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ABSTRACT

Motivation: Experiments in animal models are often conducted to

infer how humans will respond to stimuli by assuming that the same

biological pathways will be affected in both organisms. The limitations

of this assumption were tested in the IMPROVER Species Translation

Challenge, where 52 stimuli were applied to both human and rat cells

and perturbed pathways were identified. In the Inter-species Pathway

Perturbation Prediction sub-challenge, multiple teams proposed meth-

ods to use rat transcription data from 26 stimuli to predict human gene

set and pathway activity under the same perturbations. Submissions

were evaluated using three performance metrics on data from the

remaining 26 stimuli.

Results: We present two approaches, ranked second in this chal-

lenge, that do not rely on sequence-based orthology between rat

and human genes to translate pathway perturbation state but instead

identify transcriptional response orthologs across a set of training con-

ditions. The translation from rat to human accomplished by these so-

called direct methods is not dependent on the particular analysis

method used to identify perturbed gene sets. In contrast, machine

learning-based methods require performing a pathway analysis initially

and then mapping the pathway activity between organisms. Unlike

most machine learning approaches, direct methods can be used to

predict the activation of a human pathway for a new (test) stimuli, even

when that pathway was never activated by a training stimuli.

Availability: Gene expression data are available from ArrayExpress

(accession E-MTAB-2091), while software implementations are avail-

able from http://bioinformaticsprb.med.wayne.edu?p=50 and http://

goo.gl/hJny3h.

Contact: christoph.hafemeister@nyu.edu or atarca@med.wayne.edu.

Supplementary information: Supplementary data are available at
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1 INTRODUCTION

The fundamental assumption that underpins the use of animal

models for the study of human disease is that there is

conservation in the nature of the responses to injury and therapy.

However, work reported by The Inflammation and Host

Response to Injury, Large-Scale Collaborative Research

Program (published in 2013) compared the transcriptional re-

sponses in peripheral blood with inflammatory injuries, such as

burns, blunt force trauma, as well as to endotoxin in human

patients and in mice, with startling and unexpected results

(Seok et al., 2013). Humans had similar transcriptional responses

to burns, trauma and endotoxemia. The murine model showed

little correlation either to each other or to the human response

(among genes that changed significantly in humans, the murine

orthologs were close to random to their human counterparts

with R2 values ranging between 0.0 and 0.1). These observations

as well as earlier ones (Gruber et al., 2011; Quint et al., 2000)

have elicited considerable interest and debate. Investigators

have noted that candidate agents developed in animals to

block the inflammatory response tested in 4150 clinical trials

have all failed when tested in humans (Seok et al., 2013). A

major criticism has been that there is no systematic study of

how well murine clinical models mimic human inflammatory

diseases.

To address this question, an international crowdsourcing com-

petition was convened in 2013 (IMPROVER Species Translation

Challenge, IMPROVER STC) addressing the translatability of

findings between rat and human model systems in four sub-

challenges: (i) intra- and (ii) inter-species protein phosphoryl-

ation prediction, (iii) inter-species pathway perturbation

prediction and (iv) species-specific network inference.
The work presented here is based on submissions to the third

sub-challenge (SC3) by Team49 (A. L. Tarca, R. Romero) and

Team133 (C. Hafemeister, R. Bonneau). For a set of test stimuli,

SC3 asked participants to predict the perturbation state of gene

sets representing pathways/biological processes in human cells

given corresponding data in rat. The required submission was

an ordering of the gene sets based on the enrichment in genes

that are differentially expressed between stimuli treated and con-

trols. Participants could tune their models on a set of training

stimuli for which data for both rat and human were made avail-

able, as illustrated in Figure 1. Details of the experimental set-

tings, generation, processing and quality control analysis of the

dataset can be found in Poussin et al. (2014), and the raw data*To whom correspondence should be addressed.
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have been submitted to the ArrayExpress database and are avail-

able with the accession number E-MTAB-2091 (https://www.ebi.

ac.uk/arrayexpress/experiments/E-MTAB-2091/).
The gene sets were selected from the MSigDB database

(Subramanian et al., 2005) and included biological pathways

such as those available in KEGG (Ogata et al., 1999) and

Reactome (Joshi-Tope et al., 2005), but also custom functionally

related groups of genes (Supplementary Table S1). In the remain-

der of the article, we will use the term pathway to refer both

biological pathways and gene sets for both simplicity reasons and

to be consistent with the name of the sub-challenge: Inter-Species

Pathway Perturbation Prediction.
Among the submissions to SC3, there were two main classes of

methods: the first category of methods was based on machine

learning applications in which the training was performed at the

pathway level only (Fig. 2, panel C), i.e. the input was the path-

way perturbation states in rat and human for a set of stimuli, and

dependencies between them were exploited/modeled. Our meth-

ods represent the second category, which we call direct methods.

These methods trained on the differential expression (DE) state

of all individual genes across the different stimuli to identify a

response homology between rat and human genes. Based on this

homology, gene DE metrics in human are either borrowed

(Team49) or estimated (Team133) from those in rat for the

same stimuli. Gene DE metrics are then used to infer pathway

perturbation (Fig. 2, panel A).
This article describes in detail the approach of Team49 (A.L.T.

and R.R.) and Team133 (C.H. and R.B.) who were tied for

second place in this challenge. We describe commonalities and

differences between these two direct methods and the machine

learning-based approaches. The criteria used to discuss these

methods include (i) prediction performance (overall and for the

most challenging scenarios) using metrics estimated as in the of-

ficial team ranking but also in alternative ways, (ii) applicability

of the methods to instances when a given pathway was activated

by few or no stimuli in the training set and (iii) the dependence of

the rat to human pathway activity translation on the particular

gene set analysis method used.

Fig. 2. Illustration of the final methods of Team49 and Team133 used in SC3. (A) Both approaches rely on moderated t-tests, capturing the significance

and direction of change of rat and human genes for the same stimuli in the training dataset, to find one rat gene as a predictor for each human gene

(ortholog pairs). (B) Team49’s method finds the rat gene that is ranked similarly across all training stimuli when compared with a given human gene. The

rat data in the test set are then used to impute the needed human expression data. Team133’s method fits a simple linear model with one coefficient and

intercept per ortholog pair, and predicts t-values directly. (C) Machine learning methods bypass gene expression and DE tests altogether, and map rat

pathway activity (NES or FDR values) to human pathway activity

Fig. 1. Overview of the Inter-species Pathway Perturbation Prediction

Challenge. Participants were asked to predict the perturbation state of

pathways in human cells (outlined in red) given corresponding data in rat.

The organizers used a 25% cutoff on FDR to classify a pathway as

significantly enriched in differentially expressed genes, based on the

GSEA. Challengers were asked to give a confidence level that the

GSEA FDR values on the test data (see red box) will be 50.25 for

each stimuli

502

C.Hafemeister et al.

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2091/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2091/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu570/-/DC1


2 METHODS

In this section, we introduce the performance metrics used to rank pre-

dictions in the challenge, as well as the details of the methods developed

by Team49 and Team133.

2.1 Performance metrics used in SC3

The three metrics used to rank the predictions in all three sub-challenges

of the STC include the balanced accuracy (BAC), area under the preci-

sion-recall curve (AUPR) and the Pearson correlation coefficient.

Although these metrics are described in detail elsewhere (Rhrissorrakrai

et al., 2015), in this article we consider it relevant to discuss how these

metrics were implemented. In the official scoring methodology, predic-

tions for all pathways and test stimuli were pooled together, and then, the

three performance metrics were computed. This implementation is justi-

fied considering that some individual pathways were activated in none or

too few stimuli in the test set to allow computation of AUPR and

Pearson correlation coefficient. An alternative implementation expected

by some participating teams and feasible for BAC is to consider each

pathway individually and average the performance over the different

pathways. With such a mean BAC (mBAC) metric, finding the one stimu-

lus (out of 26) for which a pathway A is truly activated (100% sensitivity)

at the expense of a false positive (24/25=96% specificity) (scenario A)

would be rewarded more than an alternative scenario (B) in which one

predicts all pathways as inactive (0% sensitivity and 100% specificity).

The pooled BAC metric as well as AUPR and Pearson correlation coef-

ficient would assess these two scenarios as equivalent. The majority of

human pathways was activated in less than two stimuli in the training

dataset (Table 1), making it difficult to learn the relation between the

activation status of these human pathways and rat gene expression and/or

rat pathway activity. Although the mBAC metric results are reported in

this article to aid explaining why the direct method of Team49 was de-

signed in the way it was, and that the goal of improving pathway per-

turbation sensitivity for the most difficult scenarios can be achieved, the

teams 49 and 133 fully recognize that the winner of this sub-challenge was

Team50.

2.2 Differential expression analysis and gene set

enrichment analysis used in SC3

The challenge organizers used existing methods to perform DE analysis

on the measured gene expression levels, and to perform gene set enrich-

ment analysis on the results. Raw expression values were processed and

normalized altogether using GCRMA (Wu et al., 2004). The LIMMA

package (Smyth, 2004) was used to compute pair-wise contrasts compar-

ing gene expression levels for individual stimulus (—two to three repli-

cates) and gene expression levels for DME control (four replicates) in

both species. The output of this analysis was moderated t-values indicat-

ing the confidence and direction of the stimulus-specific DE. To identify

enriched gene sets representative of specific pathways and biological pro-

cesses perturbed by each stimulus, gene set enrichment analysis (GSEA)

was performed (Subramanian et al., 2005). As the original GSEA method

determines gene set significance by sample permutations, which was un-

feasible here owing to a low number of samples, the challenge organizers

used an alternative version of GSEA (pre-ranked GSEA) that is based on

permutations of genes. The input in pre-ranked GSEA was the list of

genes ranked by moderated t-scores, and the output was normalized

enrichment scores (NES) and the associated false discovery rate (FDR)

for each gene set and each stimuli. These data were made available to all

SC3 participants, and our two methods, Team49 and Team133, used

LIMMA and GSEA as described above.

2.3 Approach of Team49

The first submission of Team49 in this sub-challenge was based on a ma-

chine learning approach similar to the onewe used previously (Tarca et al.,

2013a) in the IMPROVER Diagnostic Signature Challenge as well as in

the intra-species protein phosphorylation sub-challenge of STC (Dayarian

et al., 2014). In this approach, the NES for one or few rat pathways were

used as predictors in a linear discriminant analysis model that was fit to

predict the activation status of one human pathway at a time. We con-

sidered that pathways that were not activated in four or more stimuli

should be predicted as inactive in the test stimuli, as there was not

enough information to train a model. This submission, referred to as

Team49_alt1 was later replaced with the one obtained with a different

method described below and referred to as Team49.

This second and final submission was based on the idea of finding an

‘orthologous’ rat gene for each human gene by learning from the training

data. Then, for a given stimuli in the test set, the human expression data

were borrowed from the available rat test expression data via the orthol-

ogy mapping between human and rat genes. Human genes were subse-

quently ranked by moderated t-tests contrasting the stimuli-treated

samples with the DME-treated samples. Finally, GSEA was applied on

the ranked gene list to identify the pathways that were activated for the

given stimuli by testing whether the genes of a given pathway were

agglomerated toward the top or the bottom of the gene list. The proced-

ure can be detailed as a series of steps:

1. Use the collection of gene sets and pathways provided by the

organizers (c2.cp.v3.1.symbols.gmt file), and retain the 246 for

which predictions were required. From each pathway, drop the

genes not present on HG-U133 Plus2 array.

2. For each stimulus in the training set, compute the rank of each

gene based on the moderated t-scores computed from data of

stimuli- and DME-treated samples from the same batch. This

analysis is done for both human and rat training data. Let us

denote with Rankh;iand Rankr;ithe rank that a given human

gene h and a given rat gene r received, respectively, for stimuli i.

The rank values are normalized so that 0 corresponds to the most

downregulated gene, whereas 1.0 corresponds to the most upre-

gulated gene. For each human gene h:

a. Compute distance:

Dðh; rÞ=
X26

i=1

jRankh;i �Rankr;ijwi ð1Þ

between the human gene h and all rat genes. The weight wi is

defined as follows:

wi=jRankh;i � 0:5j2=
X26

i=1

jRankh;i � 0:5j2 ð2Þ

Table 1. Distribution of pathways as a function of the number of stimuli that perturbed those pathways in the human test dataset

Number of stimuli perturbing/activating a given pathway 0 1 2 3 4 5 6 7 8 9 10 12 13

Pathways count 70 52 45 22 22 7 5 7 4 7 3 1 1

Note: Of the 246 pathways, more than two-thirds were perturbed by two stimuli or less.
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b. Choose as ortholog for the human gene h the rat gene that

minimizes the D(h,r) distance defined above.

The weight w above gives more importance to the rank differences

when the human gene is differentially expressed (rank far from

0.5) as opposed to when the human gene is not differentially ex-

pressed (rank closer to 0.5). This is because the ranks of genes that

are not differentially expressed are more likely to be affected by

noise than the genes ranked close to the top or to the bottom of

the list.

3. GSEAP is applied using the human genes ranked based on mod-

erated t-scores computed on expression data borrowed from the

rat ortholog genes.

An illustration of the approach used by Team49 is given in Figure 2.

The q-values for each pathway were converted into a final activation

confidence value as follows:

1. Confidence=1 if q-values50.25

2. Confidence=0 if q-values40.45

3. Confidence is a linear function that decreases from 1 to 0 as

q-values increases from 0.25 to 0.45.

This q-values-to-confidence levels conversion is different from the one

used by the organizers to infer pathway activity (Confidence=1 if

q-values50.25, Confidence=0 otherwise), by attempting to increase

the sensitivity of the method at the expense of losing perhaps some spe-

cificity. Such a trade-off was expected to be meaningful in the context of a

BAC being computed for each pathway separately and then averaged

over all pathways (mBAC instead of pooled BAC).

2.4 Approach of Team133

The initial version of Team133’s method used linear regression models in

t-value space to predict human t-values from rat ones, and used GSEA to

identify perturbed pathways. As a first step, we used the LIMMA pack-

age (Smyth, 2004) to test every human and rat gene for DE across the 26

training stimuli when compared with their control treatment. From this

analysis, we extracted the moderated t-values and called the resulting two

matrices tr for rat and th for human. To level the differences in response

magnitude that various stimuli can induce, we standardized tr so that the

t-values for a given stimulus followed a distribution with mean 0 and SD

1. In our model, we represented the t-values of a human gene i as a linear

fit of the t-values of some rat gene j, i.e. thi =�t
r
j+�. The final values for

the parameters j; �; � were then the ones minimizing the sum of squares

of the residuals of the linear regression model:

min
j;�;�

X26

s=1

ðthis � �t
r
js � �Þ

2; ð3Þ

where s iterates over the stimuli.

Given the set of test stimuli for which we had only rat expression, we

computed the tr matrix as described above. We then used the set of j; �; �

parameters for all human genes to predict th, the matrix of t-values. To

obtain NES and associated FDR of differentially expressed pathways for

every test stimulus, we applied GSEA pre-ranked by the corresponding

t-values from th. Our final confidence scores indicating significantly per-

turbed pathways were then 1 –FDR.

The submission from the approach described above, referred to as

Team133_alt1, was later replaced with another submission referred to

as Team133. This second approach differed from the one described

above in that it used similarities between a test stimulus response and

the set of training stimuli responses. The motivating assumption was that

stimuli that shared a high number of differentially expressed genes also

perturbed the same pathways. Consequently, for a given test stimulus, we

wanted to upweight similar stimuli during the training phase.

To upweight certain stimuli during parameter learning, we used a

weighted regression and modified Equation 3 slightly to

min
j;�;�

X26

s=1

wsðt
h
is � �t

r
js � �Þ

2: ð4Þ

We now minimized the weighted sum of squares of the residuals of the

linear regression model, where the weights for a test stimulus test and a

training stimulus train s were defined as the number of highly regulated

genes that they have in common plus a pseudo count

ws=jtop100
test \ top100train sj+1: ð5Þ

Here top100 denotes the set of genes with the top 100 absolute t-values.

As opposed to the simplified approach described in the previous sec-

tion, where there was only one single parameter estimation step, this

weighted method required parameter estimation for every test stimulus

because of the test stimulus-dependent weight.

3 RESULTS

3.1 Performance of the direct methods in SC3

The performance metrics, AUPR, BAC and Pearson correlation

are presented in Figure 3 for all submissions to this sub-chal-

lenge. We also include some alternative submissions that were

either submitted before the challenge deadline but replaced later

with an updated submission (Team49_alt1 and Team133_alt1) or

submitted after the challenge deadline (Team111_alt1) but still

before the release of the gold standard data (the true activation

status of the human pathways for the test stimuli). These alter-

native submissions included the following: (i) Team111_alt1, a

version of Team111’s official submission including bug fixes; (ii)

Team49_alt1, a machine learning-based approach of Team49

that was later replaced by the official Team49 submission; (c)

Team133_alt1, the unweighted approach introduced in Section

2.4. As Team111’s challenge submission (Team111) contained a

systematic error that led to a performance worse than random,

we decided to not comment on the results. However, we have

included the corrected method (Team111_alt1) below.
As shown in Figure 3, according to the official ranking meth-

odology, the machine learning-based approaches (Team111_alt1,

Team50, Team49_alt1) consistently rank higher than the direct

methods that we have proposed (Team133, Team49).

Nevertheless, when considering the mBAC criteria (not used in

the official ranking) alone, the direct methods perform better

than most of their machine learning-based counterparts. The

pooled BAC of the top three machine learning methods

(Team111_alt1, Team50, Team49_alt1) was 0.55, on average,

whereas our direct methods achieved a 0.53. The mBAC was

0.505, on average, for machine learning and 0.52 for direct meth-

ods. The team with the highest mBAC (Team52) shows the high-

est balance between sensitivity and specificity, whereas the

highest ranking team based on the pooled BAC metric

(Team111_alt1) shows a stronger bias toward specificity espe-

cially for pathways that are perturbed by only a few stimuli

(see Supplementary Fig S1).
To evaluate how the different methods performed under the

most difficult scenarios, we computed the BAC only for the

human pathways in the test dataset for which no activation
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was observed in the training dataset. Most machine learning
methods would have not been able to cope with such situations

and hence were expected to predict these pathways as inactive for
all stimuli in the test set. Of the 12 pathways that were neither

perturbed in the rat nor the human training set, four were per-
turbed by at least one stimulus in the human test set. Results are

given in the right panel of Table 2. Of all the methods, four did
not predict any perturbations (Team50, Team105, Team111_alt1
and Team49_alt1) and had a sensitivity of 0, specificity of 1

(BAC=0.5). Three methods made true-positive predictions:
Team133 (sensitivity 0.29, specificity 0.99, BAC=0.64),

Team49 (sensitivity 0.29, specificity 0.96, BAC=0.62),
Team131 (sensitivity 0.14, specificity 0.83, BAC=0.49). As in

the official ranking, a pathway perturbation confidence thresh-
old of 0.5 was used to label pathways as perturbed for a given

stimuli.
Additionally, we performed the above analysis on all 97 path-

ways that are not perturbed in the training stimuli in human—

another case where some machine learning approaches could

have difficulties. Results are shown in the left panel of Table 2

and match the observations above—Team49 and Team133 had

sensitivities of 0.17 and 0.11, and the highest BAC, while the

machine learning methods predicted only zero positive results

of all 87.

Finally, we computed specificity for all methods across the

70 pathways that are not perturbed in the human test set.

The three machine learning-based methods (Team49_alt1,

Team111_alt1 and Team50) and Team105 rank highest with a

specificity40.98. The direct methods (Team49 and Team133)

follow with a specificity of 0.95 (see Supplementary Table S2

for details).

3.2 Quality and overlap assessment of data-driven

orthologs

Throughout this article, the quality of response ortholog pairs

generated by the direct methods was assessed based on the qual-

ity of inter-species pathway perturbation prediction. However,

Table 2. Team performance on the pathways that were not perturbed in the training stimuli in human

Method

name

Type 97 pathways not perturbed in the training stimuli in human 12 pathways that were not perturbed in all training data

TN FN TP FP Sens Spec BAC mBAC TN FN TP FP Sens Spec BAC mBAC

Team49 DM 2322 72 15 113 0.17 0.95 0.56 0.56 293 5 2 12 0.29 0.96 0.62 0.56

Team133 DM 2349 77 10 86 0.11 0.96 0.54 0.54 302 5 2 3 0.29 0.99 0.64 0.60

Team52 ML 1806 58 29 629 0.33 0.74 0.54 0.53 295 7 0 10 0.00 0.97 0.48 0.48

Team111_alt1 ML 2432 86 1 3 0.01 1.00 0.51 0.50 305 7 0 0 0.00 1.00 0.50 0.50

Team50 ML 2435 87 0 0 0.00 1.00 0.50 0.50 305 7 0 0 0.00 1.00 0.50 0.50

Team105 ML 2435 87 0 0 0.00 1.00 0.50 0.50 305 7 0 0 0.00 1.00 0.50 0.50

Team49_alt1 ML 2435 87 0 0 0.00 1.00 0.50 0.50 305 7 0 0 0.00 1.00 0.50 0.50

Team133_alt1 DM 2358 85 2 77 0.02 0.97 0.50 0.50 303 7 0 2 0.00 0.99 0.50 0.50

Team111 ML 3 1 86 2432 0.99 0.00 0.49 0.50 0 0 7 305 1.00 0.00 0.50 0.50

Team131 DM 2075 72 15 360 0.17 0.85 0.51 0.49 254 6 1 51 0.14 0.83 0.49 0.45

Note: True negatives (TN), false negatives (FN), true positives (TP) and false positives (FP) are summed over all pathways to obtain sensitivity, specificity and pooled BAC

(BAC). Fifty-one pathways were omitted from the mBAC because they were not perturbed in any test stimuli in human and hence no sensitivity could be calculated for them.

Method type DM indicates direct methods, ML machine learning methods.

Type AUPR PCC BAC mBAC
Original 
Ranking

Rank
(original metrics)

Team50 ML 0.187 0.592 0.544 0.503 1 2

Team133 DM 0.117 0.561 0.537 0.514 2 4

Team49 DM 0.121 0.544 0.528 0.519 2 5

Team52 ML 0.103 0.539 0.544 0.528 4 6

Team131 DM 0.115 0.506 0.518 0.506 5 8

Team105 ML 0.110 0.512 0.513 0.486 6 9

Team111 ML 0.064 0.397 0.432 0.482 7 10

Team111_alt1 ML 0.181 0.603 0.568 0.518 NA 1

Team49_alt1 ML 0.199 0.553 0.535 0.495 NA 3

Team133_alt1 DM 0.112 0.552 0.527 0.505 NA 7

Fig. 3. Table summarizing the ranking of different team submissions. Besides the original metrics AUPR, PCC and BAC, we have included mBAC,

which computes BAC for each pathway and then computes the mean over pathways. Method type DM indicates direct methods, ML machine learning

methods

505

Inter-species pathway perturbation prediction

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu570/-/DC1


such criteria are influenced by several factors such as the quality

and identity of the gene sets and pathways considered, and by the

sensitivity and specificity of the GSEA analysis used to determine

pathway perturbation. In this section, however, we assess the

quality of gene pairs directly by using (i) the correlation of

their ranks between species across the same stimuli and (ii)

their ability to predict DE status of each other.
Both approaches, Team49 and Team133_alt1, were designed

to find one rat gene that best mimics the activity of a given

human gene when cells are treated with stimuli from the training

dataset. As an example, although Team49 chose for the human

gene ALOX5AP the rat gene that had a similar rank across all

stimuli (Fig. 4, top), Team133 searched for the rat gene with the

highest linear correlation between its t-score and the human

t-score (bottom) and, for this case, both teams found the rat

gene Casp4 as the best match. Interestingly, the sequence-based

rat ortholog from the HUGO Gene Nomenclature Committee

(HGNC), Alox5ap, does not mimic the behavior of the human

counterpart for the 26 stimuli. Additional examples of correl-

ation plots between ranks of response ortholog genes are

shown for both training and test stimuli in Supplementary

Figures S2–S4. A significant association of gene pairs rank cor-

relations between training and test sets was observed for all three

sets of orthologs (Team49, Team133_alt1 and seqence-based

from HGNC), as shown in Supplementary Figure S5. These

data suggest that the ortholog pairs learned on the training

data by the two direct methods do generalize to some extent

on the test data.
To determine how well the rat response orthologs predict DE

of individual human genes, we determined for each stimulus the

DE status based on a moderate t-test P-value � 0:05and noted

the sign of the change. Then, for all gene pairs, we counted the

following instances: (i) the rat and the human genes are DE in

the same direction (true positive), (ii) the rat and the human

genes are not DE (true negative), (iii) the rat gene is DE but

the human gene is either not DE or changes in the opposite

direction (false positive), (iv) only the human gene is DE (false

negative). This allowed us to summarize performance metrics for

the different ortholog sets separately for training and test data.

Results are shown in Table 3. To be able to compare results with

the sequence-based orthologs (HGNC), we used only gene pairs

in this analysis, where the human gene had exactly one rat ortho-

log in HGNC. This requirement resulted in 11 540 gene pairs. We

have also generated 1 million random ortholog mappings and

show the results for the mapping with the highest sum of sensi-

tivity and specificity. Table 3 results indicate that all tested ortho-

log sets were better in predicting the DE status of human genes

than pairing genes at random. While Team133_alt1 had the high-

est training set performance, this mapping failed to generalize

and exhibited lower test set performance. The best overall per-

formance was observed for Team49 with a sensitivity of 0.19 on

the test set stimuli at 0.89 specificity.
To further assess the similarity of the two approaches, we

studied the overlap of rat genes found as orthologs for human

genes by the two direct methods. In this analysis, we focused on

the Team133_alt1 method, as the official submission of Team133

used test stimulus-dependent orthologs and is not suitable for

comparison with Team49’s method. A number of 410 human–

rat response orthologs were found in common between the two

teams (Supplementary Table S3) (p51e� 13. However, for the

purpose of gene set analysis, this overlap is unnecessarily restrict-

ive. If, for example, a human pathway has two genes hA and hB

and one team found rat genes rD and rE as response orthologs,

respectively, but the other team found rat genes rE and rD as

response orthologs, respectively, the pathway enrichment ana-

lysis will be the same between teams. Therefore, in this additional

overlap analysis, we simply count the rat genes selected in

common by the two teams for a given human pathway. For

every pathway i, we counted the number of common genes Ci

A

B

Fig. 4. Data-driven orthologs. The ranks of human gene ALOX5AP, rat

gene Casp4 and HGNC rat ortholog Alox5ap are standardized (0 most

down-, 1 most upregulated among all genes) and shown across all stimuli

(top). The moderated t-score for the human gene ALOX5AP is plotted

against the standardized t-score for rat genes Casp4, Alox5ap (bottom)

Table 3. Ortholog pair performance in predicting DE in human

Pairs Training stimuli Test stimuli

Sens Spec Prec Sens Spec Prec

Team49 0.25 0.91 0.30 0.19 0.89 0.16

Team133_alt1 0.29 0.92 0.37 0.14 0.87 0.11

HGNC 0.08 0.91 0.12 0.12 0.90 0.12

Random 0.06 0.92 0.09 0.09 0.90 0.09

Note: Sens, sensitivity; Spec, specificity; Prec, precision.
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between the two methods as well as the probability to observe Ci

genes or more just by chance. Of the 246 pathways, 43 had an
adjusted P-value50.05 using the FDR adjustment method

(Benjamini and Hochberg, 1995). To see whether the overlap
depends on the number of stimuli that a given pathway was
perturbed by, we performed a Fisher’s exact test based on the

contingency table: adjusted P-value50.05; active in at least one
stimulus in human cells in either training or test set separately.
No significant association (P40.35) was found between the

number of active stimuli and the number of pathway with sig-
nificant gene overlap between methods. These results suggest
that the response orthologs found by the two teams show a

level of similarity, and this was uniform across the pathways.
Finally, we have also performed a similar overlap analysis

between the data-driven orthologs found by the direct methods

and the list of orthologs from HGNC provided by the organizers
of the challenge. We could not find a single gene set for which the

overlap between HGNC orthologs and data-driven orthologs
was significant and hence concluded that the sequence-based
orthologs and expression profile-based orthologs are different.

4 DISCUSSION

The Systems Biology Verification IMPROVER Pathway perturb-

ation prediction challenge verified methods and concepts of inter-
species translation of pathway activity based on gene expression
data. In this work, we focused on the solutions of Team49 and

Team133, and put them in context of other submissions with the
goal of investigating their advantages and limitations. Given the

training data, both methods assigned one rat gene to each human
gene based on a similar response pattern across the training
stimuli. This orthology mapping is used to impute the missing

human gene expression values (Team49) or to predict the
t-values of DE tests in human from rat (Team133).
These two approaches are different in nature from another

category of methods used by other teams in this challenge,
namely, machine learning methods. These two categories of
methods (direct methods versus machine learning methods) can

be seen as a different sequence of two basic steps: gene set ana-
lysis and inference from rat data to human data. The machine
learning-based methods require that a gene set analysis method is

applied first and then inference of the pathway activation status
from rat to human is learned. In contrast, direct methods that are
the subject of this article perform the rat to human inference first

and then apply the gene set analysis step. Therefore, one can see
that mapping pathway activity from rat to human accomplished

by the machine learning methods is dependent on the particular
pathway analysis method used. This might be problematic be-
cause a given pathway may or may not appear to be activated by

a given stimulus depending on the sensitivity and specificity of
the gene set analysis method that was applied [see Tarca et al.
(2013b) for a comparison of different methods]. In contrast, the

rat-to-human inferences made by the direct methods are inde-
pendent of the particular gene set analysis method that is
involved, and they produce a correspondence between human

and rat genes. This correspondence identifies rat genes thought
to be under similar regulatory control in humans for the given
type of cells and stimuli used in the experiments. The data-driven

orthologs found by the direct methods predicted inter-species

differential gene expression better than sequence-based orthologs
and were significantly overlapping between the two methods; yet,
they were divergent from sequence-based orthologs extracted

from HGNC database.
Based on the three performance metrics (AUPR, Pearson cor-

relation and BAC) computed by pooling predictions and gold

standard over all pathways and stimuli, the top three teams
would be Team111_alt1, Team50 and Team49_alt1, all machine
learning methods. One could argue that this pooling of predic-
tions favors methods that do not deal with the most difficult

scenarios, i.e. with pathway activation inference for those path-
ways that were seldom or never activated in the training dataset,
and simply predict these pathways as non-activated. An alterna-

tive would be to compute the performance metrics per pathway
and then average over the 246 pathways; however, this is not
feasible for AUPR and the correlation coefficient but is for BAC.

Therefore, we compared the rankings of the machine learning
methods with the ones of the direct methods based on the BAC
alone computed as in the official challenge (pooled) and also per

pathway and then averaged (mBAC). The pooled BAC was con-
sistently higher for top three machine learning methods than for
our direct methods. However, on average, our direct methods

have a higher mBAC than the top three machine learning
methods.
The inability of machine learning methods to predict the acti-

vation status of pathways that were never activated in the train-
ing dataset is reflected in the sensitivity of analysis restricted to
those pathways. None of the top three methods, all machine

learning based, produced a single true positive for these path-
ways. However, the direct method of Team133 achieved a sensi-
tivity of 0.29 at specificity 0.99, (BAC=0.64) and Team49

achieved a sensitivity of 0.29 at specificity 0.96 (BAC=0.62).
Machine learning methods define a stimuli effect on a given
pathway into classes (activation versus non-activation), and

hence require one or more instances of activations to work. An
alternative machine learning approach around this issue is to
transform the classification problem into a regression problem,

as Team52 did, and use a continuous form of the pathway ac-
tivity evidence (combination of NES scores and FDR values) in a
regression model that can be fit regardless of the number of

activation cases for a given pathway. Team52 had the highest
mBAC statistics computed over all pathways, yet this method
did not find any true positive for the zero activation pathways in

the training dataset. A second alternative discussed in this issue
by Team50 (Hormoz et al., 2014) would be to cluster pathways
into groups and hence borrow activation information across

pathways. However, from the outset, such an approach did not
appear to be outperforming the methodology used by Team50
for their official submission in this challenge.

The task of using transcriptomics data in rat to infer pathway
activity in human for a given stimuli proved to be challenging
regardless of the approach that was used to tackle this problem.

Compared with the task of predicting protein phosphorylation
status in human based on gene expression and phosphorylation
data in rat (sub-challenge SC2), the prediction of pathway activ-

ity (sub-challenge SC3) was much more difficult, with the best
pooled BAC in SC2 being 0.77 compared with 0.56 in SC3. There
may be several reasons for this, one of which being the fact that

in the human training data only few outcomes are positives (6%

507

Inter-species pathway perturbation prediction



of the pathway-stimulus combinations), which was not the case
in SC2. A second reason for this apparent difficulty is that, by
definition, the pathway activation status is dependent on tens or
hundreds of member genes, and the call of whether a pathway is

perturbed is dependent on the sensitivity and specificity of the
gene set analysis method used—in this case pre-ranked GSEA.
More work would be needed to determine whether the use of

more sensitive and more specific pathway analysis methods
(Tarca et al., 2013b), such as MRGSE (Michaud et al., 2008),
or the use of more relevant gene sets based on conserved co-

regulated genes (Waltman et al., 2010) can lead to improved
translation of pathway activity from rat to human.
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