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Abstract

With the advance of next-generation sequencing technologies in recent years, rare genetic variant 

data have now become available for genetic epidemiology studies. For family samples however, 

only a few statistical methods for association analysis of rare genetic variants have been 

developed. Rare variant approaches are of great interest particularly for family data because 

samples enriched for trait-relevant variants can be ascertained and rare variants are putatively 

enriched through segregation. To facilitate the evaluation of existing and new rare variant testing 

approaches for analyzing family data, Genetic Analysis Workshop 18 (GAW18) provided 

genotype and next-generation sequencing data and longitudinal blood pressure traits from 

extended pedigrees of Mexican-American families from the San Antonio Family Study. Our 

GAW18 group members analyzed real and simulated phenotype data from GAW18 by using 

generalized linear mixed-effects models or principal components to adjust for familial correlation 

or by testing binary traits using a correction factor for familial effects. With one exception, 

approaches dealt with the extended pedigrees in their original state using information based on the 

kinship matrix or alternative genetic similarity measures. For simulated data, our group 

demonstrated that the family-based kernel machine score test is superior in power to family-based 

single-marker or burden tests, except in a few specific scenarios. For real data, three contributions 

identified significant associations. They substantially reduced the number of tests before 

performing the association analysis. We conclude from our real data analyses that further 

development of strategies for targeted testing or more focused screening of genetic variants is 

strongly desirable.
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Introduction

Although genome-wide association studies (GWAS) of complex human diseases and 

quantitative traits have identified large numbers of associated genetic markers, these 

markers explain only a small proportion of the total heritability for most traits. Rare genetic 

variants may account for some of the unexplained heritability [Eichler et al., 2010], but 

single-marker tests, which are widely used in traditional GWAS of common variants, do not 

have enough power to analyze rare variants. To overcome this difficulty, in recent years 

investigators have proposed many statistical approaches for rare variant analysis [Han and 

Pan, 2010; Hoffmann et al., 2010; Lee et al., 2012; Li and Leal, 2008; Lin and Tang, 2011; 

Madsen and Browning, 2009; Morgenthaler and Thilly, 2007; Morris and Zeggini, 2010; 

Neale et al., 2011; Pan, 2009; Price et al., 2010a; Wu et al., 2011]. However, these 

approaches were developed for association analysis in unrelated individuals.

Family-based study designs have long been used in association studies of diseases and 

quantitative traits [Falk and Rubinstein, 1987; Ott, 1989; Spielman et al., 1993; Terwilliger 

and Ott, 1992]. One way to controll for familial correlation is the family-based association 

test (FBAT) [Rabinowitz and Laird, 2000]. However, this approach requires known pedigree 

information, and offspring with homozygous parents (e.g., because of low minor allele 

frequency) are not useful for the test statistic. Alternatively, linear or generalized linear 

mixed effects models [Almasy and Blangero, 1998; Amos, 1994; Pankratz et al., 2005; 

Breslow and Clayton, 1993] and generalized estimating equations [Liang and Zeger, 1986] 

can be used to account for relatedness.

Family studies have several advantages over studies of independent subjects. First, family 

structure is useful for imputing missing genotypes [Chen and Abecasis, 2007], which makes 

them attractive when the genotyping or sequencing budget is limited. Second, higher 

statistical power can be attained by ascertaining families that are enriched with trait-related 

variants. Segregation within families can also yield more observations of such rare variants, 

compared to the general population. Third, family-based designs can immediately determine 

whether a particular variant is segregating with disease status. For these reasons, family 

studies have become more popular in recent years.

The organizers of Genetic Analysis Workshop 18 (GAW18) provided genotype and whole-

genome sequencing (WGS) data and longitudinal blood pressure traits at four time points 

from 20 extended Mexican-American families with 21 – 76 family members participating in 

the San Antonio Family Study. Almasy et al. [2014] provide a detailed description of the 

data. Briefly, there are three sets of genetic data for 959 subjects. The first data set (gwas) 

contains genotypes for a tag single-nucleotide polymorphism (SNP) panel assayed using 

different versions of Illumina Infinium Beadchips. The second data set (geno) contains 

genotypes for a much denser SNP panel (whole-genome sequence for 464 subjects and 

Chen et al. Page 2

Genet Epidemiol. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



imputed most probable genotypes for the sequence of all remaining subjects). The third data 

set (dose) contains dosages for the whole-genome sequence (either original for available 

genotypes or imputed) and is the only genetic data without missing values. All genetic data 

contain only odd-numbered chromosomes. Examination year, age, hypertension (HTN), 

systolic blood pressure (SBP), diastolic blood pressure (DBP), anti-hypertensive medication 

and smoking status are provided for 939 subjects at four time points, with missing values. 

GAW18 also provided 200 simulation replicates, in which age, DBP, SBP, HTN, anti-

hypertensive medication, and smoking status are reported for 849 subjects at three time 

points, with no missing values. In addition, a quantitative trait Q1 is simulated under the null 

hypothesis of no genetic association.

Our GAW18 working group on family-based tests of association for rare variants using real 

and simulated data explored and evaluated rare and common variant methods for family 

data. All group contributors analyzed the real phenotype data (Table I), with some also 

performing additional analyses of the simulated data. Out of nine contributions, seven 

analyzed at least one quantitative trait and three analyzed the binary trait HTN. Most 

contributions used the dose genotypes and evaluated multi-marker approaches.

A summary of statistical tests performed in our working group is shown in Table II. Balliu et 

al. [2014], He and Pitkäniemi [2014], Li et al. [2014], Liu et al. [2014] and Malzahn et al. 

[2014] developed new methods or extended existing ones; the other contributors applied 

existing methods for family data. He and Pitkäniemi [2014] constructed their test statistic for 

nuclear families. All other approaches dealt with the extended pedigrees in their original 

state using the kinship matrix or another measure of genetic similarity. The applied 

statistical methods can generally be classified into two categories: testing binary traits with a 

correction factor for familial effects (as proposed by Zhu and Xiong [2012]), or adjusting for 

familial correlation in binary and quantitative traits by using the (generalized) linear mixed 

effects model framework. We describe the two categories in more detail in the Section 

Methods.

Methods

Testing binary traits with a correction factor for familial effects

Recently, Zhu and Xiong [2012] extended several test statistics for binary traits to 

accommodate families (among them are the generalized T2 test [Xiong et al., 2002] and the 

combined multivariate and collapsing (CMC) test [Li and Leal, 2008]). They showed that 

familial effects on these test statistics can be written as a correction factor

(1)

where n is the sample size, Dr is a vector of size n indicating the disease status,  is 

the total number of cases, 1 is a vector of size n with all 1′s, and Φ is the kinship matrix. 

Hainline et al. [2014] compared performances of Zhu and Xiong's [2012] family-based 
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generalized T2 test and the CMC test on the binary outcome HTN in real data. Originally, 

these tests did not allow adjusting for covariates.

Liu et al. [2014] extended the T2 test to adjust for longitudinal covariates, and combined it 

with various strategies of rare variant collapsing, analyzing the binary outcome HTN in the 

real data. P-values were obtained by permuting genotypes across all study subjects and 

across all families.

Generalized linear mixed-effects models

All other approaches used by members of our working group can be formulated in the 

generalized linear mixed-effects model framework. The basic model is

(2)

where y is the phenotype, X are the covariates, G are the (weighted) genotypes, and δ is the 

familial random effect. We are interested in testing H0: γ = 0.

Three contributions considered extensions of this general framework: Zhang and Pan [2014] 

compared familial adjustment by random effects , in contrast to an 

adjustment by fixed effects of the most prominent principal components (PC's) of M. M was 

either the identity-by-state (IBS) matrix or the genetic covariance matrix of the sample. He 

and Pitkäniemi [2014] decomposed the genotypes into family expected scores and 

deviations, treated collapsed family expected scores as X and deviations as G, and performed 

the test using a Bayesian approach. Their model was specifically tailored to rare variants 

with minor allele frequency (MAF) less than 1% to facilitate computational efficiency. 

Balliu et al. [2014] used a two-stage approach; in the first stage they used a mixed-effects 

model with a general random effects structure to capture the correlation between the SNPs 

in a region, and in the second stage they tested for region specific effects by using the 

empirical Bayes estimates of the random effects of the first stage as covariates in the model 

for the longitudinal phenotype.

Zhang and Pan [2014] analyzed both binary and quantitative traits; all other mixed-effects 

model approaches analyzed only quantitative traits. Family-based single-marker or burden 

tests and multi-marker tests were performed. In the next subsections we briefly describe 

these methods.

Single marker tests and burden tests (collapsing)—In the generalized linear 

mixed-effects model given in Eq. (2), when G is either a single marker, or a variant sum 

score (collapsed variant burden, which is the weighted sum of multiple genotypes in a gene 

or a predefined genomic region), the fixed effect test H0: γ = 0 becomes a univariate test of 

fixed effects in a mixed-effects model. Single-marker tests have been widely used in GWAS 

for common variants. For rare variants single-marker tests are not likely to be powerful 

because of small genotype subgroup sizes. Burden tests on variant sum scores ameliorate 

this issue. They often restrict the model space because of an a priori choice of variant 

weights. Burden tests reduce the number of tests per region and are widely used. Tests on 
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the fixed effects in linear mixed effects models are implemented in various software 

packages (e.g., kinship in R [Pankratz et al., 2005], SOLAR [Almasy and Blangero, 1998], 

EMMAX [Kang et al., 2010], and GEMMA [Zhou and Stephens, 2012]).

Kernel machine score tests—Kernel machine score tests provide a joint test over 

marker sets without collapsing the marker information. These tests were initially proposed to 

analyze genetic pathway data [Liu et al., 2007; Liu et al., 2008] and to analyze SNP sets of 

quantitative and binary traits [Kwee et al., 2008; Wu et al. 2010]. In the context of rare 

variant analyses, Wu et al. [2011] proposed the sequence kernel association test (SKAT) and 

demonstrated that it is a flexible, computationally easy and powerful approach in various 

scenarios. Recently, the approach was extended to family samples by several independent 

contributions [Schifano et al., 2012; Chen et al., 2013; Malzahn et al., 2014; Li et al., 2014], 

the last two being GAW18 contributions from our working group.

Using the linear kernel, in Eq. (2), we assume genotypic effects γ ∼ N(0, τW) where τ is the 

variance component parameter and W is either the identity matrix or a diagonal matrix of 

pre-specified marker weights. The hypothesis H0: γ = 0 is equivalent to testing the variance 

parameter H0: τ = 0. We first fit the null model

(3)

and get the covariance matrix estimate

(4)

where  and  are variance parameter estimates from the null model corresponding to the 

random error and the familial correlation, respectively, and Φ is the kinship matrix, either 

calculated from family structures or estimated from genotype data. The fixed-effect 

estimates for covariates are

(5)

and the test statistic is

(6)

Under the null hypothesis, Q follows a weighted sum of independent chi-square distributions 

with 1 degree of freedom, with weights equal to the eigenvalues of

(7)

where

Chen et al. Page 5

Genet Epidemiol. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(8)

In GAW18, Malzahn et al. [2014] estimated type I error, compared power for the WGS in 

contrast to using only GWAS SNPs and performed candidate gene analysis in the real data 

set with this method. Moreover, performance of the family-based kernel machine score test 

was compared with family-based versions of single marker tests by Li et al. [2014], and a 

burden test (collapsing) by Chen et al. [2014].

Adjustment for covariates and relatedness

Hainline et al. [2014] used methods that do not adjust for any covariates, but all other 

contributions adjusted for age, and some also adjusted for sex, smoking status or both. 

Malzahn et al. [2014] also adjusted for the interaction between age and sex.

Except for He and Pitkäniemi [2014], all other contributions used the kinship matrix (or 

another measure of genetic similarity), either in mixed effects models or in the binary trait 

tests proposed by Zhu and Xiong [2012]. Six research groups used the exact kinship matrix 

from the family structures, three contributions used estimated kinship from the genotype 

data, and Hainline et al. [2014] compared both. Zhang and Pan [2014] compared the use of 

common variants or rare variants for estimation of genetic correlations expressed by either 

the genotypic covariance matrix or the IBS matrix.

Anti-hypertensive medication and treatment of repeated measures

Anti-hypertensive medication could affect the quantitative traits SBP and DBP. In our 

working group five contributions did not adjust for medication and three contributions 

excluded subjects on medication. Liu et al. [2014] included anti-hypertensive medication in 

their model as a longitudinal covariate.

Repeated measures were treated differently in our working group. Balliu et al. [2014] and 

Liu et al. [2014] performed longitudinal data analysis. Five research groups analyzed only 

the baseline data, defined as either the first examination or the first non-missing examination 

(see Table 1). Hainline et al. [2014] used an indicator for whether a subject had ever had 

hypertension at any examination as their outcome of interest, and He and Pitkäniemi [2014] 

took the maximum log-transformed SBP at any examination.

Selection of genetic variants or genomic regions

Five research groups analyzed both rare and common variants [Balliu et al., 2014; Hainline 

et al., 2014; Li et al., 2014; Liu et al., 2014; Malzahn et al., 2014]. Chen et al. [2014] and He 

and Pitkäniemi [2014] focused on rare variants with a MAF less than 5% or 1%. Lacey et al. 

[2014] and Zhang and Pan [2014] focused on common variants with a MAF greater than 1% 

or 5% and performed only single-marker tests.

For analyses of the real data, five research groups performed genome-wide analyses [Chen 

et al., 2014; Hainline et al., 2014; He and Pitkäniemi, 2014; Lacey et al., 2014; Li et al., 

2014]. Lacey et al. [2014] compared genome-wide analyses with exome-wide analyses. 

Three contributions analyzed only chromosome 3 or selected regions on chromosome 3, 
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selecting regions with an excess of identity-by-descent (IBD) sharing of common variants 

[Browning and Thompson, 2012] in HTN cases compared to control subjects before 

quantitative trait analysis of these regions [Balliu et al., 2014], or restricting the analysis to 

candidate genes with previous association reports [Malzahn et al., 2014]. Zhang and Pan 

[2014] randomly selected 6,228 common variants for analysis.

Evaluation of type I error and power

Three research groups evaluated both type I error based on 200 replicates of the simulated 

trait Q1 and power using genes, including MAP4, the most significant gene in the simulated 

data [Chen et al., 2014; Li et al., 2014; Malzahn et al., 2014] (see Table 2). Hainline et al. 

[2014] used HTN only in the first simulation replicate to evaluate type I error and power. 

Type I error rates were calculated using 6,454 genes with no causal variants, and power was 

determined using 171 genes with at least 1 causal variant. Liu et al. [2014] used all 

simulation replicates of HTN but only genotypes on chromosome 3. He and Pitkäniemi 

[2014] simulated segregation of rare causal variants with MAF less than 1% (genotype and 

phenotype data) to evaluate type I error and power. Zhang and Pan [2013] investigated only 

the type I error, using 6,228 randomly selected common variants.

Results

Real data analysis

Results from the real data analysis are summarized in Table 3. Most contributors did not 

find significant results after correcting for multiple testing. None of the significant findings 

were obtained consistently by more than a single approach. This is expected because 

different phenotypes were analyzed, different strategies were used to greatly reduce the 

number of tests in advance, and, most important, different genetic variants were studied. He 

and Pitkäniemi [2014] analyzed rare variants (MAF<1%) and tested association of such 

variants within genes with log-transformed SBP. Balliu et al. [2014] used common variants 

(MAF>5%) to determine regions with excess IBD sharing on chromosome 3 and tested 

association of these regions with DBP. Lacey et al. [2014] performed single marker tests on 

exonic SNPs for SBP. Malzahn et al. [2014] tested association of candidate genes on 

chromosome 3 with rank-normalized SBP. Interestingly, the candidate genes SLC4A7 and 

ULK4 (examined by Malzahn et al. [2014] as a follow-up to previous association reports) 

are located close to regions with an excess of IBD sharing in GAW18 HTN cases [Balliu et 

al., 2014] (see Table 3 for details). SLC4A7 and ULK4 were not significantly associated in 

the GAW18 data. However, using a denser SNP panel (WGS instead of GWAS variants) 

lowered p-values for rare SLC4A7 variants with MAF less than or equal to 5% [Malzahn et 

al., 2014].

Malzahn et al. [2014] compared the performance of a multimarker test (family extension of 

the kernel machine score test) when applied to WGS and GWAS SNP panels. This altered 

the number of jointly tested SNPs within gene regions, whereas always the same subjects 

were analyzed and the same types of tests were performed. Sets of common and rare SNPs 

should be tested separately or with unequal weights. Compared to GWAS, WGS data were 

found to improve the power especially for joint tests of rare variants (MAF<1%) in the 
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simulated GAW18 data (see also the real data result for SLC4A7). When more SNPs than 

subjects are available in a region of interest, Malzahn et al. [2014] suggested splitting the 

large SNP sets and jointly testing only fewer SNPs than subjects.

Lacey et al. [2014] compared the WGS and GWAS SNP panels with three exome 

sequencing panels (mimicked by restricting the analysis to targeted regions designed by the 

exome sequencing platforms). At a false discovery rate of 5%, results from both the GWAS 

and the WGS data did not pass multiple-testing adjusted significance thresholds, whereas 

exome sequencing data had a much smaller multiple-testing burden and found that variants 

at positions 11022564 and 11022230 on chromosome 7 were significantly associated with 

SBP consistently in all three exome platforms. For blood pressure, Lacey et al. [2014] 

concluded that exome sequencing was a more cost-effective way to capture trait-associated 

variants.

Zhang and Pan [2014] found that the top PCs from the genetic covariance matrix controlled 

the type I error rates as effectively as the top PCs of the IBS matrix, provided that both 

matrices were estimated from common variants. However, using the covariance matrix was 

less effective than using the IBS matrix when the matrices were constructed from rare 

variants. They also demonstrated that in the GAW18 data PC adjustment gave equally good 

type I error control compared to adjustment for random familial effects. This finding is 

different from previous studies, which favored the random effects adjustment over PCs 

[Price et al., 2010b].

Simulation results

Members of our working group found correct type I error for the kernel machine score tests 

with familial adjustment in simulated data. Power analyses on association tests with SBP in 

simulated data are summarized in Table 4. The performance of family-based versions of the 

kernel machine score tests was compared to the performance of burden tests [Chen et al., 

2014] and single-marker tests [Li et al., 2014]. When the proportion of causal variants was 

large and all variants had the same direction of effects (as for all nonsynonymous coding 

variants of MAP4), burden tests were likely to outperform kernel machine score tests. This is 

consistent with the conclusions by Liu et al. [2013], who classified burden tests as length 

tests and SKAT as a joint test of lengths and angles from a geometric point of view. On the 

other hand, single-marker tests can be more powerful than kernel machine score tests when 

the association in a region is driven by one dominating causal variant (as in LEPR). For most 

other scenarios however, kernel machine score tests have much higher power.

Hainline et al. [2014] found correct type I error for the T2 test and CMC approach with the 

familial correction factor proposed by Zhu and Xiong [2012], however the power was even 

lower than the nominal level. In contrast, Liu et al. [2014] found inflated type I errors of 

these tests on unassociated SNPs. Correct type I error, however, was seen for this set of 

methods with permutation testing. When Liu et al. extended these methods to adjust for 

longitudinal covariates, they found improved power in 93 out of 129 windows on 

chromosome 3. Their test extension was less powerful than Zhu and Xiong's tests in only 15 

windows.
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By comparing results using either estimated kinship from genotypes or exact kinship from 

pedigrees, Hainline et al. [2014] found high correlation of resulting p-values but tests were 

more conservative on average when using exact kinship from pedigrees.

Discussion

Adjustment for familial correlation can be accomplished by using family-based tests, 

principal components analysis, or mixed-effects models. Existing methods for association 

analysis in unrelated individuals, such as single-marker tests, burden tests, and kernel 

machine score tests, can be extended to related individuals based on the linear mixed models 

framework.

It has long been debated whether the exact kinship from pedigree information or the 

estimated kinship from genotype data should be used to account for correlation [Astle and 

Balding, 2009]. The exact kinship matrix is often easier to compute but does not capture 

cryptic relatedness, a problem often encountered when samples from isolated populations or 

with inbreeding are analyzed. In contrast, estimated kinship captures more information and 

can also be used when pedigree information is not available. The exact kinship matrix might 

be preferred, however, when pedigree information is available but only a few genetic 

markers are genotyped (e.g., in candidate gene studies, targeted sequencing studies, or fine 

mapping studies). Hainline et al. [2014] showed that use of the exact kinship matrix yields 

slightly more conservative results than using the estimated kinship matrix in the GAW18 

data.

The longitudinal observations in GAW18 were used in only two contributions in our 

working group. In the mixed effects model context, it is straightforward to incorporate 

repeated measurements and familial correlation as separate random effects and these models 

can also accommodate missing data resulting from loss to follow up. However, several 

methods in our contributions depend on complete data, and in the real GAW18 data about 

33% of the original sample was lost to follow-up at the third examination (about 71% were 

lost to follow-up at the fourth examination). This necessitates future method development to 

accommodate missing data.

As sequencing costs become lower, more related individuals in family-based studies will be 

sequenced and more rare variants will likely be discovered. How to best analyze the data 

remains a topic of active research in this field, and there is no simple answer yet. A key to 

the success of real data analyses in our working group was strategies to reduce the number 

of association tests and tested regions. In this respect, screening for IBD sharing [Browning 

and Thompson, 2012] was an attractive strategy successfully explored in our group. 

Interestingly it highlighted regions close to previous genome-wide association reports and 

also novel regions, some of which formed regional clusters in close proximity to each other. 

However, whether trait-related variants are located exclusively in genomic areas with certain 

putative functions may well depend on the considered trait (see, e.g., [Freedman et al., 

2011]).
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Our GAW18 group contributed one novel rare variants approach [He and Pitkäniemi, 2014]. 

This method is restricted to variants with MAF less than 1% (for computational efficiency of 

Bayesian estimates), is family-based in an FBAT-like manner (considering nuclear 

families), and allows for covariate adjustment. However, statistical significance is quantified 

in terms of Bayes factors instead of p-values.

The binary trait analysis with a familial correction factor according to the method of Zhu 

and Xiong [2012] appears to have problems on the extended GAW18 pedigrees in terms of 

type I error and power. Members of our working group adjusted for covariates, but that was 

computationally tedious. The family-based version of the kernel machine score test can be 

straightforwardly extended to binary traits and allows for covariate adjustment and for 

partial collapsing of rare variants in a simple manner.
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