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ABSTRACT Over a long time period, the rate constants
for cycle completions (one-way fluxes) in steady-state bio-
chemical diagrams can be expressed explicitly in terms
of the elementary rate constants for transitions between
states of the diagram. These cycle rate constants deter-
mine the mean one-way fluxes in the diagram and also
fluctuations about the means. These properties are con-
firmed by Monte Carlo computer simulations on special
cases. Two other topics are considered briefly: the effect of
the starting state or states on the numbers of cycle com-
pletions in computer simulation runs; and the more de-
tailed stochastic approach required if individual cycle
completions are to be followed (i.e., if the "long time" re-
striction is removed).

In several biochemical problems, for example, muscle contrac-
tion (1) and active transport (2), a certain "central" macro-
molecule or macromolecular complex can exist in a finite
number of discrete states, with possible inverse pairs of transi-
tions between some pairs of states. It is convenient (3) to define
first-order rate constants for all of these transitions. We use
the rate-constant notation a1j for the transition from state i
to state j. The states and rate constants form a "diagram",
illustrated in Fig. 1, which in general contains one or more
cycles. The diagram in Fig. 1 has six cycles, for example.
In cases of biological interest, there is an ensemble of these
macromolecular systems and the rate constants a1j for each
system have values that lead to a steady state, rather than to
equilibrium, after a transient period, with non-zero net mean
flux around some or all of the cycles. These fluxes correspond
to net membrane transport, net chemical reaction, etc.

In an earlier paper (3), relations between free energies of
macromolecular states and the rate constants aij were em-
phasized. Also included was an introduction to a stochastic
treatment of steady-state cycle kinetics. The present paper is a
continuation of this stochastic treatment.
The point of view here is essentially "experimental". That

is, we report on Monte Carlo computational properties for a
few special cases. Our object is, first, to verify the simple
theory presented in the previous paper (3) and then to present
two new kinds of computational results for systems of this
type.

Review of stochastic treatment of cycles

We summarize here the notation and basic ideas already in-
troduced (3). Imagine that we follow in detail a single system
over a long period of time, as it occasionally and instanta-
neously changes from one state to another of its kinetic diagram,
in accordance with the first-order transition probabilities aij
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of the diagram. The diagram has cycles labeled a, A, Sy,
From time to time, one or another of the cycles is completed.
Over a very long period of time, let Pa+, Pa-, P,s+ up - ...

be the fraction of completed cycles of type a in direction +
(assigned by some convention), etc. The sum of these proba-
bilities is unity. Also, let T be the mean time between cycles.
Then the probability of completing any cycle in the infinitesi-
mal interval dt is dt/r, while the probability of completing a
cycle of type a+, a-, etc., in dt is pa+dt/T, Pa -dt/T, etc.
Thus, if we denote the first-order rate constants for cycle
completions by ka+, kae, etc., we have ka+ = Pa+/T ka-
= Pa-/r, etc.
In an ensemble of N equivalent and independent systems

(e.g., a membrane sample with N macromolecular carriers),
the mean numbers of cycles of each type completed per unit
time are Ja+= Nka+, Ja- = Nka-, etc. The net cycle fluxes
are then

it = N(ka+ - ka-), etc. [1]

The stochastic cycle properties introduced above may be
expressed in terms of the single-transition rate constants a11
of the diagram. Using the diagram method (2), the net fluxes
can always be written in the form

Ja= N(HJa+ - Ila-) 2;

if = N(HI3+ -
[21

etc., where 2 is the sum of directional diagrams (2) for all
states, Hla+ is the product of rate constants around cycle a
in the + direction Ha- is the product of rate constants
around cycle a in the - direction, (Ha+ - Ha-)2a is the
sum of cycle flux diagrams (this defines 2a), etc. The expres-
sions for la+Y Ha - Y 2a 2, etc., involve the aij only (2).
Eq. 2a gives the mean net flux around cycle a. Actually, we

can go further and identify NlIa+:a/2 with the mean flux
around cycle ca in the + direction (Ja+) by noting that Ja
NHa+2a/2 if we let any one of the rate constants in H1 be-
come very small. This is a crucial identification which is not
obvious a priori. The argument just mentioned is slightly
suspect because the particular rate constant in H_ that is used
is also included in 2 (as are all the aij). We shall return to
this point below.

Using this result for the one-way fluxes, the cycle rate con-
stants are given explicitly in terms of the aij by

ka+ = IIa+2a/2 = Ja+/N,

ka- = Ha-2a/y- = Ja-IN, [3]
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FIG. 1. (a) Illustrative kinetic diagram with six states. Each line represents forward and backward transitions. (b) The six cycles

belonging to the diagram in (a). The + and - flux directions (for all cycles) are arbitrarily assigned as shown.

etc. The cycle probabilities introduced above become, then,

Pa+ = Tka+ = Tfla+a/Z, Pa- = Ta-Za/X, [4]

etc. Since the sum of these probabilities is unity,

r = (ka+ + ka- + kit+ + * * *)-1 [5]
- Z/(lla+Ze + Hla-Za + ,I+Z,( + ).

Over a long enough time interval, cycle completions of each
type, a+, a_, 0+, etc., may be regarded as independent random
events, each with a Gaussian frequency distribution (3). Thus,
if P(r,+,t) is the probability of observing ra+ cycles of type
a+ after a long time t, P(ra+,t) is a Gaussian function in ret+
with mean and variance (3).

fa+ = 6a+2 = ka+t = J,+t/N, etc. 16]
Similarly, for combinations such as the net number of a
cycles, we have the Gaussian distribution parameters

ra = rc+ -rf_ = (ka+ -ka_)t = JatIN [71
aa2 = fa+ + fa_ = (ka+ + ka_)t.

A final topic. Let pi be the steady-state probability that a
given system is in state i. The pi are determined by the a11
via the diagram method (2, 3, 4). Let ft be the fraction of all
transitions that start from state i. Also, let Trg be the mean
time between all transitions, and let r,,(t) be the mean time
between transitions when the starting state is i. The latter
quantity is just the reciprocal of the sum of the outgoing rate
constants from state i. Then it is easy to see that piTgr =

firtrM. In any given example, the ati determine the pi and
the Ttr(t). Then using ft -' i/ tr(') and normalization of the
ft, theft and Tr are easily found.

"Experimental" verification of stochastic treatment

Eqs. 2 for the net fluxes are well-established (2), but Eqs. 3,
for the separate one-way fluxes, need verification. We have
done this in special cases by an independent "mean first

passage time" type of argument in which the relative proba-
bility of completing a given cycle in either direction is calcu-
lated. But here we report explicitly on numerical checks.
For this purpose we have used the four examples shown in

Fig. 2, the first three of which are special cases of Fig. 1 while
the fourth (Fig. 2d) is the example considered in the previous
paper (3).
We have studied Fig. 2a most extensively. This model has

six cycles (Fig. lb). For this case we made 10 different com-
puter runs of 101 transitions each, starting each run (arbi-
trarily) in state 3 (Fig. la). Each transition from one state to
another was determined by a random number generator, with
relative probabilities for the final state assigned in accordance
with the various outgoing rate constants from the initial
state.

Suppose the initial sequence of states (Figs. la and 2a) in a
run is 326545612. This we call the "actual record". It contains
two kinds of repeats: "immediate" and "non-immediate" (in
the latter case-see below-a cycle is completed). Both kinds
of repeats are cancelled from the actual record, as they occur,
to provide a running "effective record". Thus 326545 ("im-
mediate" repeat of 5) becomes 3265 (effective), after cancella-
tion of 45, and then 32656 (immediate repeat of 6) becomes
326 (effective). Finally, 32612 (non-immediate repeat of 2)
becomes 32 (effective), after cancellation of 612. Here, with
the non-immediate repeat, the cycle 2612 (i.e., a+ in Fig. lb)
has been completed. The cycle type (a+) is determined and
tallied by the computer.

If the above actual record happened to continue with 653,
we would reach another non-immediate repeat at 32653, which
would become 3 (effective) after cancellation of 2653. The
second cycle completed is of type b- (Fig. lb).
The effective record on completion of each cycle is called a

"remainder" (32 after a+ and 3 after b-, above). Note (see
above) that the remainder is not dropped as further states in
the actual record are considered in the process of determining
the next cycle completion. It is easy to see that the above
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FIG. 2. Four explicit models with specified rate constants. The arrows here show the transition directions to be assigned to the various
rate constants.

formal procedure records properly the actual molecular ac-

complishments (transport, reaction, etc.) of the system being
followed (via the "actual record" of states).
We return now to the 10 computer runs based on Figs. 1

and 2a. The theoretical state probabilities (designated pjth)
are most easily calculated using the method described previ-
ously (3), that is, from flux diagrams rather than from direc-
tional diagrams. These values are given in Table 1, along with

. These two columns then givefjth and alsoTrl = 0.205028
for the mean time between transitions. The last column in
Table 1 contains the "experimental" pi (for the 10 runs com-

bined) based on the observed fi (relative frequency of state i
in the actual records) and 'rg~i'. There is close agreement be-
tween pi and pith, as expected. Note that the experimental
time is introduced via the mean times rO) (5) only.
The second and third columns in Table 2 show the calcula-

tion of the twelve cycle rate constants kn+ from Eqs. 3, based
on Figs. 1 and 2a, where n 4 is the cycle index. The value of
2 is found in the pith calculation (above) to be 4641. From
Eq. 5b, T = 4641/2152 = 2.15660. The theoretical number of
transitions per cycle completed is then T/Tgr = 10.5186 (experi-
mental, Table 2 = 106/95249 = 10.499). The last three
columns in Table 2 refer to the ten runs combined (106 transi-
tions). The expected (theoretical) number of cycles of each
type is rfn+" (fourth column). The total expected number of
cycles is 106lO,/r = 95070.1. The fraction of these cycles of
type a+ is then expected to be Pa+th = 148/2152 (second
column), etc. That is, fa+th = 106g7pta+ht/r, etc. The ob-
served number of cycles of each type is r.± (fifth column).
One can see at a glance that the agreement with the fnxth
values confirms Eqs. 3.
To be more quantitative about this agreement: the last

column in Table 2 gives An+ = (rn+ - fni-h)/crn+jh, that is,

TABLE 1. Properties of states (Fig. 2a)

State pith Tgr(i) fta Pi
1 0.17841 1/2 0.67316 0.17858
2 0.20599 1/4 0.16893 0.20637
3 0.11463 1/9 0.21152 0.11473
4 0.08985 1/8 0.14737 0.08978
5 0.26029 1/4 0.21347 0.25984
6 0.15083 1/6 0.18555 0.15070

the observed deviation from the expected mean relative to the
standard deviation of the expected Gaussian distribution
(Eq. 6). The mean of the 12 values of KnI is 0.617. The
theoretical mean, for a very large number of values with a
Gaussian distribution, is (2/T)1/2 = 0.798.
The above paragraph can be reinforced by calculating nA±

for the 10 separate runs of 105 transitions each. We find in
this case that the mean of the 120 values of zAj is 0.806.
Furthermore, a tabulation of the 120 separate A values in
intervals of 0.50 about zero produces quite respectable over-
all agreement with the expected Gaussian distribution.
As a further check, differences between experimental cycle

numbers of each type in successive runs (1-2, ..* , 9-10) were
used rather than deviations from expected means, as above.
That is, the 60 quantities ba+12 = (ra+( ) -ra+(2))/ 0a+l^

34 = (ra+(3) - ra+(4))/oa+t", etc., were calculated. The
mean of their absolute values was found to be 1.095. The
theoretical mean is 2/r1'/2 = 1.128.
We have analyzed in similar fashion various linear combina-

tions of cycle numbers, such as ra+ - ra, ra+ + rab+ +
rabc+, etc., also with the expected results (see Eqs. 7). We
omit details since these are not independent data.

Other Examples. Similar results confirming the stochastic
treatment above were found for other models. For the model
in Fig. 2b (three cycles), one run of 10,000 cycle completions
was made. The theoretical number of transitions per cycle

TABLE 2. Properties of cycles (Fig. 2a)

Cycle, n± H.v2;n k,,:h f;,jt/ rn+ Anah
a+ 148 0.031890 6538.3 6656 +1.456
a- 296 0.063779 13076.5 13019 -0.503
b+ 256 0.055161 11309.5 11210 -0.936
b- 144 0.031028 6361.6 6409 +0.594
C+ 496 0.106874 21912.1 22027 +0.776
C- 248 0.053437 10956.1 10880 -0.727
ab+ 64 0.013790 2827.3 2833 +0.107
ab- 72 0.015514 3180.8 3195 +0.252
bc+ 256 0.055161 11309.5 11364 +0.512
bc- 72 0.015514 3180.8 3235 +0.961
abc+ 64 0.013790 2827.3 2816 -0.213
abc- 36 0.007757 1590.4 1600 +0.366

Total 2152 0.463695 95070.2 95249
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TABLE 3. Effect of added states (Fig. 2b)

rn± rn±
Cycle fnQth(2) (432) 151
b+ 1885.4 1875 1922 0.82
b- 1060.5 1075 1096
C+ 3063.8 2972 3045
C- 1531.9 1511 1558
bc+ 1885.4 1871 1850
bc- 530.3 524 529

Total 9957.3 9828 10,000

completed is 11.675; observed = 11.627. The mean of the
six values of A,,nl was found to be 0.64.
For the model in Fig. 2c (a single cycle), eight runs of 105

transitions each were made: transitions per cycle (theoreti-
cal) = 17.571 (!), observed (eight runs combined) = 17.594;
mean of 16 values of Ana = 0.704.
For the model in Fig. 2d (three cycles), one run of 20,044

cycle completions was made: transitions per cycle (theoreti-
cal) = 12.700, observed = 12.669; mean of six values of
A,+ = 1.07.

Conclusion. These calculations confirm that the simple
separation of each mean net flux around a cycle into two mean
one-way fluxes, as in Eqs. 3, is correct. Furthermore, for a
system observed over a long time interval, each possible kind
of cycle completion (a+, a-, P+, etc.) can be treated as an
independent random event with its own rate constant ka+,
kay- etc. (each k being a known function of the elementary
rate constants atj).
Sensitivity of computational fluctuations in cycle
numbers to added states

In this section we report on an interesting computational
property of diagrams that, however, has limited significance
for the simulation of experimental behavior. An example:
suppose we use (in Fig. 2a) an "actual record" of, say, 105
states (selected by the random number generator), starting
with state 3, and then alter this record merely by adding the
two states 12 to the beginning of the sequence (so that there
are 100,002 states iD the altered sequence). We could, instead,
have added one state, or three, etc. The result of this seem-
ingly trivial change is that the cycle numbers rni obtained
(by the procedure described above) from the original actual
record represent a significantly different set of fluctuations
about the f,,_"' than the r,,+ obtained from the altered actual
record. One might have expected that corresponding pairs of
rn± values from the two records would differ by zero or per-
haps ±-1, 42, etc., but the differences are much larger than
this (see Table 3 below). The effect of the two added states on
cycle completions and types propagates itself, so to speak,
through the entire actual record, producing a quite different
pattern of cycle completions. The reader can easily verify this
by concocting a more or less realistic sample sequence of, say,
50 states with 5-10 cycle completions.
However, this computational cycle bookkeeping phenome-

non is no more than trivially significant for fluctuations in
cycle numbers of experimental systems. This follows from the
fact that experiments are carried out on a large ensemble of
systems (rather than on a single system), with consequent
averaging over, among .other.things, all possible starting

TABLE 4. Cycle combinations from Table 3

r r

(2) (432) 1W1
(b+) - (b-) 800 826 0.46
(c+) - (C-) 1461 1487
(bc+) - (bc-) 1347 1321

B+ = (b+) + (bc+) 3746 3772 0.74
B- = (b-) + (bc -) 1599 1625
C+ = (c+) + (bc+) 4843 4895
C- = (c-) + (bc -) 2035 2087

(B+) - (B-) 2147 2147 0.00
(C+) - (C-) 2808 2808

states and a different sequence of states ("actual record")
for each system in the ensemble.

Tables 3 and 4 present a particular example (also used in the
preceding section), based on Fig. 2b (three cycles, labeled as
in Fig. lb). First, a run of 10,000 cycles, requiring a sequence
of 116,266 states, was made from a starting sequence 432
(states labeled as in Fig. la). Then the same random numbers
(and hence the same sequence of states) were used starting
with state 2 (i.e., omitting 43), for a total sequence of 116,278
states (i.e., 116,264 plus completion of the last cycle). The
two observed sets of cycle numbers rn± are quite different
(Table 3). The number jal = 0.82 in Table 3 is the mean of
the six absolute values of b+ = (rb+(2) - rb+(432))/ab+h , etc.
For a large number of uncorrelated differences of this type we
would expect (see above) ]Fb = 2/r1/2 = 1.128. We see here,
and this is confirmed in the more extensive example below,
that there is some degree of correlation between rn±(2) and
rn (432), but much less than the virtually complete correla-
tion (F 0) that might have been expected.

Since complete correlation between the two sets of rn± is
not found, one might then expect it between the two sets of
net cycle numbers rn+ - rn-. The top three rows of Table 4
show that this is not the case, though the degree of correlation
increases (1a[ = 0.46 is an average of three values; ant used
here follows from Eq. 7b).

Individual cycle fluxes (one-way or net) are not observable
quantities in multicycle models such as Fig. 2b. Observable
fluxes would obviously be associated here with the cycle com-
binations B b + bc and C = c + bc. Thus, in the next four
rows of Table 4, we try the one-way cycle numbers B+, etc.
(ensemble averages of these "operational" fluxes, in mem-
brane transport systems, could be measured with the aid of
radioactive tracers). Again there is only partial correlation
(161 = 0.74) between the two sets 2 and 432. But, finally
(Table 4) when we use the cycle numbers associated with the
net "operational" combinations (B+) - (B-) and (C+) -

(C-), we find complete correlation (i.e., the sets 2 and 432
give the same cycle numbers, though they might have differed
by +1).

Equivalent results were also found for the three models in
Figs. 2a, c, and d. In the Fig. 2a case, the ten runs (Table 2)
of 105 states each, all with starting state 3, were repeated
using the same ten sequences of states but with starting states
123. The mean of the 120 absolute values of 6a+ = (ra+(3)-
ra+(123))/0a+th (10 runs), etc., was found to be F = 0.748
(compare the uncorrelated value, 1.128). For the differences
in the two sets (3; 123) of net cycle numbers rn+ - r_, the

Proc. Nat. Acad. Sci. USA 72 (1975)
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TABLE 5. Numbers of cycles following remainders (Fig. 2a)

Rem. a+ a- bc+ be- abc+ abc-

1 494 967 717 206 192 103
12 467 198 364 120 182 17
16 81 845 381 94 41 87

123 191 80 415 47 176 13
165 48 449 214 117 12 111

1265 128 8 29 69 12 1
1623 1 191 233 5 1 2
Total 1410 2738 2353 658 616 334
fn±th 1375 2751 2379 669 595 335

mean of 60 absolute values was W = 0.626. For the 60 one-
way "operational" combinations A a + ab + abc, B
b + ab + bc + abc, C= c + bc + abc, Fa[ = 0.508. Note that
the correlation becomes stronger in successive cases. Finally,
as above, for the net operational combinations (A +) - (A-),
etc., Xj ' 0.00 (all 30 differences in cycle numbers are 0 or
=1).
Stochastic analysis of cycles for shorter time intervals

We have seen that the cycle rate constants kn± suffice for a
stochastic analysis of cycle completions over a long time inter-
val (large numbers of cycles). But the kinetics of individual
cycle completions requires more detail. This would be neces-
sary, for example, in the treatment of noise associated with
cycle fluxes (say in active transport) over the complete fre-
quency range. No analytical theory is available at this level.
We merely present a numerical (Monte Carlo) example here
in the hope of stimulating future work on a proper analytical
theory.
We have seen that there is a "remainder" (the effective

record)-a short sequence of states-after each cycle comple-
tion. There are four essential points to be made: (a) after a
cycle completion of type c' with remainder r', the probability
that the next completed cycle c" will be of any given cycle
type depends on r' (but all cycle types are possible after any
kind of remainder); (b) the mean time required for completion
of c" (counting from c') also depends on r'; (c) the probability
that a given type of remainder will occur depends on the kind
of cycle being completed and also on the immediately pre-
ceding remainder (in fact, each cycle type permits of only
certain remainders); and (d) an average over all possible
starting states (i.e., over all states in the diagram) is essential
because each starting state is necessarily the starting state in
all remainders that occur in a given sequence of states (actual
record) and thus each starting state has its own and exclusive
set of possible remainders.
To recapitulate partially: in the sequence r(remainder)-

c(cycle) rcrc .. ., each c has a "memory" of the preceding r
and each r has a "memory" of the preceding rc. In contrast,
the simple (long time) theory at the beginning of this paper
includes no memory effect at all.

TABLE 6. Numbers of remainders following cycles (Fig. 2a)

Rem. b+ b- bc+ bc- c+ c- Total

12 1142 670 1154 331 - 3297
16 1198 736 1199 327 - 3460

123 1742 865 2607
165 - - 1864 860 2724

1265 416 243 659
1623 577 293 870
Total 2340 1406 2353 658 4599 2261
Fr.th 2379 1338 2379 669 4610 2305

We turn now to an example that illustrates some but not
all of the points above. We use the model in Fig. 2a again
and arbitrarily select state 1 as the starting state. The reader
can easily verify that the only possible remainders are then
1, 12, 16, 123, 165, 1265, and 1623. Also, it is easy to see that
(with starting state 1): cycle types a+, ab±, and abc± can
leave only the remainder 1; b4± and bc-+ can leave only 12
and 16; and c±4 can leave only 123, 165, 1265, and 1623.
We made a single run of 20,000 cycles that started with

state 1 and happened to end with the remainder 1265. The
computer recorded (i) the numbers of completed cycles of
each type that followed each kind of remainder, and (ii) the
number of remainders of each type that followed each kind of
cycle. For simplicity in this example, the time was not con-
sidered nor did we subdivide the cycle types in (ii) according
to the preceding remainder (as must be done in a complete
analysis).
Table 5 gives illustrative, partial results (six of the twelve

cycle types) on (i) while Table 6 presents the data on (ii)
(omitting aA, ab 4, and abc4; see above). It is evident from
Table 5 that the relative probability of different cycle types
is indeed different for different remainders. If we had sub-
divided cycle types according to the preceding remainder,
Table 6 would require a third dimension.
A proper theory would provide (for a given diagram and for

each starting state), as functions of the aij, the probability
of each type of remainder following each kind of cycle and
preceding remainder and the rate constant kn±(rem) for each
type of cycle following each kind of remainder. With these
available, the elementary transitions i j could be by-passed
in following the stochastics of individual cycle completions.
The kn± used earlier in the paper are, in the most general
case, averages of kn4(rem) over different starting states and
over different remainders for each starting state.
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