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Abstract In this paper, an efficient procedure for ripeness
detection of watermelon was presented. A nondestructivemeth-
od was used based on vibration response to determine the
internal quality of watermelon. The responses of samples to
vibration excitation were optically recorded by a Laser Doppler
(LD) vibrometer. Vibration data was collected from water-
melons of two qualities, namely, ripe and unripe. Vibration
signals were transformed from time-domain to frequency-
domain by fast Fourier transform (FFT). Twenty nine features
were extracted from the FFT amplitude and phase angle of the
vibration signals. K-nearest neighbor (KNN) analysis was
applied as a classifier in decision-making stage. The experi-
mental results showed that the usage of the FFT amplitude of
the vibration signals gave the maximum classification accura-
cy. This method allowed identification at a 95.0 % level of
efficiency. Hence, the proposed method can reliably detect
watermelon ripeness.
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Introduction

Nondestructive quality assessment of watermelon has been a
challenge for its customers since it has different structure
from the other fruits. The subjective method is usually based
on the sound caused by slap, but is subject to errors. This
approach requires individuals with experience (Stone et al.
1996). Researchers have studied different objective methods
to evaluate the internal quality of watermelons such as
acoustic and dynamic technology (Armstrong et al. 1997;
Diezma-Iglesias et al. 2002; Jamal et al. 2005; Stone et al.
1996; Yamamoto et al. 1980), electrical and magnetic tech-
nology (Kato 1997; Nelson et al. 2007), X-ray and computed
tomography (Tollner 1993) and near infrared (NIR) spectros-
copy (Flores et al. 2008; Ito et al. 2002). A comprehensive
overview of the nondestructive testing for determining inter-
nal quality of watermelons was provided by Sun et al.
(2010).

In this paper, Laser Doppler Vibrometry (LDV) technol-
ogy was used to achieve the vibration spectrum of water-
melon. Investigations have been performed to apply the
LDV for evaluating texture and ripeness of some fruits such
as Oveisi et al. (2012). The samples were excited and the
vibration responses of the fruits were detected. Some re-
searchers used phase shift between input and output vibra-
tion signals in predetermined frequencies. They found re-
lationship between phase shifts at predetermined frequen-
cies and some quality indices of fruit (Muramatsu et al.
1999). Resonant frequencies were also considered as func-
tion of maturity (Landahl and Terry 2012; Muramatsu et al.
2000). Elasticity index was extracted from frequency re-
sponse obtained by LDV. This factor was calculated using
the second resonance frequency and the mass of the fruit. It
showed good correlation with some properties (Terasaki
et al. 2001; Motomura et al. 2004; Terasaki et al. 2006;
Taniwaki et al. 2009a, b, c). Partial least square analysis of
LDV spectrum data was carried out to evaluate some
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physical properties and post harvest variables (Bengtsson
et al. 2003; Sakurai et al. 2005).

The data mining process for feature extraction is an approach
for selecting the most suitable information. Mollazade et al.
(2012) applied this technique in quality grading of raisins.
Beltrán et al. (2006) used various feature extraction methods
such as discrete Fourier transform together with different clas-
sification methods for Chilean wine classification. The best
classification accuracy was reached (94.77 %) by using a prob-
abilistic neural network (PNN) classifier. Omid et al. (2009)
presented an intelligent system for sorting pistachio nut using
feature extraction and selection, and classification techniques.

FFTand principal component analysis (PCA) for feature extrac-
tion and reduction were used. Multilayer Feed forward Neural
Network (MFNN) was applied to classify four native Iranian
pistachio nut varieties. The best accuracy rate was 97.5 %.

The K-nearest neighbor (KNN) decision rule has been
a ubiquitous classification method with good scalability.
The KNN classifier is a simple non-parametric method for
classification used for pattern classification applications.
Choi et al. (2007) proposed a novel classifier fusion
method using support vector machine (SVM), PNN and
KNN in fault detection of automotive systems. Sone et al.
(2012) applied PCA and KNN techniques to classify the
fillets of fresh Atlantic salmon based on hyperspectral
imaging. Chica and Campoy (2012) presented an appro-
priate procedure for discernment of bee pollen loads using
computer vision and classification techniques. In this,
KNN obtained a satisfactory accuracy rate in decision-
making stage.

There are three criteria for evaluating the ability of a
classifier in recognition and identification applications.
These criteria are defined as (Lu et al. 2004):

& Sensitivity: number of true positive decisions/number of
actually positive cases.

& Specificity: number of true negative decisions/number of
actually negative cases.

& Classification accuracy (or accuracy rate): number of
correct decisions/total number of cases

In this research, the three criteria were used for evaluating
the proposed procedure.

The present work focused on determining the vibration
spectrums of watermelon by means of laser Doppler vibro-
metery, establishing a relation between the extracted fea-
tures from the frequency response and fruit ripeness and
identifying the ripe and unripe watermelons by developing

Fig. 1 Flow chart of watermelon ripeness detection system
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a KNN classifier. The step by step procedure is given as a
flow chart in Fig. 1.

Material and methods

Vibrations spectra detection

In this study, forty three watermelons (Crimson sweet) were
selected for the experiments. It is a nearly round fruit with
bright green and medium dark stripes.

The schematic diagram of the experimental system is
shown in Fig. 2. A fruit sample was placed on an electrody-
namics shaker (LSD V721, Low Force Shaker, B&K Co.
Denmark) and excited with random wave signals: frequen-
cies from 0 Hz to 1,000 Hz. These input signals were gener-
ated and amplified using a computer and amplifier respec-
tively. While the excitation signal was measured by an ac-
celerometer (Model Endevco 4397) installed on the vibra-
tional plate, the response of the fruit was optically sensed
using a Laser Doppler Vibrometer (Model Ometron
VH1000-D, Denmark).

The laser beam from the LD vibrometer was directed to the
upper surface of the sample and the vibrations were measured
from the Doppler shift of the reflected beam frequency caused
by the surface motion. Using fast Fourier transform (FFT), the
amplitude and the phase shift between the signals were
extracted for entire frequency range. All analyses were
performed using Matlab version 7.6.0 software.

Sensory evaluation

After determining the frequency response of the samples, the
watermelons were cut and sensory evaluated. Panelists grad-
ed the fruits in two class of ripeness. Twenty four evaluations
were done on each fruit based on overall acceptability. The
ripeness index as consumers’ opinion was scored on unripe
and ripe watermelons.

Feature extraction

Frequency-domain signals contain a large set of data for each
sample, therefore some statistical approaches are used to reduce
the dimensionality of feature vectors (Beltrán et al. 2006). In this
study, twenty nine features were extracted from the amplitude
spectrums as well as the phase spectrums separately such as
mean, standard deviation, kurtosis and skewness. Mathematical
formulas of some important features are shown in Table 1.

Review of KNN

When full knowledge of the underlying probabilities of a
class of samples is available, Bayesian theory gives optimal
new sample classification rates. In cases where this informa-
tion is not present, many algorithms make use of the simi-
larity among samples as a means of classification. The
nearest neighbor decision rule has often been used in these
pattern recognition problems (Song et al. 2007). Despite the
simplicity of the algorithm, it performs very well, and is an
important benchmark method. KNN rule holds the position
of training samples and their classes. When a decision about
new incoming data is needed, the distance between the query
data and training samples is being calculated. Based on the
defined threshold for the rule (it is the K number), K samples
with least distances are selected and the class with more
samples inbound is the result (Duda et al. 2001). For more
details, see (Chica and Campoy 2012; Shahabi et al. 2003;

Table 1 Some features and their
formulas used to feed classifier Feature description Formula Feature description Formula

Mean value ∑n
i¼1xi
n

Third central moment ∑n
i¼1 xi−xð Þ3

n

Standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n∑

n
i¼1 xi−xð Þ2

q

Forth central moment
∑n

i¼1 xi−xð Þ4
n

Root mean square

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 xið Þ2

n

r

Kurtosis
1
n∑

n
i¼1 xi−xð Þ4

1
n∑

n
i¼1 xi−xð Þ2

� �2

Skewness
1
n∑

n
i¼1 xi−xð Þ3

1
n∑

n
i¼1 xi−xð Þ2

� �3=2 Peak value max|xi|

Table 2 Description of watermelon data set

Watermelon
condition

The number of
training samples

The number of
testing samples

Label of
classification

Ripe 12 14 1

Unripe 12 5 2
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Song et al. 2007). In the present study, the K values were
considered between 1 and 10, with a step size of 1.

Results and discussion

In order to evaluate the proposed method, experimental
analyses on watermelon ripeness detection were carried
out. The vibration signals were collected from lots of water-
melon. The data set comprised totally 43 data samples, and
each data sample consisted of 1600 data points. Among these

43 data samples were selected 24 samples as training data,
and the rest 19 as testing data. The detailed description of the
data set is shown in Table 2.

Figures 3 and 4 show a sample of the amplitude and phase
spectrum diagram for ripe and unripe watermelons. It can be
seen that it is difficult to distinguish among the two internal
qualities of the watermelons from these diagrams by obser-
vation and human decision, so certain intelligent techniques
is desired for extracting useful information about ripeness.

By applying the twenty nine features over both amplitude
and phase spectrums, feature vectors were established. The
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Fig. 3 FFT amplitude diagram
of the vibration signals for two
watermelon quality: a ripe b
unripe
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diagram of the vibration signals
for two watermelon quality: a
ripe b unripe
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feature vectors were employed to feed KNN classifier for
ripeness detection. The three statistical features extracted
from the amplitude and phase spectrums were plotted in
Figs. 5 and 6 respectively.

Referring to Fig. 6, it can be found that the two classes are
poorly discriminated. The data feature parameters have con-
fusion structure, slightly overlapping and cannot be clustered
well each watermelon quality. Therefore, this data structure
should not be used as inputs of the classifier because it will
degrade the performance of the classifier (Widodo and Yang
2007). Nevertheless, in the present study, this data structure
was fed to the classifier in order to observe its effect on the
classifier performance.

By comparison with two Figs. 5 and 6, it can be observed
that the clustering of the two classes is more successful in
Fig. 5. Hence, the FFT amplitude parameter has the most
accuracy for predicting the watermelon qualities. Note that

the difference between Figs. 5 and 6 is just in the type of
vibrational parameters. Thus, it can be found that the ampli-
tude of the vibration signals is more effective than the phase
angle in the watermelon ripeness detection. By applying
proper signal processing techniques and superior features,
the boundary of classes can be appeared well and classifica-
tion accuracy can be increased. Finally we can conclude that
the classification results can be improved by using the FFT
amplitude of the vibration signals.

The KNN classifier was used for decision-making stage.
KNN performance was calculated under the different values
of K.

Table 3 shows the performance of KNN using the phase
angle data. The classification accuracy was in the range of 32
to 58 %, and the best performance was 57.8947 %which was
belonged to K=7. Computation time for K=7 was about
0.003 s. The confusion matrix of the best performance is
shown in Table 4. It can be said that this performance isn’t a
desired result in the detection field and there is a need to
higher performance. Therefore, the phase angle data was
unsuccessful in ripeness detection of watermelon, as previ-
ously shown in Fig. 6.

The accuracy rate and computation time of the KNN
algorithm using the FFT amplitude data are shown in
Table 5. The performance of KNN in ripeness detection
was reduced by increasing the K value. The highest perfor-
mance was 94.7368 % which was belonged to K=1 and
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Fig. 5 Three features of the FFT amplitude
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Fig. 6 Three features of the FFT phase angle

Table 3 KNN performance under variable K value with the FFT phase
angle

K Accuracy rate (%) Computation time (sec)

1 47.3684 0.006459

2 47.3684 0.004232

3 31.5789 0.003207

4 42.1053 0.003746

5 47.3684 0.003096

6 47.3684 0.003887

7 57.8947 0.003187

8 52.6316 0.003562

9 36.8421 0.003119

10 42.1053 0.003630

Bold entries specify the highest accuracy rate and lowest computation time

Table 4 Confusion ma-
trix of the best perfor-
mance with the FFT
phase angle

Output Ripe Unripe

Ripe 9 5

Unripe 3 2
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K=2. Since computation time for K=2 was relatively lower
than K=1, the best performance was belonged to K=2.

Table 6 shows the confusion matrix of the best perfor-
mance. Among fourteen samples of the ripe watermelons,
just one sample was wrongly identified unripe watermelon.
But all of the unripe samples were correctly detected.

The detailed description of the KNN performance is
shown in Table 7. The sensitivity criteria for the ripe and
unripe watermelons were 92.86 and 100 %, because one
sample was incorrectly detected in the ripe watermelons.
The specificity criteria for the ripe and unripe watermelons
were 80 and 100 %. Finally the classification accuracy of
KNN was about 95 %. The result shows the potential appli-
cation of the FFT amplitude and KNN classifier in water-
melon ripeness detection.

Conclusion

Based on the experimental results obtained in this work, we
can summarize our findings as follows:

1. Vibration analysis can be effectively used for watermel-
on ripeness detection.

2. The vibration response of watermelons using the LDV
method is measured without direct contact between the
device and the watermelons; it is accurate and timely,
which could result in significant advantage for the
commercial-scale grading and sorting of watermelons.

The method enables well-timed shipment of fruits to the
market.

3. Using FFT output as an input of the classifier is not an
appropriate method and a post-processing step is needed
to prepare data for the classifier.

4. Proposed feature parameters such as maximum, mean
and variance are applicable for training of intelligent
systems (e.g. KNNs) due to having enough value fluc-
tuations in sample signals and small-size structures.

5. The performance of the combined FFT amplitude-KNN
model was significantly better than the FFT phase angle-
KNN model. With K=2, the accuracy of the proposed
approach achieves a perfect level of 95 % with 1 sample
out of the totally 19 samples (5 % of watermelons)
misclassified.

6. The authors believe that the proposed intelligent proce-
dure could be used for other fruits. Further research could
be conducted on different fruits, acoustic signals and other
signal processing and classification techniques.
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