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ABSTRACT

Motivation: Translating findings in rodent models to human models

has been a cornerstone of modern biology and drug development.

However, in many cases, a naive ‘extrapolation’ between the two

species has not succeeded. As a result, clinical trials of new drugs

sometimes fail even after considerable success in the mouse or rat

stage of development. In addition to in vitro studies, inter-species

translation requires analytical tools that can predict the enriched

gene sets in human cells under various stimuli from corresponding

measurements in animals. Such tools can improve our understanding

of the underlying biology and optimize the allocation of resources for

drug development.

Results: We developed an algorithm to predict differential gene set

enrichment as part of the sbv IMPROVER (systems biology verification

in Industrial Methodology for Process Verification in Research)

Species Translation Challenge, which focused on phosphoproteomic

and transcriptomic measurements of normal human bronchial epithe-

lial (NHBE) primary cells under various stimuli and corresponding

measurements in rat (NRBE) primary cells. We find that gene sets

exhibit a higher inter-species correlation compared with individual

genes, and are potentially more suited for direct prediction.

Furthermore, in contrast to a similar cross-species response in protein

phosphorylation states 5 and 25 min after exposure to stimuli, gene set

enrichment 6 h after exposure is significantly different in NHBE cells

compared with NRBE cells. In spite of this difference, we were able to

develop a robust algorithm to predict gene set activation in NHBE with

high accuracy using simple analytical methods.

Availability and implementation: Implementation of all algorithms is

available as source code (in Matlab) at http://bhanot.biomaps.rutgers.

edu/wiki/codes_SC3_Predicting_GeneSets.zip, along with the relevant

data used in the analysis. Gene sets, gene expression and protein

phosphorylation data are available on request.
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1 INTRODUCTION

Although rodents diverged from primates around 75 million
years ago, the common origin of eukaryotic multicellular organ-

isms suggests that basic mechanisms in all complex life should be

governed by similar pathways and principles. This simple

observation has led to the successful use of in vivo rat and
mouse models to understand biological mechanisms in

humans. In particular, the initial phases of drug development

rely heavily on knowledge gained from in vitro and in vivo

experiments on model organisms, primarily from rat and
mouse models. However, rats or mice often differ from

humans in their response to stimuli (Hackam et al., 2006;

Pound et al., 2004; Rice, 2012; van der Worp et al., 2010). An

open problem in the field is to understand these differences, es-
pecially those that affect mechanisms of pathway activation.

There remains a continuing need to develop better analytical

methods and modeling techniques to translate information

from in vitro rat/mouse studies to accurate models of pathway
activation in humans.

In addition to response differences at the tissue level,
one also expects differences at the cellular level in rat and

human cells subject to the same stimulus. Part of the difference

in cellular response is probably because of changes in the

promoter and gene sequence that alter cellular pathways. This
would result in changes in expression levels, thresholds,

reaction rates and activation times resulting in differences

in the way a stimulus may activate a given pathway. For

instance, mouse embryonic stem cells self-renew when the
LIF/Stat-3 signaling pathway is activated, but human embryonic

stem cells do not (Sato et al., 2004); both cell types,

however, respond similarly to Wnt activation (Sato et al.,

2004). Similarly, mouse and human leukocytes respond
differently in terms of their gene expression to stimuli that

induce inflammation (Mestas and Hughes, 2004; Seok et al.,

2013).
In general, one expects that there may be significant

differences between species in the way single genes get activated.

However, the regulation of collections of genes that act
in concert (gene sets) to activate pathways, or respond to activa-

tion of a pathway, might be expected to be more similar

(Subramanian et al., 2005). As many cellular pathways are*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://bhanot.biomaps.rutgers.edu/wiki/codes_SC3_Predicting_GeneSets.zip
http://bhanot.biomaps.rutgers.edu/wiki/codes_SC3_Predicting_GeneSets.zip
mailto:hormoz@kitp.ucsb.edu
-
-
-
-
due to
 very
Since
XPath error Undefined namespace prefix


regulated by phosphorylation levels of specific families of

proteins, one way forward is to develop methods to predict

activation of pathways in human cells from measurements of

protein phosphorylation and gene (or gene set) expression

levels in rats under a variety of stimuli.

The sbv IMPROVER (systems biology verification in

Industrial Methodology for Process Verification in Research)

Challenges are an industry initiative focused on verifying the

strengths and weaknesses of systems biology methods on

a variety of biological problems by tapping the ‘Wisdom of

Crowds’ (Meyer et al., 2012). As a part of this goal, the organizers

held the Species Translation Challenge (STC), a challenge specif-

ically focused on translating biological responses observed in rat

to human, given the same set of perturbations in comparable cell

lines (Rhrissorrakrai et al., 2015). This challenge allowed teams

of researchers, including us, to compare the performance

of different methods to translate results within and between

species.

In the specific challenge described here, the so-called

Inter-Species Pathway Perturbation Challenge (Sub-challenge 3

or SC3), we used phosphorylation level and gene expression

data from normal rat bronchial epithelial (NRBE) and normal

human bronchial epithelial (NHBE) cells to develop a predictive

model of the activation of pathways/gene sets in humans

from measurements in rats. The model was trained on a set

of stimuli and tested on data from the same experimental

design using different stimuli. In the training data, we were

provided with measurements on both rat and human cells,

whereas in the test data, we were provided only with measure-

ments in rat. The challenge was to develop a model on the

training data and use it to predict pathway activation in

human cells using the rat test data. The results from each

team were compared with a ‘gold standard’ dataset on human

cells using the same stimuli. Our method, which we

describe below, was judged to be the best performer in this

sub-challenge.

The outline of the article is as follows. First, we describe how

the raw data were processed to identify statistically significant

signals. Next, we discuss inter-species correlations (human and

rat) for both gene sets and gene expression level data. In

principle, there are two possible strategies available to predict

differential expression (enrichment) of human gene sets from

the rat data (see Fig. 1): (i) one possibility is to use a direct

method, where the human gene set enrichment scores are learned

from those in rat training data (Rat A/Human A) and then

applied to the rat test data gene set scores (Rat B) to predict

human gene set scores; (ii) the second possibility is to use an

indirect method, where human gene expression levels are learned

from gene expression levels in rat in the training data and applied

to the Rat B gene expression test data to get human expression

predictions. Finally, the predicted Human B gene expression

levels could be used in a gene set enrichment algorithm

(GSEA) (Subramanian et al., 2005) to predict human gene set

scores. Although we attempted both methods, for our final

prediction, we used only the direct method [method (i)]. Below,

we outline our reasons for choosing the direct method followed

by a detailed description of the prediction algorithm we used for

our predictions.

2 METHODS

2.1 Data generation

Half of the human data generated for the STC was made available to the

participants as training data (Poussin et al., 2014), while the other half

was kept hidden from participants and used as the gold standard to score

participant predictions in the STCs SC3. The data consisted of phopsho-

proteomic, cytokine and gene expression data measured on normal bron-

chial epithelial primary cells from human and rat. These cells were

exposed to 52 different compounds or to normal growth media for con-

trol (DME: Dulbecco’s modified Eagle’s medium) and then lysed at dif-

ferent time points depending on the type of measurement done.

Phosphoproteins were measured at 5 and 25min , gene expression was

measured at 6 h and cytokines at 24 h after adding the stimulus (com-

pound). The exposure of cells to each stimulus was performed in tripli-

cate, and in four to six replicates for the DME control. The

phopshoproteomic experiments were performed using Luminex xMAP

technology and involved measuring the phosphorylation status of 16 pro-

teins under the different conditions. Similarly, 22 cytokines were mea-

sured using the same platform.

The gene expression data were collected on Affymetrix HG-U133

Plus2 platform for human cells and Rat 230 2.0 for rat cells and processed

using GCRMA (Wu et al., 2004). For a more complete description of the

data generation and a list of genes and gene sets, see Rhrissorrakrai et al.,

2015 in this issue or (Poussin et al., 2014).

2.2 Processing gene expression data

Our primary goal in the processing of the gene expression data was to

remove artifacts in the data and extract the statistical significance of the

remaining signal. We were motivated by two broad characteristics of

microarray data: (i) existence of outliers owing to various systematic

errors that are not correctable using standard statistical tests; (ii) a

saturation effect observed in the measurements, caused by a saturation

of the fluorescence signal resulting from the specifics of hybridization and

Fig. 1. We predict gene set enrichment in human bronchial epithelial cells

under a diverse set of stimuli (B) from measurements of gene set

enrichment in rat cells under the same stimuli. We considered two distinct

approaches: (i) a direct method where the algorithm was trained only on

the gene set measurements (set A), and a direct prediction was made on

the enrichment scores of set B. (ii) An indirect method where the gene

expression levels were used for training and prediction. A GSEA was then

used to infer the gene set enrichment scores. Blue boxes are the available

data; red is to be predicted
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imaging techniques used in microarray technology. Although it is claimed

in the conventional use of microarray technology that the non-linearity

introduced in the signal by this saturation effect should not impact iden-

tification of differentially expressed genes, we believe that it distorts the

true correlation between the gene expression signal and the level of phos-

phorylation of the corresponding proteins. We decided to correct the

saturation effect by studying the properties of noise in the gene expression

data.

First, we characterized the level of noise in the gene expression data.

Our starting assumption is that the observed noise is because of the

measurement process. Biological fluctuations in gene expression are aver-

aged out because of the ensemble (many cell) nature of the measurement.

However, there is still variation in expression level from multiple meas-

urements on the same biological extract. The present dataset had few

replicates, which creates a substantial problem in identifying true meas-

urement noise and makes it difficult to pinpoint outlier values. The

statistical uncertainty in the standard deviation estimated from three/

four replicates is large. To get around these issues, we made the reason-

able assumption that the measurement noise is only a function of the

mean expression level and independent of the gene type. Although this

ignores potential sequence-dependent hybridization effects, it has been

shown to be true on average (Tu et al., 2002), and it allows us to char-

acterize the noise to a good accuracy.

In this context, the following algorithm was used:

� Universal noise curve: The mean and standard deviation was calcu-

lated for a given stimulus and gene over the three/four available

replicates. The mean expression levels were binned into 14 bins;

the mean expression levels within a given bin were combined and

their standard deviations averaged. This procedure produces a uni-

versal noise curve of the gene expression data, which is shown in

Figure 2.

� Removing the outliers: For each given gene and stimulus, the repli-

cates were used to calculate the mean expression level. The corres-

ponding noise for that mean expression level was interpolated from

the universal noise curve (see above). Replicate measurements that

were43 SD from the mean were designated as outliers and removed.

A new mean was calculated using the remaining replicates and the

procedure repeated. If only one replicate remained, the gene/stimulus

combination was discarded and not used in the subsequent analysis.

� Linearizing the signal: The universal noise curve has the peculiar

feature that the noise decreases as the mean expression level in-

creases. We attribute this to a saturation effect in microarray

signal. One expects that the true measurement noise is independent

of the mean expression level. Assuming this, we use the following

procedure to correct the observed signal as follows: Let F(g) be the

observed signal (with the saturation non-linearity) when the true

signal is g. If the noise in g, denoted by dg, is independent of g,

then the universal curve is exactly dF/dg. We can then reconstruct

the non-linear filter by simply integrating the noise curve to obtain F

as a function of g and applying the inverse of this function to the

mean expression level for each replicate to get a linearized signal (see

Figure 2).

� Signal and its statistical significance: For the remainder of the ana-

lysis, i.e. both training and prediction, the linearized signal was used.

We computed the statistical significance of the signal by applying a

students t-test to the mean expression level of the replicates, after

removing outliers as discussed above. This gave us a list of genes that

were significantly differentially expressed between the treated/stimu-

lated cells and controls. For the t-test, we used the value of the

standard deviation from the universal curve corresponding to the

computed mean expression level rather than just the standard devi-

ation over the uncorrected replicate measurements.

2.3 Processing gene set data

We used no further processing on the GSEA (Subramanian et al., 2005)

of the human and the rat genes provided by sbv IMPROVER. The

normalized enrichment score (NES) was used as the signal, with the

false discovery rate (FDR) value as the corresponding statistical signifi-

cance for both the human and the rat gene sets. For a complete list of

gene sets, see Poussin et al. (2014).

2.4 Classification algorithm

Principal component analysis (PCA) was performed using Matlab (TM)

implementation (pcascat.m, by Marc Strickert), which is publicly avail-

able under the GNU public license, version 2, as a part of the package

CbMDS at the machine learning open-source software repository: https://

mloss.org/software/view/438.

We used classify function of the Statistics Toolbox of Matlab (TM)

implemented in Matlab R2010b. For the final prediction, classify was

called using the ‘diaglinear’ option, which fits a multivariate normal dens-

ity to each group with a pooled estimate of covariance with the non-

diagonal entries of the covariance matrix set to zero. This is a naive

Bayes classifier (Krzanowski, 1988). We also tried the ‘linear’ option,

where the full form of the covariance matrix is used, and saw no improve-

ment. We set the ‘prior’ option of the classify routine to ‘empirical’ so

that group prior probabilities were estimated from the group relative

frequencies in training.

3 RESULTS

3.1 Designating on/off

A substantial challenge was to find a prudent method for desig-

nating when a gene is turned on. Although we had computed the

statistical significance of the observed gene expressions for each
stimulus (see above), we needed a threshold on the P-value to

designate a significant expression event. We chose a sharp thresh-

old of P50.01 to designate a gene expression level as signifi-

cantly different from that of the control. The accuracy of the
prediction did not depend sensitively on this threshold.

For the gene set data, an FDR (Subramanian et al.,
2005)50.25 was designated as a significant change in expression

level in both rat and human. We binarized the gene set data using

this threshold.
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Fig. 2. (A) Universal noise curve. Standard deviation of gene expression

levels over the replicates versus their mean expression level. The mean

expression level of replicates for all genes and stimuli was coarse grained

into 14 bins, and the standard deviation was averaged for all set of rep-

licates in a given bin. (B) Saturation curve of gene expression data, com-

puted by integrating the noise curve. This curve for F was used to remove

the saturation effect by applying the inverse of F to the gene expression

signal

494

S.Hormoz et al.

due to
due to
,
more than 
three
standard deviations
ene 
et 
nrichment 
nalysis
NES (
-
(false discovery rate) 
https://mloss.org/software/view/438
https://mloss.org/software/view/438
p 
 (false discovery rate)
below 


With P-value thresholds for gene expression and gene sets

determined, we converted the signals to binary form, with 1

designating a statistically significant change compared with the

control and 0 designating no change.

3.2 MI of gene sets

In the description below we refer to genes, but the same analysis

was also performed with the gene sets. With the binary data at

hand, we can define the probability of observing a gene in the on-

state over all 26 stimuli. For instance, a gene that is on for 13 of

the 26 stimuli has 0.5 probability of being observed in the on-

state. We can then compute the Shannon entropy of a given gene

using the formula,

H ðcÞ=�
X

c=0;1

pðcÞ log pðcÞ ð1Þ

Similarly, we can construct a joint distribution for every gene

pair in rat and human, which is the probability of observing both

the gene in rat and its ortholog in human turning on for a given

stimulus. The information content of the joint distribution can be

computed in a similar fashion,

H ðg; cÞ=�
X

g=0;1

X

c=0;1

pðg; cÞ log pðg; cÞ ð2Þ

Finally, the mutual information (MI) for every gene–ortholog

pair can be computed from their Shannon entropies and their

joint entropy.

Iðg; cÞ=H ðcÞ+H ðgÞ �H ðg; cÞ ð3Þ

A gene–ortholog pair that has high MI is one where the on-/

off-state of the rat gene is highly correlated with the state of its

ortholog human gene. The expression level of such a rat gene can

be useful in predicting the state of its human ortholog. As several

human genes are orthologs of the same rat gene and vice versa,

we computed gene–ortholog MI for all such pairs, including the

multiplicity of ortholog pairs.
Figure 4 shows the top four gene set pairs between human and

rat with the highest MI. We observed some interesting features in

the inter-species correlations among gene sets. First, the com-

puted inter-species gene set MI and correlation coefficients are

low compared with their values in inter-species phosphorylation

level (Biehl et al., 2014) and intra-species gene–phospho pairs

(Dayarian et al., 2014). A concrete manifestation of this discrep-

ancy can be observed in the cumulative number of gene set

activations, where the total number of ON events (FDR50.25)

for the rat gene sets is three times those of the human gene sets

for the 26 known stimuli (set A).
We computed the statistical significance of the MI of the gene

sets by repeating the above analysis on randomized datasets

obtained by randomly permuting the stimuli. This generates a

distribution for MI expected from chance alone, which can be

used to infer the P-value of the measured MI. The top four gene

sets shown in Figure 4 were found to be statistically significant

(P50.05). We find that (Fig. 6A) a MI value50.15 bits is no

longer statistically significant.

To confirm that the observed correlation is not biased by the

choice of the 26 test stimuli, we repeated the same analysis for all

52 stimuli. The MI is lower with all 52 stimuli accounted for;

however, the statistical significance does not decrease. This is

because it is less likely to observe a high MI by chance for 52

stimuli compared with 26. Moreover, the highest MI gene set

remains M1017, and the next three highest remain in the top

5% of the gene sets with highest MI across all 52 stimuli.
We observed the peculiar feature that the gene set with the

highest MI (genes involved in DNA replication) was negatively

correlated. More precisely, for a given stimulus, when the gene

set is activated in human, it is not activated in rat and vice versa

(Fig. 4, first panel). To determine whether this is an artifact in the

data analysis (possibly owing to the algorithm used for GSEA)

or an inherent feature of the data, we computed the correlation

between the expression levels of the ortholog genes directly,

avoiding the intermediate step of GSEA analysis. Moreover, if

the correlation between the expression levels of ortholog genes is

significantly larger than that of the gene sets, it is possible to take

an indirect route for prediction: predict the gene expression level

of the orthologs in Human from that of the Rat, then convert the

predicted gene expression pattern to gene set enrichment scores

using established algorithms for GSEA. We outline the analysis

of the gene expression levels next.

3.3 Correlating the inter-species gene expression levels

We considered all rat genes and their corresponding human

ortholog (see list of ortholog genes on sbvIMPROVER website).

As noted, there was significant redundancy in the ortholog

matching, with more than one human gene corresponding to a

rat gene and vice versa. For each such ortholog pair, we com-

puted the MI and correlation coefficient over the 26 known

stimuli using the method described above. A high MI means

that a significant expression of a particular gene in rat under a

given stimulus implies significant expression of the ortholog

human gene under the same stimulus.

Figure 7 shows the ortholog pairs with the highest MI. The

linearized signal is used to display the expression level of a given

gene under a particular stimulus (see Section 2 above).

Surprisingly, in agreement with the results from gene set ortho-

logs, the highest MI corresponds to ortholog pairs that are nega-

tively correlated (Rat Gene: 10121 and Human Gene: 16100,

DPP4). Here, negative correlation means that when the human

gene is over-expressed compared with its control under some

stimulus, its rat ortholog is under-expressed compared with its

control subject to same stimulus. This suggests that the negative

correlation between inter-species gene sets is potentially a conse-

quence of the underlying biology (see Discussion), and not an

artifact of the GSEA algorithm.
Furthermore, we computed the correlation coefficient of the

expression level of the 192 ortholog genes in the gene set for

DNA replication. These genes were on average no more nega-

tively correlated than a randomly chosen pair of ortholog genes.

GSEA can go beyond this naive analysis and reveal correlations

between groups of genes.
We also considered the statistics of the correlations

observed in the ortholog pairs and compared them with the

correlations between the gene sets (see histogram in Fig. 6).
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The ortholog genes seem to exhibit similar levels of inter-species
correlation (quantified by MI) compared with the gene sets.

However, as many genes correspond to a set, the noise from

an indirect comparison might be greater. Also, as there are
many more genes than gene sets, the statistical significance

of the MI between genes is inevitably lower than that of

gene sets. To avoid overfitting in predicting human gene sets in
the test data, we decided to use only the gene set enrichment

scores.

3.4 Predicting the human gene sets

A probabilistic classification algorithm was used to predict

the human gene enrichment scores. We used a naive Bayes clas-

sifier (Duda et al., 2000; Hastie et al., 2009) implemented
using Matlab statistics toolbox (Methods). The training

data for the classifier were a simplified representation of the

combined rat A and B NES scores using a certain number
of principal components (see below for the optimization proced-

ure for the number of principal components). Figure 3 shows

the first eight principal components (see Methods for
implementation) of rat NES data under the 52 stimuli of sets

A and B.
Keeping the leading principal components captures the collect-

ive and correlated changes of the gene set under a given stimu-

lus (observed empirically in the data) and discards irrelevant
fluctuations from noise. PCA also allows us to consider linear

combination of gene sets as opposed to individual gene sets.

This should enhance predictive power if the intra-species correl-
ation among gene sets is important. One expects that if gene set

A is always differentially expressed when gene set B is on, the

state of gene set A can be predicted using the prediction of gene
set B, even if a direct prediction of A is not possible from the rat

data.
Figure 8 is a diagram for the classifier algorithm. The rat NES

scores in sets A and B were combined into a 246 by 52 dimen-

sional matrix, corresponding to the 246 gene sets and the 52
stimuli in sets A and B. PCA was performed to find linear com-

binations of gene sets that exhibit the largest variation over the

52 stimuli (Fig. 3). For the classification, the N leading principal
components (which are linear combination of gene sets) were

used. To predict gene set g under stimulus s (from set B)

in human, the following protocol was used. After PCA, the

rat NES A data were reduced to 26 points in an N-dimensional

space. To each point, we associated the label 1 if gene set g was

on in human (FDR50.25) and the label 0 otherwise. The

naive Bayes classifier was used to find a hyperplane that

separated the 0 s from the 1 s. In general, an error-free linear

separation cannot be achieved. To make the prediction, the

rat NES score under stimulus s was expressed in terms

of the principal components and added as new point into

the N-dimensional space. Depending on which side of the

hyperplane the point falls on, a classification of 0 or 1 was

assigned.

A

B

Fig. 4. Comparing the correlation between gene sets of human and rat.

(A) The rat versus human FDR scores of a given gene set are shown for

the 26 stimuli in set A (blue dots). Stimuli with expression levels signifi-

cantly different from those in control are marked with green squares for

rat and red circles for human. When the two markers overlap, that par-

ticular stimulus results in a similar response in the two species. The high-

est MI is surprisingly between gene sets that are negatively correlated. In

general, the correlation is lower than the intra-species gene and phosphor-

ylation or the inter-species phosphorylation patterns. The legend above

each subplot shows the inter-species MI I and the Pearson correlation

coefficient �. The gene sets shown are M1017, DNA replication; M852,

NF�B activation by TAK1 through phosphorylation and IKKs complex;

M940, NF�B activation by TRAF6; M63, osteopontin-mediated events

(Subramanian et al., 2005). (B) The first two gene sets, with the additional

26 stimuli of the test set also, shown (triangles). M1017 remains the gene

set with the highest inter-species MI through anticorrelation. Although

MI is lower, the statistical significance is not diminished

Fig. 3. PCA of the training data. (A) The gene set enrichment data (NES

score) of the 246 rat genes (rows) as a function of the 52 stimuli (columns)

used in the experiments. (B) The first eight principal components of the

data in (A). The first principal component clearly shows the largest vari-

ation over the stimuli. The variation decreases for higher ranked

components
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The pseudo-code of the above algorithm with an additional
leave-one-out verification step is as follows:

- Combine rat NES A and B into a 246 by 52 matrix - Apply pcascat to extract
the principal components - Discard all but first N principal components
- Go through stimuli to be predicted, PredStim, 1 to 26
-Go through 26 known stimuli and leave out stimulus LeaveOutStim
- Construct the training set with LeaveOutStim removed
- Go through all 246 gene sets, gSet, 1 to 246

- Labels of the groups for the classifier will be the on/off designation of gSet
under the 25 stimuli from the Human A FDR values.

- If gSet is turned on in Human for at least one stimulus then

- Classify the PC representation of rat NES B under stimulus PredStim using
Bayes naive classifier trained on 25 points of pccast rat NES A labeled as
above.
- Human prediction for gSet under PredStim is the posterior probability of
ON classification averaged over 26 LeaveOutStim

- End if.

- Loop - Loop - Loop

The Matlab (TM) classify function provides a posterior prob-
ability of the input belonging to a certain classification group.

We used the probability of the gene being designated ON as our
prediction. Moreover, instead of training on the 26 known sti-
muli, we averaged 26 classifiers constructed from recursively

leaving out one of the known stimuli.
An important free parameter in the above algorithm is

the number of principal components used in the prediction.

To optimize this, we applied the algorithm to the 26 known
stimuli (set A) by predicting one of the stimuli from training
on the remaining 25. The output of the classifier was then

compared with the actual measurement. Various metrics such
as the area under the receiver-operating characteristic (ROC)
curve (Davis and Goadrich, 2006; Fawcett, 2006), Pearson cor-

relation coefficient and Matthews correlation coefficient were
used to quantify the performance of the classifier (see Fig. 9).

The classifier was optimized when eight leading principal com-

ponents were used. We also repeated the analysis using a linear

discriminant analysis algorithm (Methods); the performance did

not improve significantly. For the final prediction, we used

N=8 and applied a leave-one-out procedure to the naive

Bayes classifier.
Our final prediction achieved the best performance among

all seven teams that participated in this sub-chellenge. Table 1

shows that our approach achieved the highest score for area

under precision-recall (AUPR) and Pearson Correlation, as

well as tying for first with two other teams in the balanced

accuracy (BAC). Teams were ranked according to their sum of

ranks over these three metrics. The organizers performed a

robustness analysis of the rankings by sampling 10% of the

gold standard against which to rescore the teams. This was

performed 1000 times, and samples were drawn in such a way

Fig. 5. (A) Gene set enrichment under the 26 training stimuli for rat and

human. The FDR scores of the gene sets are displayed above; white

implies differential expression (FDR50.25). The number of gene sets

that turn on in rat and human are dramatically different. (B) The predic-

tion compared with the actual measurements of differential expression in

human gene sets under the 26 test stimuli. The color bar indicates level of

confidence in the prediction: 0 off, 0.5 uncertain, 1 on

Fig. 7. Highly correlated gene orthologs between rat and human. The

linearized signal (expression level) of the rat gene is plotted versus its

ortholog gene in human for the 26 known stimuli. Marker coloring is

same as Figure 4; a significant change in expression in rat is marked with

a green square and in human with a red circle. The highest MI occurs for

a set of ortholog genes that are negatively correlated. I is the MI between

the gene orthologs in bits

A B

Fig. 6. Histogram of the MI for gene set pairs (A) and ortholog genes (B)

in bits. (A) The blue dots with error bars are the mean and standard

deviation of counts (of 246 gene sets) obtained from computing MI over

randomized datasets. The MI of the actual gene sets at 0.24 and 0.32

(refer to Fig. 4) exceeds the values expected by chance at (P50.05). (B)

Histogram of the MI of ortholog genes (counts are out of 13 841 genes).

The ortholog genes do not exhibit a significantly higher MI compared

with the gene sets. In fact, because of high number of genes compared

with gene sets, it is more likely that high MI in ortholog genes is due to

chance
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as to maintain the same proportion of positive and nega-

tive classes as in the complete gold standard. This analysis

shows that our method’s high performance is robust to

the composition of the gold standard, and it ranks con-

sistently higher than the other approaches (Rhrissorrakrai

et al., 2015).

4 DISCUSSION

We devised an algorithm to predict differential gene set enrich-

ment in NHBE primary cells under various stimuli from meas-

urements of NRBE primary cells exposed to the same stimuli. As

a part of our analysis, we computed the MI between the differ-

ential enrichment of the corresponding gene sets and also ortho-

log pairs of genes in the two species. MI objectively quantifies the

predictive power of the rat data without a need to assume an

underlying model. It also determines the level of difficulty of the

prediction; higher MI naively implies that inference should be

easier.

We found that 6 h after exposure, gene set enrichment in

NHBE is significantly different than in NRBE, despite almost

identical response in protein phosphorylation states measured 5

and 25min after exposure. As phosphorylation happens close to

the beginning of the signaling cascade, it is expected that the

response at a fixed early time point should be more conserved

between the two species. As the signal is transmitted further

along the signaling pathway, slight differences between the two

species can result in divergence of their response at later time

points. This is principally manifested in the inverse relationship

observed between the human and rat gene set that had the high-

est MI (DNA replication gene set). To rule out a bias from

GSEA analysis as the cause, we computed the MI directly for

each pair of ortholog genes. The ortholog gene pair with the

highest MI (DPP4) was also negatively correlated in expression

levels between the two species.

How can a gene set be differentially expressed in the NHBE

cells when they are not in rat cells (and vice versa) under the same

stimuli? One possibility is that this reflects an evolutionary diver-

gence of the particular pathway in the two species. However, this

is unlikely, as it would imply that biological modules are com-

pletely anticorrelated in function in NHBE cells compared with

NRBE cells. A more likely explanation is that the discrepancy

stems from a time difference between rat and human in how the

phosphorprotein activates downstream genes. It reflects the limi-

tation of the measurement process used in this challenge, where

gene expression levels were measured at the arbitrary time point

Fig. 8. Schematic of the classification protocol. (Top) Training the algo-

rithm to predict gene set g in human under stimulus s. First, represent the

rat NES scores under the 26 stimuli of set A as 26 points in N-dimen-

sional space, where N is the number of principal components used. The

figure shows a diagram for N=2. We used N=8 for the actual predic-

tion. Label each of the 26 points as either 0 (off) or 1 (on) based on the

human FDR value of gene set g under the same 26 stimuli. Next, identify

the hyperplane that best separates the two types of labels. (Bottom)

Predicting gene set g under stimulus s of set B. Introduce a new point

corresponding to the reduced representation of rat NES score under

stimulus s. Depending on which side of the hyperplane the point falls

on and its separation distance from the plane, classify as either 0 and 1

and associate a statistical significance

Table 1. Comparing performance of various predic-

tions to measurements

Team AUPR Pearson BAC Rank

Team 50* 0.19 0.59 0.54 1

Team 133 0.12 0.54 0.54 2

Team 49 0.12 0.53 0.53 3

Team 52 0.10 0.52 0.54 4

Team 131 0.11 0.50 0.52 5

Team 105 0.11 0.52 0.51 6

Team 111 0.06 0.41 0.43 7

The algorithm described in this article is that of Team 50. The

predicted response to the 26 stimuli of set B is compared with

the measured response using the AUPR, Pearson correlation

coefficient and BAC. For details on these metrics and the scor-

ing see (Rhrissorrakrai et al., 2015). Asterisk denotes the

author’s team number in the challenge.
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Fig. 9. Optimizing the number of principal components used for

prediction. The classifier used was a naive Bayes classifier, applied to

25 of the 26 known stimuli (A set) to predict the 26th. All metrics: area

under the ROC curve (A), Pearson correlation coefficient (B) and

Matthews correlation coefficient (not shown) are maximum near

N=8, suggesting that 8 leading principal components are optimal. (B)

The blue line corresponds to correlating the prediction to the binarized

known FDR values (ON when FDR50.25) and the red line to correl-

ation with the FDR values converted to a continuous scale (using 1-FDR

value)

498

S.Hormoz et al.

mutual information
Mutual information
mutual information
rs
mins 
s
Since
mutual information
mutual information
mutual information
-
ince
-


of 6 h in both species. It is conceivable that the pathways exhibit
non-trivial dynamics following activation/inactivation by the
same stimulus. During the response, some genes might oscillate

or transiently be under-expressed following a spike in expression
levels (Levine et al., 2013). In fact, DNA replication genes are
normally tuned to the cell cycle; related pathways such as p53 are

known to exhibit such oscillation (Bar-Or et al., 2000; Lahav,
2008). If the phase or the period of these oscillations is different
in rat and human, a snapshot measurement can potentially ex-
hibit anticorrelations. This would explain why we find that anti-

correlated pathways have the highest MI because they are the
ones that are oscillating after being triggered by the stimulus. To
validate and further understand the role of such dynamics, the

microarray analysis would need to be repeated for a number of
time points following stimulation. A time series of the gene ex-
pression levels would then elucidate the differences between the

dynamics of the response in the two species, shedding more light
on the underlying biology.
Despite the low MI between the gene sets of the two species,

we were able to make non-trivial predictions of the response of
NHBE cells based on measurements in NRBE cells, which were
verified experimentally (Rhrissorrakrai et al., 2015). The infer-

ence algorithm relied only on the state of the gene sets. We found
that the individual ortholog genes did not exhibit significantly
higher MI. It is plausible that biological modules and pathways

are better conserved across the two species whereas expression
levels of individual genes are not. More measurements are
needed to verify this claim. Predicting coarse-grained modules

at various levels of hierarchy could be more biologically relevant
for species translation, as opposed to predicting expression levels
of individual genes or post-translational state of individual

proteins.
We relied heavily on PCA of the gene sets to make the infer-

ence. PCA served two broad purposes. First, it allowed us to

eliminate noise in the gene set enrichment scores. More import-
antly, it enabled us to naturally account for intra-species correl-
ations between gene sets. By linearly combining the gene sets, we

could predict enrichment of gene sets in human that had almost
no correlation with their counterpart in the rat but were well-
correlated with other human gene sets. We did not explicitly

consider possible correlations in the response between different
stimuli from their underlying biology, as the inference was made
with no knowledge of the test stimuli.
Inter-species inference of gene expression is potentially more

difficult than inter-species inference of protein phosphorylation
states (Biehl et al., 2014), and intra-species prediction of gene
expression from protein activation (Dayarian et al., 2014).

Nevertheless, the methods described here could infer differential
gene set enrichment in human epithelial lung cells from prote-
omic and transcriptomic data on rat epithelial cells, with reason-

able accuracy. Such a framework is potentially useful to translate
measurements in rats to humans, with therapeutic applications in
drug development, or for understanding basic biological

mechanisms.
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