images (∇T1, ∇|∇T1|) are rescaled 

such that their intensity range is [0 … 1. The weight w was determined experimentally.

E. Mesh Post-Processing

LOGISMOS segmentation results contain varying amounts of brain stem and cerebellum 

tissue, which are removed via post-processing on the meshes. This is accomplished by 

creating a binary mask corresponding to the regions to be removed for each subject. To form 

the binary mask, cerebellar white and gray matter regions that resulted from BRAINSABC 

tissue classification during pre-processing are merged and morphologically closed to remove 

any present holes. The brain stem segmentation is obtained by mapping the atlas 

segmentation to the subject’s image using image registration also computed by 
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BRAINSABC. The largest connected component in the brain stem segmentation is extracted 

and morphologically dilated to ensure full coverage of undesired mesh vertices. The brain 

stem and cerebellum segmentations thus obtained are combined together to create the binary 

mask to be used for post-processing. Each WM mesh vertex that falls within this mask and 

each corresponding GM vertex are removed. The mesh openings created in this process are 

closed with planar patches.

III. Experimental Methods

A. Data

To evaluate the performance of our algorithm, we used the cortical reconstruction validation 

resource from Johns Hopkins University3. This validation dataset contains volumetric T1w 

and FLAIR MR images of multiple sclerosis (MS) patients and healthy controls [28]. For the 

experiments presented in this paper, only the T1-weighted images were used. The images of 

the healthy controls have an isotropic resolution of (1 mm)3 while the images of the MS 

patients have an isotropic resolution of (0.83 mm)3. Additionally, the dataset includes 

manually picked landmark points in seven different regions of the cortex on both inner and 

outer surfaces, identified by two independent raters. Each of these seven regions (calcarine 

sulcus, cingulate, central sulcus, parieto-occipital sulcus, superior-frontal sulcus, superior-

temporal sulcus, and the Sylvian fissure) have 30 landmarks per hemisphere, referred to as 

clusters in the following. Therefore, 7 clusters × 2 hemispheres × 2 surfaces × 30 landmarks 

× 2 raters = 1680 landmarks are available per subject, for a total of 16 800 manual 

landmarks for 10 subjects (five MS, five healthy controls). The MS subjects have additional 

landmark clusters picked in the vicinity of white matter lesions. Not relevant to our cortical 

surface segmentation task, these additional landmarks were not used in the evaluation.

B. Compared Methods

Considering that FreeSurfer currently represents the state-of-the-art approach, we have 

compared our algorithm with FreeSurfer. In particular, we have used the 5.1 release version 

of FreeSurfer and used the first two steps of the automated reconstruction pipeline (skull-

stripping and cortical reconstruction). In order to isolate the provenance of performance 

differences, we have investigated a hybrid method that consisted of skull-stripping using the 

LOGISMOS-B method followed by FreeSurfer reconstruction.

For our algorithm, we have used the following parameter settings. For the preliminary 

segmentation, the BRAINSABC software was used; this included three iterations of gradient 

anisotropic diffusion filtering as pre-processing, followed by a symmetric diffeomorphic 

registration using a 10 × 10 × 10 grid. The atlas distributed with the BRAINS package was 

used for tissue classification and regional parcellation. For GGVF, we used κ = 0.05 and 

five iterations.

For the graph construction, we used 20 000 columns containing 120 nodes each, with a node 

spacing of 0.1 mm for each hemisphere. The inter-surface separation constraints were set to 

a minimum of 2.5 mm and a maximum of 15 mm (i.e., no maximum was enforced in 

practice). The gray matter cost function had the weighting parameter w = 0.75. The cingulate 
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(caudal and rostral parts of anterior cingulate gyrus) and the temporal gyrus (transverse 

temporal gyrus and superior temporal gyrus) exhibit markedly thicker gray matter layer than 

other brain regions and were therefore extracted from the parcellation for the purpose of 

regionally-aware segmentation. These ROIs were enlarged by propagating them (via nearest 

neighbor) for 10 iterations. The inter-column smoothness constraint was set at an interval of 

1 node outside the chosen ROIs, two nodes inside the chosen ROIs and eight nodes at the 

ROI-non_ROI interface to allow local behavior change. The node exclusion threshold was 

set using vector inner product of local GGVF direction between consecutive nodes; the 

threshold was 0 (equivalent to 180 rotation) outside the ROIs and −0.1 inside the ROIs.

C. Evaluation Criteria

For each manual landmark, we compute its signed and unsigned distance to the 

reconstructed surface. In order to create a single independent standard, the landmarks from 

the two experts were pooled together and surface distances were obtained by averaging of 

cluster-specific distances over all landmarks from both sets. The hemisphere and inner/outer 

surface location of each cluster is provided, which makes it possible to use the appropriate 

surface in the computation (left/right WM/GM). The distance is computed by locating the 

closest triangle on the mesh using an octree-based search method and then computing the 

distance between the landmark and this triangle. Note that the distance is measured between 

the landmark and the closest point on the triangle, which may or may not coincide with a 

vertex. In order to determine the sign of the distance, the surface mesh was scan-converted 

into a high resolution binary image (0.5 × 0.5 × 0.5 mm3), which was used as an efficient 

lookup table to determine whether a landmark is inside or outside the surface. Note that the 

binary lookup was used only for the inside/outside decision; the actual distances were 

measured directly as point-to-surface distances.

We report the average landmark-surface distance for each landmark cluster as well as for the 

entire dataset. Additionally, we also report computation times for each method. Two-tailed 

paired t-tests were used for statistical comparison, with 0.05 significance threshold.

IV. Results

The unsigned GM errors were quite similar between FreeSurfer and LOGISMOS-B (p = 

0.44) but LOGISMOS-B had significantly smaller WM unsigned error (p = 0.05). However, 

the hybrid approach had significantly worse results than both FreeSurfer (p = 0.02 for WM 

and p ≪ 0.001 for GM) and LOGISMOS-B (p = 0.01 for WM and p = 0.08 for GM).

LOGISMOS-B had significantly smaller signed errors for both the white matter (p ≪ 0.001) 

and the gray matter (p ≪ 0.001) compared to both FreeSurfer and the hybrid approach. The 

WM signed error was not significantly different between the FreeSurfer and hybrid 

approaches (p = 0.420); while the GM signed error was significantly larger for the hybrid 

approach (p ≪ 0.001).

Table I–VI summarize the quantitative comparisons of the individual methods. Note that 

since the hybrid approach delivered an overall inferior performance, the statistical 
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significance assessments of differences presented in all the Tables are limited to the pairwise 

comparisons between the LOGISMOS-B and FreeSurfer methods.

Table I and Table II compare the unsigned and signed errors for LOGISMOS-B, FreeSurfer, 

and the hybrid approach.

Table III and Table IV show the average signed and unsigned errors per cluster, 

respectively. Bonferroni correction was used to address multiple comparisons in this 

analysis, with n = 56 (two types of distances ×14 clusters ×2 surfaces).

Table V compares the average run times for FreeSurfer and LOGISMOS-B. LOGISMOS-B 

can be seen to be more than three times faster than FreeSurfer (p ≪ 0.001). In particular, the 

atlas-based tissue classification took 139 min, the hemisphere splitting 23 min, the 

topological correction 2 min, the graph segmentation 8 min, and mesh post-processing less 

than a minute on average.

Figs. 9, 11, and 13 show the 10 reconstructed LOGISMOS-B white matter surfaces from the 

top, side, and medial views, while Figs. 10, 12, and 14 show the corresponding FreeSurfer 

results. Similarly, Figs. 15, 17, and 19 show the 10 reconstructed LOGISMOS-B gray matter 

surfaces, and Figs. 16, 18, and 20 show the corresponding FreeSurfer results. Again, the 

performance of the two approaches for the healthy subjects are comparable, whereas the 

differences are quite noticeable for the MS patients. Table VI summarizes the surface errors 

per healthy/MS subject groups and statistical significance of their differences for 

LOGISMOS-B and FreeSurfer.

V. DISCUSSION

A. Performance

The presented results indicate that LOGISMOS-B is an accurate method for automated 

determination of the human cortical surface. While the performance difference for unsigned 

GM surface positioning errors did not reach statistical significance between the 

LOGISMOS-B and FreeSurfer approaches, the WM unsigned errors were significantly 

smaller for LOGISMOS-B. Additionally, LOGISMOS-B exhibited significantly smaller 

signed surface positioning errors than FreeSurfer, both for the WM and the GM surfaces, 

showing a significantly smaller inside/outside positioning bias of both the GM and WM 

cortical surfaces. This improved accuracy can at least partially be attributed to the fact that 

LOGISMOS-B is guaranteed to find the globally optimal solution, whereas FreeSurfer is 

subject to local minima during its gradient-based optimization process.

The breakdown of surface positioning errors into clusters, presented in Table III and Table 

IV, gives further insight into the performance of LOGISMOS-B. It can be seen that for some 

regions, such as the parieto-occipital sulcus, surface localization is highly accurate. In some 

other regions, such as the cingulate, the localization shows lower levels of accuracy, 

especially for the GM surface. This may be partially explained by imperfect splitting of the 

hemispheres during the pre-processing by the BRAINS package. The use of regionally-

aware segmentation improves LOGISMOS-B’s performance considerably in this region, 
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while other regions are unaffected, as expected. Further improvement may be possible by 

introducing regional cost functions to capture local characteristics of the brain, again by 

leveraging the possibility of the regionally-aware segmentation approach in LOGISMOS-B. 

Note that, given the high number of comparisons, the best approach somewhat varies per 

region, as to be expected; however, overall, LOGISMOS-B offers the best performance.

It can be observed from both quantitative and qualitative results that LOGISMOS-B 

performs very well not only in normal brains but also in MS patients, despite not being 

specifically adapted to the presence of lesions (unlike approaches such as [28] which 

explicitly segment the MS lesions before cortical reconstruction). This is due to the 

underlying LOGISMOS framework which yields a globally optimal solution and is therefore 

extremely robust with respect to both the image noise and the presence of lesions. 

LOGISMOS is insensitive to local minima of the energy functional and LOGISMOS-B is 

further helped by employment of GGVF columns that help recovery from imperfect 

preliminary segmentations as discussed below. The 3-D figures (Figs. 9–20) clearly 

demonstrate the robustness of LOGISMOS-B in comparison to the FreeSurfer approach for 

the MS patients. In particular, note the fused gyri throughout the brain for most if not all MS 

patients using the FreeSurfer approach. Additionally, note the missing folds near the 

postcentral gyrus for the second MS patient and the very large chunk of tissue entirely 

missing near the inferior temporal gyrus for the fifth MS patient (best visible on Fig. 18). 

The 2-D figures (Figs. 5–8) also clearly show these missing tissues in the FreeSurfer 

segmentations for MS subjects (best visible for the slices corresponding to the left CALC 

and ST on Fig. 8). These faulty segmentations often happen in the neighborhood of an MS 

lesion, which creates local minima for the energy functional of the FreeSurfer optimization, 

by introducing strong edges locally and by causing the tissue appearance to deviate from the 

expected intensity profiles. The graph-based segmentation underlying the LOGISMOS-B 

approach guarantees finding the global optimum with respect to the employed cost function 

[29] and is therefore inherently more robust against such local minima. Both the qualitative 

and quantitative results indicate that the performance of LO-GISMOS-B and FreeSurfer is 

comparable for the healthy subjects, with LOGISMOS-B giving slightly more accurate 

results for the WM surface and FreeSurfer giving slightly more accurate results for the GM 

surface. The excellent performance of LOGISMOS-B in both populations suggests it is 

suitable for use in a variety of datasets.

Note also the left–right symmetry of the presented results using LOGISMOS-B, which can 

be observed both visually as well as from the similar patterns in the error measurements 

between the hemispheres. This observed symmetry is a further evidence of LOGISMOS-B 

cortical surface segmentation accuracy.

Signed and unsigned distances to landmarks measure different properties of the methods. A 

high signed error indicates a systematic over- or under- segmentation bias. Even though 

individual landmarks may have large errors, they have to “cancel” each other out to achieve 

a low average signed error, which would indicate the surface is, on average, at the correct 

location. On the other hand, the unsigned error represents the aggregated local errors 

regardless of their directions—as such, they never cancel each other. For small overall 

signed distance errors, it can be interpreted as the variability of the signed distance. While 
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achieving close-to-zero unsigned errors is impossible without achieving close-to-zero signed 

errors, the opposite is not true. Specifically, once a close-to-zero bias is achieved (close-to-

zero signed positioning errors), it is desirable to demonstrate that the unsigned errors are 

also small showing low variations of the segmented surfaces around the independent 

standard. Our results indicate that, LOGISMOS-B has a very small segmentation bias and 

low unsigned errors. The achieved error rates demonstrate a performance improvement 

compared to that of the FreeSurfer.Figs. 5 and 6 show the original MR image for a healthy 

subject with the reconstructed surfaces as mesh cross sections with a series of horizontal 

slices, for LOGISMOS-B and FreeSurfer, respectively. The manual landmarks from one 

expert are shown overlaid on the images. The most superior slice was chosen from each 

cluster. Figs. 7 and 8 show the same for an MS patient. The performance of the two 

approaches for the healthy subject is comparable, whereas the differences are quite 

noticeable for the MS patient.

While the data presented here only used T1-weighted images for a fair comparison with 

FreeSurfer, our framework can be readily adapted to work with multiple magnetic resonance 

imaging (MRI) contrasts. For example, if T2-weighted images are available, they can be 

used for improved GM surface segmentation by including the gradient of the T2-weighted 

image in the cost function. Additionally, it may be possible to improve the preliminary 

segmentation by using both images for tissue classification. Using multiple images would 

naturally slow down the computation time, especially for the tissue classification step. The 

LOGISMOS-based segmentation step creates a single cost function, whether based on a 

single T1-weighted image or a pair of T1w and T2w images; therefore, the additional 

computational load would be limited to the cost function computation step. In our 

experience, using a secondary input image increases the computation time of the tissue 

classification time linearly, whereas the LOGISMOS-based segmentation step computation 

time remains in roughly the same order of magnitude. Additionally the increased accuracy 

of the preliminary tissue classification may not justify the extra computational load, since 

the subsequent LOGISMOS-based segmentation step is designed to improve the preliminary 

segmentation and it was shown to successfully recover from errors in the input.

The results of the hybrid approach offer interesting insight into the source of the 

performance differences. One possible explanation would be that LOGISMOS-B simply 

uses a better skull-stripping technique. To test this hypothesis, we created the hybrid 

approach that uses the LOGISMOS-B skull-strip mask to bypass the FreeSurfer pre-

processing. Remarkably, this method performs worse than both FreeSurfer and 

LOGISMOS-B, on all accounts. The fact that the hybrid approach performs worse than 

LOGISMOS-B clearly shows that the performance improvement that LOGISMOS-B enjoys 

is not a trivial side effect of better pre-processing. Furthermore, the lower accuracy of the 

hybrid approach compared to FreeSurfer implies that the skull-stripping technique used in 

LOGISMOS-B may in fact be less accurate than that used in the FreeSurfer approach. We 

note that this result is somewhat expected because LOGISMOS-B pre-processing does not 

aim to achieve perfect or optimal skull-stripping; it merely aims to provide the most suitable 

input to the segmentation stage. This means an overly conservative estimate of the mask: the 

robust LOGISMOS-based segmentation can readily recover from an overly inclusive skull-

strip mask, but it can not recover from a too aggressive strip. Additionally, due to our need 
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for a pre-segmentation, we favor an approach that provides a rough white matter mask in 

addition to the skull-strip mask. Importantly, this emphasizes that we do not propose an 

alternative to just the segmentation component of FreeSurfer but to the entire FreeSurfer 

pipeline. Our results demonstrate that our pipeline as a whole leads to a more accurate 

segmentation than the FreeSurfer pipeline as a whole.

B. Construction of Graph Columns

The choice of method for building a single column of the geometric graph is crucial to the 

successful segmentation of complex objects such as the highly convoluted human cortex and 

is at the core of LOGISMOS-B. For convex surfaces, using equally spaced nodes along the 

surface normal direction offers an adequate solution. For nonconvex surfaces, however, 

these normal lines intersect, potentially leading to a self-intersecting surface segmentation. 

One approach to solve this problem involves the concept of electric lines of force (ELF) 

[29], which are theoretically guaranteed not to intersect each other. However, the 

computation of the ELF direction at any given point requires the computation of distances to 

all vertices, which is computationally prohibitive for dense meshes. In practice, the ELF 

computation can be limited to a local neighborhood, which works well for surfaces of 

limited curvature but no longer offers the theoretical nonself-intersection guarantee that is 

present in the general case. A recent approach [30] uses dynamic particle systems to 

compute layers of sample points around the base graph. While this approach was shown to 

work well for simple shapes, it does not guarantee nonself-intersection in the complex 

setting of the cortical surface.

Bauer et al. [31] propose using gradient vector flows (GVF) to overcome this problem. They 

compute the gradient image of the binary preliminary segmentation to create an initial 

gradient field, which is then “flowed” using the gradient vector flow (GVF) method [32] to 

create a smoothly varying vector field. The integral lines of this vector field are used to build 

the graph columns. While this approach guarantees nonoverlapping columns, the GVF force 

field is known to have difficulties near thin, long structures, which proves troublesome for 

the thin, deep sulcal folds of the human cortex. The gradient vector flow method [32] was 

originally developed to address the issue of poor convergence to boundary concavities in the 

context of snake-based segmentation. This method computes the diffusion of the gradient 

vectors from an initial edge map derived from an input image. The GVF field v͂ is given by 

the equilibrium solution of

(7)

where is the initial edge map and is a regularization parameter that controls the amount of 

smoothing performed by the flow. While GVF performs adequately for creating a smooth 

vector field that captures boundary concavities, it is nonetheless prone to problems near thin, 

elongated structures which tend to get overly smoothed.

For this reason, Xu et al. [22] later introduced the generalized GVF, or GGVF, which allows 

for a spatially varying amount of regularization. This is the variant we are using in 

LOGISMOS-B. Note that in the case of GVF, g(∇f|) = µ is a constant, which leads to 

indiscriminate smoothing everywhere in the image, while h(|∇f|) = |∇f|2 has a strong 
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response near edge locations. As discussed in [22], when two edges are in close proximity, 

GVF tends to smooth between the edges and lose thin features these edges may represent, 

whereas the GGVF formulation leads to reduced smoothing (smaller g) in such regions and 

preserves thin features. This property is crucial in the cortical surface, since the entire 

cortical ribbon presents a dense edge field thanks to the sulcal folds.

Fig. 21 illustrates the different column building strategies. Using the normal directions [Fig. 

21(A), (D), (G)] results in straight paths for the graph columns, which is clearly 

inappropriate for the highly folded cortical surface. The curved paths of ELF [Fig. 21(B), 

(E), (H)] offer substantial improvement over the normal directions. However, they may 

intersect each other after they pass the medial surface of the object, leading to self-

intersecting final segmentations; this can be prevented by forcing them to stop at the medial 

surface, but this may cause them to pile up in certain regions and leave other regions under-

sampled. Additionally, they are dependent on the preliminary segmentation. The proposed 

method based on the GGVF approach [Fig. 21(C), (F), (I)] yields nonoverlapping paths that 

converge to the medial surface while providing more regular coverage of the space.

Our approach offers two significant advantages over existing methods. First, the spatially 

varying smoothing allows the capture of thin long structures more effectively than the 

standard GVF approach. Second, using the gradient field of the grayscale image as the input 

vector field allows for decoupling the graph construction from the preliminary segmentation 

to a large extent. While the base graph is still dependent on the preliminary segmentation, 

the paths of the graph columns become independent of the preliminary segmentation. This is 

crucial for successful recovery from a poor preliminary segmentation. Even if a sulcus is 

entirely missing from the preliminary segmentation, the LOGISMOS stage can, at least in 

theory, fully recover it when using a graph constructed with this approach.

Note that the modications to LOGISMOS are a very signicant extension; without this 

methodological innovation, LOGISMOS performs extremely poorly for cortical 

reconstruction. For example, for the same dataset, using the same parameters but switching 

to ELF-based columns as in the original LOGISMOS framework, the segmentation fails 

frequently, and the signed errors are at the level of 2 mm for some regions. Visual inspection 

of the results also reveals that not only are the surfaces incorrectly placed in many regions, 

they also contain severe topological defects. The (sparse) ELF-based construction can not 

guarantee nonintersecting graph columns in the tightly folded cortex; this makes the 

smoothness and surface separation constraints impossible to enforce (since the columns do 

not satisfy the basic assumptions of ordering). The resulting surfaces therefore often 

intersect each other as well as self-intersect and are simply drawn to strong edges in the 

image regardless of the satisfaction of basic requirements for a good cortical reconstruction. 

In other words, while a multi-surface graph search serves as the underlying mechanism for 

both the original LOGISMOS and the reported LOGISMOS-B methods, the novel graph 

construction aspects presented here are responsible for the difference between a success and 

a failure when applied to the tightly folded GM/WM cortical surfaces imaged by MRI.
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C. Preliminary Segmentation

An important concern is the choice of method for obtaining the preliminary segmentation. 

While the accuracy of this segmentation is not crucial to the final result, its topological 

correctness greatly affects the quality of the resulting mesh. In particular, any holes or 

handles that may be present in the preliminary segmentation lead to “runaway” graph 

columns that typically result in self-intersecting meshes. While it may be possible to remove 

such artifacts in post-processing, it is desirable to prevent them in the first place as much as 

possible, because they may cause inaccurate segmentation in their local neighborhoods. For 

this reason, we constrain the preliminary segmentation to only include the inner boundary of 

the cortex and remove any “holes” such as the subcortical structures. Note that imperfect 

preliminary segmentation of these may potentially lead to the final segmentation leaking 

into the subcortical structures. In addition to the subcortical structures, we also remove any 

artificial holes and handles that may result from inadequate spatial resolution. Our results 

indicate that the final meshes from our segmentations are largely free of intersections, 

except in the vicinity of the brainstem where the GM surface becomes ill-defined.

D. Algorithm Parameters

LOGISMOS-B has relatively few free parameters, and most of the parameters are related to 

the preliminary segmentation. For these, we have found that the default values provided in 

the BRAINS AutoWorkup suite are extremely robust and work well out-of-the-box.

The remaining parameters are with respect to the LOGISMOS segmentation, and have 

intuitive meaning. The number of columns and node spacing determine the level of detail in 

the final segmentations. The column height should be set large enough to ensure the desired 

solution is within the search space. The inter-surface separation constraints can be set based 

on expected range of cortical thickness.

The main parameter of cost function specification is the weight for the gray matter cost 

function. This parameter determines the ratio of the contribution of the first and second 

derivatives. Note that this parameter can be used to slightly move the GM segmentation 

inward or outward by favoring either the first derivative, which has strong response in the 

peak of the T1w intensity edge, or the second derivative, which has strong response inside 

and outside the peak of the first derivative [27].

E. Future Work

Considering the two hemispheres as two mutually interacting objects (with two surfaces 

each, i.e., WM and GM) may improve the behavior of the graph cut near the midsagittal 

plane, potentially increasing accuracy in regions such as the cingulate cortex.

One of the end goals of cortical surface reconstruction algorithms is to provide locally 

accurate measurements of cortical thickness. Expanding LOGISMOS-B to allow such 

analysis remains future work.
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VI. Conclusion

The reported cortical reconstruction algorithm, LOGISMOS-B, is based on probabilistic 

tissue classification, generalized gradient vector flows and the LOGISMOS graph 

segmentation framework. Compared to the current state-of-the-art, LOGISMOS-B offers 

improved anatomic accuracy and dramatically reduced computational requirements.
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Fig. 1. 
Pipeline overview. The pre-processing creates an initial WM surface. This surface, as well 

as the GGVF method and the regional parcellation are combined together to construct a 

graph. LOGISMOS-based segmentation generates the final WM and GM surfaces. Finally, 

the brainstem and cerebellum are removed in post-processing.

Oguz and Sonka Page 17

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
Graph structure. (A) Whole WM surface (white) and the graph nodes (blue spheres). Black 

inset zoomed in (B), and further zoomed in the rest of panels. (C) Intra-column arcs (red) 

and graph nodes (blue). (D) Inter-column arcs (green) and graph nodes (blue).
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Fig. 3. 
Regional parcellation of the cortex for the atlas. Colors denote different ROIs. Left: Lateral 

view. Middle: Medial view. Right: Top view.
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Fig. 4. 
Regional parcellation of the cortex for a typical subject. Colors denote different ROIs. Left: 

Lateral view. Middle: Medial view. Right: Top view. Note that, because the parcellation is 

computed using the pre-segmentation surface, these are WM surfaces (unlike the atlas 

visualization in Fig. 3). Furthermore, note that the pre-segmentation surfaces contain 

brainstem and cerebellum, which are later removed in post-processing.
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Fig. 5. 
Outline of the reconstructed LOGISMOS-B surfaces on a series of horizontal slices for a 

healthy subject. Red: GM surface, yellow: WM surface. Manually picked landmark clusters 

are shown in purple (GM) and blue (WM). CALC: Calcarine sulcus, CING: cingulate, CS: 

central sulcus, PO: parieto-occipital sulcus, SF: superior-frontal sulcus, ST: superior-

temporal sulcus, SYL: Sylvian fissure.
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Fig. 6. 
Outline of the reconstructed FreeSurfer surfaces on a series of horizontal slices for a healthy 

subject. Red: GM surface, yellow: WM surface. Manually picked landmark clusters are 

shown in purple (GM) and blue (WM). CALC: Calcarine sulcus, CING: cingulate, CS: 

central sulcus, PO: parieto-occipital sulcus, SF: superior-frontal sulcus, ST: superior-

temporal sulcus, SYL: Sylvian fissure.
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Fig. 7. 
Outline of the reconstructed LOGISMOS-B surfaces on a series of horizontal slices for an 

MS patient. Red: GM surface, yellow: WM surface. Manually picked landmark clusters are 

shown in purple (GM) and blue (WM). CALC: Calcarine sulcus, CING: cingulate, CS: 

central sulcus, PO: parieto-occipital sulcus, SF: superior-frontal sulcus, ST: superior-

temporal sulcus, SYL: Sylvian fissure.
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Fig. 8. 
Outline of the reconstructed FreeSurfer surfaces on a series of horizontal slices for an MS 

patient. Red: GM surface, yellow: WM surface. Manually picked landmark clusters are 

shown in purple (GM) and blue (WM). CALC: Calcarine sulcus, CING: cingulate, CS: 

central sulcus, PO: parieto-occipital sulcus, SF: superior-frontal sulcus, ST: superior-

temporal sulcus, SYL: Sylvian fissure.
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Fig. 9. 
Reconstructed white matter surfaces for 10 subjects with LOGISMOS-B, top view. Top 

row: Healthy controls. Bottom row: MS patients.
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Fig. 10. 
Reconstructed white matter surfaces for 10 subjects with FreeSurfer, top view. Top row: 

Healthy controls. Bottom row: MS patients.
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Fig. 11. 
Reconstructed white matter surfaces for 10 subjects with LOGISMOS-B, side view. Top 

row: Healthy controls. Bottom row: MS patients.
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Fig. 12. 
Reconstructed white matter surfaces for 10 subjects with FreeSurfer, side view. Top row: 

Healthy controls. Bottom row: MS patients.
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Fig. 13. 
Reconstructed white matter surfaces for 10 subjects with LOGISMOS-B, medial view. Top 

row: Healthy controls. Bottom row: MS patients.
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Fig. 14. 
Reconstructed white matter surfaces for 10 subjects with FreeSurfer, medial view. Top row: 

Healthy controls. Bottom row: MS patients.

Oguz and Sonka Page 30

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 15. 
Reconstructed gray matter surfaces for 10 subjects with LOGISMOS-B, top view. Top row: 

Healthy controls. Bottom row: MS patients.
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Fig. 16. 
Reconstructed gray matter surfaces for 10 subjects with FreeSurfer, top view. Top row: 

Healthy controls. Bottom row: MS patients.
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Fig. 17. 
Reconstructed gray matter surfaces for 10 subjects with LOGISMOS-B, side view. Top row: 

Healthy controls. Bottom row: MS patients.
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Fig. 18. 
Reconstructed gray matter surfaces for 10 subjects with FreeSurfer, side view. Top row: 

Healthy controls. Bottom row: MS patients.
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Fig. 19. 
Reconstructed gray matter surfaces for 10 subjects with LOGISMOS-B, medial view. Top 

row: Healthy controls. Bottom row: MS patients.
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Fig. 20. 
Reconstructed gray matter surfaces for 10 subjects with FreeSurfer, medial view. Top row: 

Healthy controls. Bottom row: MS patients.
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Fig. 21. 
Construction of graph columns. (A)–(C) Whole brain; (D)–(F) zoomed in view; (G)–(I) 

zoomed in view with cross-sectional clipping for illustrating the interior of the surface. 

Outside of the WM surface is shown in white, the inside in green, the graph columns in red.
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TABLE I

Mean and Standard Deviation of Unsigned Distance Between Manual Landmarks and Reconstructed Cortical 

Surfaces.

Avg. unsigned error (mm) LOGISMOS-B FreeSurfer Hybrid

White matter *0.575 ± 0.255 0.611 ± 0.302 0.627 ± 0.332

Gray matter 0.684 ± 0.300 0.703 ± 0.331 0.730 ± 0.349

Asterisks Indicate Statistically Significant Differences. Statistical Comparison Only Between LOGISMOS-B and FreeSurfer
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TABLE II

Mean and Standard Deviation of Signed Distance Between Manual Landmarks and Reconstructed Cortical 

Surfaces.

Avg. signed error (mm) LOGISMOS-B FreeSurfer Hybrid

White matter *0.084 ± 0.436 0.263 ± 0.452 0.271 ± 0.478

Gray matter *0.008 ± 0.502 −0.167 ± 0.556 −0.212 ± 0.579

Asterisks Indicate Statistically Significant Differences. Statistical Comparison Only Between LOGISMOS-B and FreeSurfer
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TABLE V

Computation Times for FreeSurfer and LOGISMOS-B Cortical Reconstruction.

FreeSurfer LOGISMOS-B

Average run time (hh:mm) 9:58 *2:55

Asterisks Indicate Statistically Significant Differences
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TABLE VI

Mean and Standard Deviation of Distance Between Manual Landmarks and Reconstructed Cortical Surfaces, 

for Healthy Subjects and MS Patients.

Avg. error (mm)
Healthy MS

LOGISMOS-B FreeSurfer LOGISMOS-B FreeSurfer

Siqned WM error 0.122 ± 0.431 0.161 ± 0.485 *0.046 ± 0.439 0.366 ± 0.392

Signed GM error −0.072 ± 0.604 0.053 ± 0.478 *0.088 ± 0.358 −0.388 ± 0.542

Unsigned WM error *0.580 ± 0.255 0.675 ± 0.250 0.571 ± 0.256 0.546 ± 0.336

Unsigned GM error 0.777 ± 0.348 *0.644 ± 0.234 *0.592 ± 0.206 0.762 ± 0.397

Asterisks Indicate Statistically Significant Differences Between LOGISMOS-B and FreeSurfer
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