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The transforming growth factor beta (TGF-𝛽) family forms a group of three isoforms, TGF-𝛽1, TGF-𝛽2, and TGF-𝛽3, with their
structure formed by interrelated dimeric polypeptide chains. Pleiotropic and redundant functions of the TGF-𝛽 family concern
control of numerous aspects and effects of cell functions, including proliferation, differentiation, and migration, in all tissues of
the human body. Amongst many cytokines and growth factors, the TGF-𝛽 family is considered a group playing one of numerous
key roles in control of physiological phenomena concerning maintenance of metabolic homeostasis in the bone tissue. By breaking
the continuity of bone tissue, a spread-over-time and complex bone healing process is initiated, considered a recapitulation of
embryonic intracartilaginous ossification. This process is a cascade of local and systemic phenomena spread over time, involving
whole cell lineages and various cytokines and growth factors. Numerous in vivo and in vitro studies in various models analysing
cytokines and growth factors’ involvement have shown that TGF-𝛽 has a leading role in the fracture healing process. This paper
sums up current knowledge on the basis of available literature concerning the role of the TGF-𝛽 family in the fracture healing
process.

1. Introduction

Disorders involving the musculoskeletal system are one of
the most diversified groups of diseases [1]. They include
congenital and acquired diseases directly affecting bones,
joints, ligaments, and muscles, as well as disorders, in which
this system is involved secondarily [2]. All musculoskeletal
system disorders represent a continuous challenge to the
society, considering their complex and often multifactor
aetiology, varied course, and economic aspects, as well as a
still present problem of implementing optimal surgical and
nonsurgical treatment [1, 2]. One of the most serious condi-
tions encountered in the clinical practice is fractures, that is,
breaking of the bone continuity caused by an injury or other
reasons, including osteoporosis, cancer, or other systemic

diseases [2, 3]. The bone damage can also be accompanied
by soft tissues damage of different extent, also affecting
crucial structures such as vessels and nerves [4]. Any tissue
damage, caused by the injury or the surgery itself, involves
not only a local immunological response and inflammation,
but also a systemic immunological response related to inflow,
migration, and proliferation of a broad spectrum of cells
[5–9]. Cytokines are molecules responsible for controlling
intracellular communication and directing the immunolog-
ical reaction [10]. This group of low-molecular glycoproteins
forms a “cytokine network” in the body [11, 12]. Amongst
cytokines identified and described so far, a group of growth
factors (GF) can also be distinguished, whose effects in
certain situations can also be viewed in a context of a “growth
factor network” [13]. The transforming growth factor beta
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Figure 1: A schematic representation of TGF-𝛽 superfamily. TGF-𝛽: transforming growth factor beta; GDF: growth and differentiation
factor; ACT: activin; INH: inhibin; other ligands include Müllerian inhibiting substance (MIS) or anti-Müllerian hormone (AMH), left-
right determination factor (Lefty), and nodal growth differentiation factor (Nodal); GDNF: glial-derived neurotrophic factors; BMPs: bone
morphogenetic proteins.

(TGF-𝛽) superfamily requires a particular attention. The
TGF-𝛽 superfamily is a large and continuously expanded
group of regulatory polypeptides, including a model trans-
forming growth factor beta family and other families, such as
bone morphogenetic proteins (BMPs), growth and differen-
tiation factors (GDFs), activins (ACTs), inhibins (INHs), and
glial-derived neurotrophic factors (GDNFs), as well as some
proteins not included in the above families, such asMüllerian
inhibiting substance (MIS), also known as anti-Müllerian
hormone (AMH), left-right determination factor (Lefty), and
nodal growth differentiation factor (Nodal) [14] (Figure 1).

A number of molecules in the TGF-𝛽 superfamily have
crucial roles in tissue development and differentiation in
vertebrates, control of the immunological response, and
healing of tissues [14–17]. Similarly to all growth factors,
the model TGF-𝛽 family is characterised by its pleiotropic
and redundant effects, controlling its effects in most body
tissues in autocrinic, paracrinic, and endocrinic ways [18,
19]. Polypeptides in the TGF-𝛽 family have an important
role in control of cell activity and metabolism in bone and
cartilage tissues throughout the ontogenetic human develop-
ment [20, 21]. These attributes of the TGF-𝛽 family are also
observed during the bone healing process, considered to be
a recapitulation of embryonic intracartilaginous ossification
[22, 23]. Amongst many cytokines and growth factors, the
TGF-𝛽 family is considered to be a group playing one of
numerous key functions in control of physiological phenom-
ena during the bone healing process [24, 25]. An increased
expression of ligands from the TGF-𝛽 family is observed
both within haematoma and in serum of patients with long
bone fractures [26, 27]. A broad action profile of polypeptides
from the TGF-𝛽 family includes their effect on prolifera-
tion and differentiation of mesenchymal stem cells (MSCs),
production of extracellular substance in bone and cartilage
tissues, and a chemoattracting effect on a broad spectrum of
cells involved in the bone healing process and the associated
inflammatory response [28, 29]. In this review, wewill discuss
a structure of compounds in the TGF-𝛽 family and their
relevant receptor complexes, ligand-receptor interactions,
and resultant intracellular signal transmission cascades, as
well as types of cellular effects in terms of their role in
mechanisms and phenomena occurring during individual
bone healing stages.

2. Structural Organization of
the TGF-𝛽 Family

2.1. TGF-𝛽 Family Overview. For the first time, polypeptides
in the TGF-𝛽 family were isolated by de Larco and Todaro
at the end of the 1970s as a group of compounds called by
them the sarcoma growth factor (SGF): the compounds able
to cause malignant transformation of rat kidney fibroblasts
[30, 31]. Only further studies showed that SGF is a mix-
ture of two different compounds characterised by different
properties, called transforming growth factor beta (TGF-
𝛽) and transforming growth factor alpha (TGF-𝛼) from the
epidermal growth factor (EGF) family, respectively [31, 32].
Currently, the TGF-𝛽 family includes its three isoforms TGF-
𝛽1, TGF-𝛽2, and TGF-𝛽3. Each of the isoforms found in
humans is coded by genes having different locations in
various chromosomes: in a long arm of the chromosome 19
(19q13.1) for TGF-𝛽1, a long arm of the chromosome 1 (1q41)
for TGF-𝛽2, and a long arm of the chromosome 14 (14q24) for
TGF-𝛽3, respectively [33–35]. When analysing their primary
structure, polypeptides from the TGF-𝛽 family form a highly
homologous group of compounds, where mature forms of
TGF-𝛽1 and TGF-𝛽2 are characterised by 71.4% compliance
in their amino acid sequences, while TGF-𝛽3 shares with
TGF-𝛽1 andTGF-𝛽2 76%and 80%of its amino acid sequence,
respectively [36, 37]. A prototype TGF-𝛽1 compound, the
isoformmost commonly found in human tissues, in its active
form after a complete posttranslation processing is a homod-
imer consisting of two polypeptide chains, each containing
112 amino acid residues, connected by a disulphide bond
and forming a complex of a total molecular weight of 25 kDa
[38, 39].

2.2. TGF-𝛽 Family Ligands Synthesis and Posttranslational
Modification. Synthesis, posttranslational modification,
secretion, and control of later activation of polypeptides from
the TGF-𝛽 family form a complex and multistage process
controlled by several enzymes and proteins (Figure 2).

Polypeptides from the TGF-𝛽 family are initially synthe-
sised as pre-pro-TGF-𝛽, a monomer of a molecular weight
of ca. 55 kDa and consisting of 390 amino acid residues in
total, including N-terminal signal peptide (SP) of 29 amino
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Figure 2: A schematic representation of TGF-𝛽 different forms occurring during synthesis, secretion, and activation.

acids, a proregion of 249 amino acids called latency associated
peptide (LAP), and a C-terminal sequence of 112 amino
acids forming the actual active form of TGF-𝛽 after relevant
modifications [40, 41]. Further stages involve proteolysis and
SP removal, as well as dimerisation of two monomers with
three disulphide bonds [42]. Forming of bonds is catalysed by
an enzyme, disulfide isomerase (PDI), between cysteine (Cys)
residues in positions 223, 225, and 356, and this way the
pro-TGF𝛽 homodimer is created of a molecular weight
of ca. 110 kDa consisting of two LAP chains and two
chains of mature TGF-𝛽 [43, 44]. Then, created pro-TGF-
𝛽 undergoes proteolysis by paired basic amino acid cleav-
ing enzyme (furin, PACE) which is membrane-associated
calcium-dependent serine endoprotease, abundant in the
Golgi apparatus, and in consequence two connected LAP
chains are separated from two connected TGF-𝛽 chains by
cutting a bond between 278 and 279 amino acid residues
[45, 46]. The proteolysis results in creation of a small latent
TGF-𝛽 complex (SLC), in which connection between two
LAP chains and two TGF-𝛽 chains is maintained by nonco-
valent bonds, despite separation of polypeptide chains [47,
48]. Furthermore, LAP chains by changes in conformation
and noncovalent bonds form a specific type of protection
(chaperone-like activity), maintaining TGF-𝛽 in its inactive
form and preventing its interaction with a receptor [49]. SLC
is then connected with a disulphide bond formed between
cysteine residue in a 33 locations and a cysteine residue
in the third of four cysteine-rich domains (8-Cys3) of the
latent TGF-𝛽 binding protein (LTBP) of a molecular weight

of 120–160 kDa, characterised, apart from its four cysteine-
rich domains, by eighteen EGF-like domains; the resultant
protein is called the large latent TGF-𝛽1 complex (LLC)
[50–53]. The next stage involves LCC secretion from a cell,
and it is worth noting that LCC secretion is significantly
faster than SLC secretion, and SLC not bound to LTBP is
stopped at the cis pole of the Golgi apparatus [54, 55]. After
secretion, parts of the complex interact with extracellular
matrix (ECM) components, where C-terminal end of the
LGBP protein interacts with N-terminal end of fibrylin-
1, while its N-terminal end can interact with other ECM
proteins, including fibronectin (FN), and this can result
in its anchoring with forming of a covalent bond, with
participation of a transglutaminase enzyme (TG) [56–60].
LCC anchored this way in ECM components is a form
without biological activity [61]. Apart from its interactions
with fibylin-1 and fibronectin, LCC can also show affinity
through integrin-binding sites (RGD) in the C-terminal end
of the LAP chain to integrins, glycoproteins included in
adhesive proteins of heterodimeric structure consisting of
two noncovalently bound subunits, one of eighteen 𝛼 and
one of eight 𝛽 subunits [62–64]. LCC bond with integrins
also allows releasing and activating the mature TGF-𝛽 form
by changing formation of the whole complex without a need
for proteolytic digestion [65–67]. The main route for TGF-𝛽
release from the LCC complex is related to presence and effect
of numerous molecules, mainly including proteases such as
plasmin, matrix metalloproteinase 2 (MMP2, gelatinase A),
matrix metalloproteinase 9 (MMP9, gelatinase B), BMP-1,
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Figure 3: TGF-𝛽 associated intracellular canonical and noncanonical signaling pathways. Perpendicular line indicates an inhibitory effect;
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and others, such as thrombospondin 1 (THBS1), retinoic acid,
and fibroblast growth factor 2 (FGF2), as well as reactive
oxygen species (ROS); low ECM pH can also influence TGF-
𝛽 activity [68–74].

2.3. TGF-𝛽 Family Receptors and Signalling Pathways

2.3.1. TGF-𝛽 Family Receptors Characteristic and Regulation
of Activity. Biological effects of homodimers, including TGF-
𝛽1, TGF-𝛽2, and TGF-𝛽3, are visible in activation of similar
signalling pathways and similar cellular effects [75, 76]
(Figure 3). After TGF-𝛽 release from ECM, it interacts with
a receptor complex forming a heterotetrameric combination
containing two of each of type I (T𝛽RI, TGFBR1) and type II
(T𝛽RII, TGFBR2) subunits [76–78].

Both subunits, T𝛽RI and T𝛽RII, are transmembrane
glycoproteins penetrating through the whole cell membrane
thickness, so it is possible to distinguish their three main sec-
tions, including an N-terminal, ligand-binding extracellular
part, a transmembrane part, and a C-terminal, intracellular
part containing a domain with serine/threonine protein
kinase activity [79, 80]. T𝛽RI is a product of a gene located
in a long arm of the chromosome 9 (9q22) and consists of
503 amino acid residues of a total molecular weight of 53 kDa
[81–84].The N-terminal extracellular part is located between
1 and 126 amino acid residues, the transmembrane part is
located between 126 and 146 amino acid residues, and the
C-terminal intracellular part is located between 146 and 503
amino acid residues [83, 84]. In the intracellular part, in the
region between 175 and 205 amino acid residues, there is a
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so-called GS domain (TTSGSGSG), a region rich in repeated
serine (Ser) and glycine (Gly) residues [83–85]. T𝛽RII is a
product of a gene located in a short arm of the chromosome 3
(3p22) and is larger thanT𝛽RI, as it consists of 567 amino acid
residues of a total molecular weight of 75 kDa [84, 86–88].
The N-terminal extracellular part is located between 1 and
166 amino acid residues, the transmembrane part is located
between 166 and 187 amino acid residues, and the C-terminal
intracellular part is located between 187 and 567 amino acid
residues [86, 89]. In its intracellular part, T𝛽RII does not
contain a GS domain, and its region with serine/threonine
protein kinase activity shows a 41% compliance in its amino
acid sequence to the domain in T𝛽RI [79, 85]. A precondition
for signal transduction into a cell is correct formation
of a heterotetrameric receptor complex, and in particular
intracellular domains with serine/threonine protein kinase
activitymust move closer in correct space conditions [90, 91].
First, TGF-𝛽 moves closer to T𝛽RII subunits which, being
constitutively active, undergo autophosphorylation [91–93].
The next step is phosphorylation of the GS domain form-
ing a part of T𝛽RI receptor and mutual incorporation of
two T𝛽RI subunits and two T𝛽RII subunits, resulting in
formation of a complex consisting of a TGF-𝛽 ligand and a
receptor heterotetramer able to transmit the signal further
into the cell [91]. Besides T𝛽RI and T𝛽RII, also a type III
(T𝛽RIII, TGFBR3, betaglycan) receptor can be distinguished,
anchored in cell membrane with a highly glycosylated pro-
teoglycan, of a molecular weight of 250–350 kDa [94–96].
T𝛽RIII is not a typical receptor able to transmit signal because
it does not contain a domain with serine/threonine activity
but has a coreceptor function, able to present TGF-𝛽 to a
complex consisting of T𝛽RI and T𝛽RII units and, indirectly,
to modify its activity in the extracellular space [97, 98]. It has
also been observed that endoglin (ENG, CD105), a homo-
dimeric glycoprotein of a molecular weight of ca. 180–
190 kDa found on cell membrane surface, has properties
similar to T𝛽RIII [99–101]. Endoglin also contains an RGD
domain and shows affinity to TGF-𝛽1 and TGF-𝛽3 but not to
TGF-𝛽2 [100, 101]. On the other hand, T𝛽RIII shows affinity
to all three TGF-𝛽 forms and the highest to TGF-𝛽2 [102].
Durability of the heterotetrameric subunit combination with
the ligand is a precondition for the signal transmission into
the cell [103]. Degradation of cell membrane receptors may
occur in proteasome or by lysis in a lysosome [103]. T𝛽RI
receptor ubiquitination is catalysed by ubiquitin-activating
enzyme (E1 enzyme), ubiquitin-conjugating enzyme (E2
enzyme), and ubiquitin ligase (E3 enzyme) such as Smurf1
and Smurf2 and additionally requires presence of adapter
protein Smad family member 7 (Smad7), a member of the
inhibitor Smad (I-Smad) subclass [104–106], whereas lyso-
somal degradation does not always require ubiquitination
[107]. Receptor complexes and TGF-𝛽 ligand-bound receptor
complexes are also subject to constitutive control related to
their internalisation on the clathrin-dependent or lipid-raft-
dependent endocytic pathway, and this ensures their correct
physiological response, activity, and distribution on a cell
surface [108–110].

2.3.2. Intracellular TGF-𝛽 Canonical and Noncanonical Sig-
nalling Pathways. Intracellular signal transduction is con-
ducted through cytoplasmic proteins, belonging to transcrip-
tion factors from the Smad family [111, 112]. Currently, three
Smad protein classes are distinguished, namely, receptor-
regulated Smads (R-Smad) including Smad1, Smad2, Smad3,
Smad5, and Smad8, common-mediator Smad (Co-Smad)
including Smad4, and inhibitory Smads (I-Smad) including
Smad6 and Smad7 [113]. In their structure, R-Smad and Co-
Smad have similar domain structure consisting of highly con-
servative Mad homology 1 (MH1) at the N-terminal andMad
homology 2 (MH2) at theC-terminal, connected by a binding
protein rich in proline (Pro) residues forming tridimensional
globular structures [114, 115].TheMH1 domain is responsible
for binding with a DNA strand, promoting transcription
activity, and the MH2 domain is responsible for interactions
with other proteins and oligomerisation of Smad proteins
[114, 116]. Contrary to two other classes, I-Smad contains
only one conservative domain MH2 [115]. In intracellular
signal transmission via a canonical signalling pathway, the
signal is propagated from the formed TGF-𝛽 ligand-bound
receptor heterotetramer to the nucleus via proteins from
the Smad family [117]. The activated receptor subunit T𝛽RI
initiates, crucial for signal transmission, phosphorylation of
an R-Smad protein (Smad2 and Smad3) bound through the
zinc double finger (FYVE domain) protein Smad anchor
for receptor activation (SARA) [118]. SARA is a membrane-
associated intracellular protein able to recruit the activated
T𝛽RI subunit and proteins from the Smad family disso-
ciating from SARA following phosphorylation [118]. After
phosphorylation of theC-terminal SSXSmotif, a part ofMH2
R-Smad proteins, Co-Smad is recruited and a heterotrimer is
formed consisting of two phosphorylated R-Smads and Co-
Smad [111]. This complex is transported to the nucleus, and
its correct translocation is possible because of a lysine- (Lys-)
rich nuclear localization-like (NLS-like) sequence forming a
part of theMH1 R-Smad domain andCo-Smad and facilitates
interaction with importin-𝛼 and importin-𝛽 [119, 120]. In the
nucleus, the R-Smad/Co-Smad complex connects with other
nuclear cofactor proteins, and the gene transcription process
is initiated [121]. I-Smad proteins are responsible for negative
signal transmission by competing with R-Smad proteins in
binding with the receptor or Co-Smad and promote selection
of receptors for proteolytic degradation [122–124]. Apart
from intracellular signal transmission by Smad proteins,
the TGF-𝛽 receptor complex can also transmit signal via a
noncanonical pathway (Smad-independent pathway), that is,
by other intracellular signal transmission pathways [125, 126].
The possible signal transmission pathways to the nucleus
include mitogen-activated protein kinases (MAPK), such as
extracellular-signal-regulated kinases 1/2 (ERK1/2), c-Jun N-
terminal kinase (JNK), p38, and phosphatidylinositol-4,5-
bisphosphate 3-kinase (PI3K), AKT/PKB pathway, as well
as small GTP-binding proteins (Ras, RhoA, Rac1, CDC42,
and mTOR) and protein tyrosine kinases (PTK2, Src, and
Abl), and, furthermore, NF-𝜅B pathway and Wnt/𝛽-catenin
pathway [127–134].
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3. Potential Role of TGF-𝛽 Family in
Fracture Healing

3.1. Basic Principles of Fracture Healing and the Application
of These Principles in Crosstalk between Cells and Growth
Factors. Bone and cartilage tissues represent a special type
of a dynamic microenvironment subject to constant, orderly,
and lasting whole life reconstruction at a cellular level
[135, 136]. A whole range of local and systemic factors
are involved in maintaining metabolic homeostasis of the
bone tissue so it can perform its functions [136]. When
the continuity of the bone tissue is disrupted, a number
of factors are activated, including a broad profile of cells
and intensified gene transcription [137–139]. The whole
cascade of events starts immediately with an injury and
causes both local and systemic effects [7–9]. Physiological
interactions and phenomena occurring during three main
phases of bone healing, including an inflammatory phase,
a reparative phase, and a remodelling phase, finally restore
correct architecture and function of the bone tissue within
6–8 weeks [140]. During these phases, there is an inter-
action between various cells, whose behaviour is regulated
by various cytokines, growth factors, and their dedicated
receptor complexes, whose expression, participation, and
function vary depending on the healing stage, and, further-
more, depends on a fracture type and kind, operative and
nonoperative treatment methods applied, comorbidities, and
patient’s adherence to recommendations [27, 140–143]. Four
main components can be distinguished in the fracture zone:
periosteum, cortex, bone marrow, and surrounding soft tis-
sues involved in repair processes; there are also differences in
presence and number of individual cell types, cytokines, and
growth factors in each of these components throughout the
bone healing process [141, 143, 144]. The most important
compounds belonging to proinflammatory cytokines, growth
and differentiation factors, and angiogenic factors include the
TGF-𝛽 family, FGF1, FGF2, platelet-derived growth factor
(PDGF), insulin-like growth factor 1 (IGF-1), insulin-like
growth factor 2 (IGF-2), BMP family, osteonectin (ON,
SPARC), osteocalcin (BGLAP), osteopontin (OPN, SPP1),
fibronectin, interleukin 1 (IL-1), interleukin 6 (IL-6), TNF-𝛼,
granulocyte-macrophage colony-stimulating factor (GM-
CSF), macrophage colony-stimulating factor (M-CSF, CSF1),
and vascular endothelial growth factor (VEGF) [144–148].
Numerous in vivo and in vitro studies on various models
analysing cytokines and growth factors’ involvement have
shown that TGF-𝛽 has a leading role in the fracture healing
process [24, 25, 149]. The analysis of the TGF-𝛽 family
multidirectional effect is inseparably connected with the
whole bone healing process and possible clinical application
inmodifying individual bone healing phases to achieve better
treatment effects.

3.2. Expression and Localization of TGF-𝛽 Family during
Fracture Healing

3.2.1. Local Expression and Distribution of TGF-𝛽 in Fracture
Site. Increased TGF-𝛽 expression, effect, and tissue distri-
bution start with breaking of bone tissue continuity at the

inflammatory phase onset, exhibiting increased local and
systemic concentration [150]. TGF-𝛽presence in the extracel-
lular space with the forming haematoma can be determined
in the periosteum region within 24 h from the fracture, and
one of its main sources is thrombocytes, and specifically 𝛼-
granules representing ca. 10% of their volume, as well as
immune system cells such as monocytes, macrophages, and
T-cells and cells directly present in the fracture region, includ-
ing osteocytes, chondrocytes, and endothelial cells [150–152].
Several days after the fracture, the reparative phase is initi-
ated, with its main stages being the intramembranous ossifi-
cation phase and the endochondral ossification phase, over-
lapping in time. TGF-𝛽 presence is most pronounced during
this phase within organising callus and cells found in it, such
as MSCs, osteoblasts, osteocytes, chondroblasts, and chon-
drocytes [152, 153]. An analysis of Joyce et al. study results
shows that presence of TGF-𝛽 RNA within the soft callus
gradually increases from the 7th to 14th day of the fracture
and then decreases from the 14th to 17th day of the fracture,
while in the subperiosteal bone formation TGF-𝛽 RNA is
most abundant in the 3rd to 5th day of the fracture and then
it drops and reaches plateau from the 7th to 11th day of the
fracture, to increase again in a period from the 11th to 15th day
of the fracture; these results were additionally confirmed by
observations of Bourque et al. [152, 153]. A study conducted
by Matsumoto et al. showed that the increased TGF-𝛽 level
within the callus is found between the 7th and 14th day of the
fracture [154]. Si et al. showed that the increased TGF-𝛽 level
occurs during the endochondral ossification phase [155]. The
study conducted by Cho et al., concerning presence of
RNA for each TGF-𝛽 isoform, showed that TGF-𝛽1 RNA is
intensively expressed during the whole healing process, while
TGF-𝛽2 RNA and TGF-𝛽3 RNA levels are the highest on the
7th day of the fracture [156]. Meyer Jr. et al. recorded the
highest TGF-𝛽 RNA levels within callus in a period from
the 7th to 14th day of the fracture [157]. In another study,
Wildemann et al. found that the TGF-𝛽1 RNA level increases
constitutively within callus from the 5th to 15th day of the
fracture [158]. Analysing available literature and results of
studies conducted in animal models concerning TGF-𝛽
presence and considering also slightly different methodology
of each study, it can be said that the highest callus levels at the
fraction site are found directly after the fracture and on onset
and duration of the reparative phase; moreover, Andrew et al.
found that the animal model sufficiently reflects phenomena
occurring after fracture in humans [152–159]. Not only does
increased expression of TGF-𝛽 ligands occur in callus, but
it is accompanied by increased expression of T𝛽RI and
T𝛽RII receptors and intracellular proteins such as Smad2 and
Smad3, directly involved in signal transduction to the nucleus
and whose increased presence is correlated with increased
TGF-𝛽 levels [160, 161].

3.2.2. Systemic Expression andConcentration of TGF-𝛽. Apart
from its local expression at the fracture site, TGF-𝛽 is also
distributed systemically, which is reflected by its increased
serum levels in circulating blood. Levels of circulating TGF-
𝛽 are lower than those found at the fracture site, while its
level is significantly increased versus serum collected from
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healthy control groups [26, 162]. It was observed that the
TGF-𝛽 serum level increases gradually during the first two
weeks reaching its maximum level on the 14th day of the
fracture, and then, during the next 24 weeks, it decreases
slowly reaching levels noted in patients from control groups
[26, 162, 163]. Also a significant difference was observed
between TGF-𝛽 serum levels in patients with correct bone
healing and groups of patients with delayed or nonunion
fracture healing [26, 162, 163]. One of the reasons, which was
correlated with decreased TGF-𝛽 levels and delayed union, is
smoking of cigarettes, where serum TGF-𝛽 levels in patients
with fractures were significantly lower in the smoking group
versus the nonsmoking patients [164–166]. Li et al. also
presented a hypothesis that increased serum TGF-𝛽 levels in
patients with close fractures may predispose to tuberculosis
(MTB, TB) development [167].

3.3. Multiple Actions of TGF-𝛽 on Fracture Site Microenviron-
ment. TGF-𝛽 and BMP families belong to the best known
groups of compounds having the effect on the bone tissue
[168]. The bone tissue is the largest TGF-𝛽 reservoir in the
body, and it contains more than 200𝜇g/kg of wet weight,
whereas thrombocytes represent the most concentrated
source of TGF-𝛽 around 20mg/kg of wet weight [169, 170].
Almost every cell in a body is able to synthesise and respond
to TGF-𝛽 ligands, and, in a case of cell lineages engaged
in the bone healing process, this response also depends on
differentiation degree of a relevant cell, presence of other
cells, and an effect of other cytokines and growth factors.
A moment when the bone tissue continuity is disrupted
following an injury or osteotomy is also the moment when
TGF-𝛽 starts to fulfill its physiological role in the processes
of proliferation, differentiation, and synthesis of cartilage and
bone tissue, collectively known as the bone healing process
(Figure 4). Cellular effects caused by TGF-𝛽 attachment to
cell surface can be viewed as specific connection between the
inflammatory and the repair phases during fracture healing.
The main sources of TGF-𝛽 present during the bone healing
process are practically all cells involved in that process,
incoming blood platelets, and the surrounding ECM releas-
ing TGF-𝛽 following a mechanical injury causing tissue
ischaemia and local change in pH, facilitating release not
only of TGF-𝛽, but also of other growth factors, such as
PDGF, VEGF, or BMP-2 [171, 172]. Functionally, multidirec-
tional TGF-𝛽 effects are based on autocrine and paracrine
signalling and, in the cellular aspect, on induction of ECM
production and ossification, resulting in bone healing. One of
the most important TGF-𝛽 functions is its chemotactic abil-
ity, enabling recruitment of MSC, chondroprogenitor cells,
osteoprogenitor cells, fibroblasts, and immune cells such as
macrophages, monocytes, and T-cells [173–177]. At the same
time, at early stages, TGF-𝛽 inhibits activation, proliferation,
and differentiation of osteoclasts and moreover induces their
apoptosis and additionally promotes development of callus
and prevents its premature resorption, as only during the
remodelling phase TGF-𝛽 becomes a regulator of its activity
[178–181].

The TGF-𝛽 effect on the cartilage tissue includes prolifer-
ation of precursors or immature chondrocytes and increased

ECM production in the cartilage [182]. For the bone tis-
sue cells, TGF-𝛽 plays a crucial role in their proliferation
and differentiation in bone development and remodelling
processes. TGF-𝛽 controls proliferation and remodelling of
osteoblasts both in vitro and in vivo, but the final result
of that control also depends on the cell differentiation level
and the surrounding environment. TGF-𝛽 effect on young
forms promotes their proliferation while inhibiting terminal
differentiation [183, 184]. It was also demonstrated that TGF-
𝛽 can have a negative effect on osteocalcin and alkaline
phosphatase (ALP) synthesis through osteoblasts [184, 185].
Other components also synthesised by cells of the cartilage
and the bone tissues due to the TGF-𝛽 effect include I, II, III,
V, VI, and X collagen, fibronectin, osteopontin, osteonectin,
thrombospondin, proteoglycans, and alkaline phosphatase
[138, 186]. Apart from secretion of components contributing
to fracture healing, TGF-𝛽 can also influence synthesis of
other growth factors such asVEGF [187, 188]. One of themost
crucial components during bone healing process is redevel-
opment and restoration of microvasculature and microcir-
culation supplying oxygen and nutrients to the fracture site
and creating another route for penetration by other cell types,
penetrating the damaged site via blood vessels [189, 190].
TGF-𝛽 is also one of the angiogenic factors promoting
development of new blood vessels, such as VEGF [191–194].
Full and comprehensive understanding of the TGF-𝛽 role in
the bone healing process still poses difficulties, as often it has
different and opposite cellular effects depending on numer-
ous factors, and full interpretation of studies conducted in
different models is often insufficient to consider a given effect
to be typical and always occurring with the same intensity. It
should also be remembered that TGF-𝛽 effects occur within
a “growth factor network”; thus the synergistic effect is visible
as a resultant cellular effect of all involved compounds.

3.4. Potential Clinical Approach and Evaluation of
Using TGF-𝛽 in Fracture Healing

3.4.1. Analysis of Several In Vivo Studies in Using TGF-𝛽
to Enhance Bone Healing. The TGF-𝛽 effect is continuously
studied in various animal models to analyse possibilities
for its use in the clinical therapies for fracture healing.
Abundance and variability of methodologies in individual
studies allow us to review only some of them; however, they
ensure sufficient insight in the TGF-𝛽 effect on the fracture
healing process in an animal model in various conditions,
involving both small and large animals. Joyce et al. performed
subperiosteal injections of TGF-𝛽1 and TGF-𝛽2 to newly
born rats, at doses ranging from 20 to 200 ng, and they
observed that subperiosteal MSC starts to proliferate and
differentiate at the injection site, inducing chondrogenesis
and osteogenesis, and that TGF-𝛽2 has stronger effect than
TGF-𝛽1 [195]. Results obtained by Joyce et al. were addition-
ally confirmed by Sun et al. in a similar experimental model
[195, 196]. The experiment of Beck et al., concerning local
administration of TGF-𝛽1 at doses ranging from 0.5 to 5 𝜇g
to rabbits with skull defect, caused stimulation, recruitment,
and proliferation of osteoblasts at the defect site resulting
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Figure 4: A schematic representation of TGF-𝛽 interactions and effects in fracture site. TGF-𝛽: transforming growth factor beta; MSCs:
mesenchymal stem cells; VEGF: vascular endothelial growth factor.

in healing [197]. Lind et al. administered TGF-𝛽1 and TGF-
𝛽2 with an osmotic minipump to adult rabbits with induced
tibial bone fracture at a dose ranging from 1 to 10 𝜇g for six
weeks, and after the end of the experiment they observed
an increased mechanical strength in the fracture site and
increased callus formation versus the control group not
receiving TGF-𝛽 [198]. Nielsen et al. in their study in the rat
model with local administration of TGF-𝛽1 and TGF-𝛽2 at
the level of 4 to 40 ng/day to the fracture site in the tibial bone
also observed an increased mechanical strength and callus
formation at the fracture site, but only in the group receiving
40 ng/day [199]. Critchlow et al. in their study in the rabbit
model with local administration of TGF-𝛽2 at the level of 60
to 600 ng/day to the fracture site in the tibial bone after 14
days of observations did not note an increased mechanical
strength, and callus formation at the fracture sitewasminimal
[200]. Heckman et al. in their study in the dogmodel, with no
healing in the radius, applied a local implant of biodegradable
polymer carrier containing BMP and TGF-𝛽1, depending on
the group, and they found that only the carrier containing
BMP had a positive effect on induction of bone growth,

while the carrier containing 10 ng of TGF-𝛽 did not give a
significant effect on the bone, also when combined with BMP
at various doses [201]. Schmidmaier et al. conducted a series
of experiments in animal models on combined use of TGF-
𝛽 and IGF-1 and they demonstrated that both TGF-𝛽 and
IGF-1 have an advantageous effect on induction of improved
bone healing, but when combined that effect is significantly
magnified [148, 202–204]. The analysis of a broad spectrum
of experiments conducted in animal models proves that local
application of TGF-𝛽 has a positive effect on speed and qual-
ity of resultant tissue and on completion of the bone healing
process, and the final effect depends on whether TGF-𝛽 was
supplemented systemically or locally, the form of its supple-
mentation, and whether it was present in combination with
other growth factors or specific cell populations [205–209].

3.4.2. Potential Clinical Use of TGF-𝛽 to EnhanceHuman Bone
Healing. The analysis of available literature does not provide
a clear answer to the following question: what are the effects of
therapy involvingTGF-𝛽on fracture healing in humans?Also
effectiveness of platelet-rich plasma (PRP) administration, a
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blood derived preparation obtained from human blood with
the increased platelet concentration, in fracture therapy, is
still being studied and discussed [210–212]. PRP is a prepa-
ration containing supraphysiologic concentrations of growth
factors including TGF-𝛽; therefore, indirect interpretation
can be attempted for the PRP effect on possible TGF-𝛽 as a
part of previous studies on bone healing [213]. So far, a num-
ber of randomised studies in humans on PRP effectiveness
in fracture therapy are scarce [210–212]. Considering the
methodological limitations, interpretation of individual
available results cannot ensure a sufficient statistical value
allowing a clear answer on PRP effectiveness in fracture
healing. Dallari et al. analysed use of PRP and lyophilized
bone chips in patients undergoing high tibial osteotomy;
they obtained significant increase in quantity and quality of
the bone tissue versus patients administered only lyophilized
bone chips [214]. A similar study on PRP use during the high
tibial osteotomy procedure was conducted by Peerbooms
et al., where a positive effect of combined PRP and lyophilized
bone chips use was not observed [215]. Apart from the two
exemplary studies described above, also other studies on PRP
applications were conducted, for example, during surgical
fusion of other long bones, distraction osteosynthesis, and
spine fusion, which also do not provide a clear answer
concerning PRP use, and to a large extent this is also limited
by methodology of these studies [216–220]. Unfortunately,
an analysis of an isolated TGF-𝛽 effect on the bone healing
process in humans is currently impossible and is limited by
the fact that so far no study was conducted concerning the
effect of that growth factor on bone healing in humans.

3.4.3. Association between Polymorphisms in the TGF-𝛽 Fam-
ily Gene and Potential Susceptibility to Fracture. A broad
spectrum of the TGF-𝛽 family effects on the bone tissue is
also visible in a direct effect on its metabolism, involving
continuous resorption and synthesis of bone structures [181].
A disturbance of a subtle balance of these processes results in
osteoporosis (OP), disease related to reduced bone mineral
density (BMD) [221]. Significantly increased risk of fractures
and possible complications during the fracture healing pro-
cess are factors inseparably related to and correlated with
osteoporosis [222, 223]. Many independent authors confirm
that one of themain factors correlatedwith that disease devel-
opment is a genetic factor manifested as presence of various
mutations in the human genome, including genes encoding
TGF-𝛽 [224]. A polymorphism analysis for genes encoding
TGF-𝛽 in various populations proves that the polymorphisms
most frequentlymentioned by authors and potentially related
to the increased OP and, indirectly, fracture risks are T29C,
C509T, T869C, G915C, and 713-8delC polymorphisms and
potentially C1348T and C788T [225–230].

4. Conclusions and Perspective

Bone healing is a complex process involving many types of
cells and their interactionsmediated by cytokines and growth
factors. This paper presents a current collective analysis of

the possible effect of one of the most important growth factor
families, TGF-𝛽, on the bone healing process. It presents
specifications of TGF-𝛽 ligands and their dedicated receptor
complexes; the analysis also focused on the intracellular
signal transduction pathway to the nucleus, with emphasis
on possible anabolic cellular effects generated by TGF-𝛽
during the bone healing process. Furthermore, on the basis of
current global literature, a direct and an isolated TGF-𝛽 effect
was analysed in numerous animal models, including studies
in large and small animals. The reliability of conclusions
drawn on the basis of described and analysed numerous,
multicenter, and independent studies by us can prove their
applicability as a part of numerous methodologies. Also, a
potential TGF-𝛽 effect on bone healing was described, as
an attempt of indirect interpretation of the PRP effect as a
possible TGF-𝛽 effect during previously conducted studies
on fracture healing. Additionally, this paper notes TGF-𝛽
gene polymorphisms which can imply an impaired biological
function of this growth factor within the bone tissue, mani-
fested as an increased predisposition to osteoporosis. In the
light of collected information, the TGF-𝛽 family can poten-
tially be considered one of the most important factors stimu-
lating and controlling the bone healing process. Although its
role has been directly proven mainly in many animal models
and cell cultures, it is considered that the observed TGF-
𝛽 biological effect on bone and cartilage tissues correctly
reflects its potential function in humans [159]. Currently, in
the clinical practice, isolated TGF-𝛽 is not used in treatment
of fractures or bone healing disorders. Probably, it is caused
by insufficient studies on possible complications and side
effects, for example, related to potential development and
exacerbation of cooccurring cancer, as well as to induction
of the immunosuppressive condition [231–234]. Currently,
PRP is used in treatment of bone healing disorders or other
diseases of themusculoskeletal system; however, results of the
studies concerning effectiveness of this therapy and its long-
term effects are not unambiguous. This may indicate still not
fully knownmechanisms of growth factors effects as a part of
a “growth factor network,” meaning that it may be necessary
to search for targeted fracture therapies with isolated TGF-
𝛽, considering results of the studies in animal models. Many
independent authors emphasise a need to conduct further,
more detailed studies on the TGF-𝛽 family participation, not
only on effects or possible treatment of healing disorders, but
also in terms of the widely understood regenerative medicine
of other organs and tissues, to better learn and understand
properties of this family [235–239]. It would enable and surely
accelerate finding an answer to the question whether safe and
targeted use of the therapy with isolated TGF-𝛽 in humans
is justified. However, earlier it will not be possible to answer
questions concerning full knowledge about the TGF-𝛽 role in
the bone healing process.
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[95] F. López-Casillas, H. M. Payne, J. L. Andres, and J. Massagué,
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