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ABSTRACT

Motivation: Inferring how humans respond to external cues such as

drugs, chemicals, viruses or hormones is an essential question in

biomedicine. Very often, however, this question cannot be addressed

because it is not possible to perform experiments in humans. A rea-

sonable alternative consists of generating responses in animal models

and ‘translating’ those results to humans. The limitations of such

translation, however, are far from clear, and systematic assessments

of its actual potential are urgently needed. sbv IMPROVER (systems

biology verification for Industrial Methodology for PROcess

VErification in Research) was designed as a series of challenges to

address translatability between humans and rodents. This collabora-

tive crowd-sourcing initiative invited scientists from around the world

to apply their own computational methodologies on a multilayer

systems biology dataset composed of phosphoproteomics, transcrip-

tomics and cytokine data derived from normal human and rat

bronchial epithelial cells exposed in parallel to 52 different stimuli

under identical conditions. Our aim was to understand the limits of

species-to-species translatability at different levels of biological

organization: signaling, transcriptional and release of secreted factors

(such as cytokines). Participating teams submitted 49 different solu-

tions across the sub-challenges, two-thirds of which were statistically

significantly better than random. Additionally, similar computational

methods were found to range widely in their performance within the

same challenge, and no single method emerged as a clear winner

across all sub-challenges. Finally, computational methods were able

to effectively translate some specific stimuli and biological processes

in the lung epithelial system, such as DNA synthesis, cytoskeleton and

extracellular matrix, translation, immune/inflammation and growth

factor/proliferation pathways, better than the expected response

similarity between species.
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1 INTRODUCTION

From basic biology to translational medicine and clinical trials,

animal models have been an invaluable tool for inferring human

biological responses. Yet, in spite of the advances these models

have facilitated, numerous findings have also been unsuccessfully

translated to humans, as evidenced by the failure of many clinical

trials. These failures could derive from species-specific differences

in response to perturbations or stimuli that would preclude

naively translating information learned in one animal model

directly to another. Systems biology offers the means for under-

standing the limits of translatability of animal models in different
settings, from clinical trials to toxicological assessments to basic

cell biology. This approach can provide a more comprehensive

predictive model because it considers changes at different levels

of the entire system.

This is achieved through the development of systematic

studies and integration of data over multiple experiments and

data-generation platforms (Barabasi and Oltvai, 2004;

Consortium, 2004, 2010; Gerstein et al., 2010; Goh et al., 2007;

Meyer et al., 2012; Papin et al., 2005; Tarca et al., 2013).

These more complete models will aid our understanding of at

what regulatory levels and to what degree responses to different

perturbations are translatable between species.
When developing models for species translation, orthologous

genes are commonly thought to share the same or similar

function. This assumption does not always hold, as several

reports show that even among closely related species this is not

necessarily the case (Gharib and Robinson-Rechavi, 2011). Such

divergence goes beyond differences in function and can be seen in

changes in essentiality; among 120 mouse orthologs of human
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essential genes, 27 (22.5%) were found to be non-essential

(Liao and Zhang, 2008). In contrast, while paralogs may be

expected to diverge more often than orthologs, it has been

observed that changes in paralog function are observed with

the same frequency as in orthologs (Studer and Robinson-

Rechavi, 2009). Certainly, changes in the essentiality and func-

tional role of a gene product are not solely driven by differences

in gene sequence but also other factors (i.e. spatiotemporal

expression of genes) must be considered when investigating

species translation.
Gene expression, being at the core of biological function,

is commonly used to evaluate changes between species and

their response to perturbations. The conservation of promoters

and transcription factor (TF) binding sites are important

predictors of gene expression similarity, and there is a correlation

between conservation of TF binding events and conservation of

the target gene expression (Hemberg and Kreiman, 2011).

TF promoter binding sites are conserved in liver cells for� 30%

of the cases when comparing human and mice (Odom et al.,

2007), and most conserved non-coding DNA regions in verte-

brates correspond to regulatory elements (Hemberg et al., 2012).

Existing species translation methods rely heavily on the

concept of pathways for organization and prediction (Alleyne

et al., 2009). Indeed, it seems that pathways may be better con-

served than its individual components (i.e. genes and proteins;

McGary et al., 2010; Subramanian et al., 2005), as groups of

orthologous genes may continue to operate together between

species. In such cases, pathway analysis provides important

organizational information on the potential action of sets of

genes. The two main approaches for deriving pathways or

sets of functionally coherent genes are topology-driven and

data-driven (Melas et al., 2011).
The sbv IMPROVER Species Translation Challenge (STC),

using a systems biology approach, provided participants with

both training and test datasets designed to assess the ability of

methods to predict responses in normal human bronchial epithe-

lial (NHBE) primary cells coming from two different donors

from the responses observed in normal rat bronchial epithelial

(NRBE) primary cells coming from an inbred laboratory strain.

These cells were exposed to 52 different stimuli. Stimuli

were chosen to ensure a broad spectrum of perturbations in

the cellular system, and for each stimulus, samples were collected

at different time points to generate phosphoproteomics, gene

expression and secreted cytokines data. These data were used

by 29 teams to make 49 predictions across four different

sub-challenges that were each evaluated using multiple scoring

metrics. The STC was centrally focused on two questions: (i) can

the phosphoproteomic responses in human cells be predicted

given responses generated by the same stimuli in rat cells?

If so, does the accuracy of this prediction depend on the

nature of the applied perturbation? (ii) Which gene expression

regulatory processes (biological pathways/functions) are predict-

able across species?

2 METHODS

2.1 Data preparation

A complete description of the experimental design, data set generation

and processing can be found in (Poussin et al., 2014). In brief, 19

phosphoproteins, 22 cytokines and genome-wide mRNA levels were mea-

sured under 52 different stimuli or Dulbecco’s Modified Eagle’s Medium

(DME) control treatments (in triplicate), Table 1. The experiment was

performed in two parts: 40 stimuli in the first experiment and 12 in the

second. In each part, primary NHBE and NRBE cells were grown and

exposed to the indicated number of stimuli. Cells were collected and lysed

at different time points: 5 and 25min. For phosphoprotein measure-

ments, 6 h for gene expression measurements and 24h for cytokine meas-

urements. All cells were exposed to stimuli in triplicate, and DME

controls were performed in 4-, 5- or 6-plicate.

mRNA samples from the first experiment were processed in three

batches. Each batch included human and rat mRNA for a subset of

stimuli. DME control mRNA samples (four replicates) were measured

for each batch. For the second experiment, all mRNA samples were pro-

cessed together, including DME control mRNA samples (five replicates).

Low-quality chips were excluded following quality control (QC) analysis.

All remaining expression data including two to three replicates per stimu-

lus were normalized using GC robust multiarray averaging within species.

Probesets were mapped to gene symbols using Affymetrix annotations:

HG-U133 Plus 2 (na33) and Rodent 230 2.0 (na32), for human and rat,

respectively. Probesets mapping to multiple genes were excluded. In cases

of multiple probesets mapping to the same gene, the probeset with the

highest average expression over all experimental conditions was selected

as representative. These high-quality normalized gene expression data in

the gene symbol namespace were provided to the participants.

Protein phosphorylation status was measured independently for each

experiment part in cell lysates collected at 5 and 25 min (in triplicates)

using Luminex xMap (Dunbar, 2006). Experiment parts 1 and 2 have 6

and 5 DME controls, respectively. After QC, 16 phosphoproteins were

kept for the challenge. Data were normalized using a robust regression,

and normalized values were provided as the ratio of residuals to the root

mean squared error of the fit. Cytokine data were similarly processed,

though normalization was carried out by taking the Z-score of each

cytokine across all stimuli within an experimental batch, including

DME controls.

Table 1. STC datasets

Dataset Condition Number of

replicates

Number of

measurements

Time

point(s)

Total size

Phospho-proteomics 52 stimuli 3 biological replicates 18 phosphoproteins 5min 10 000+ data points

25min

mRNA expression 20 000 human genes 6 h 330+ CEL files

19 000 rat genes

Cytokine level 22 cytokines 24h 7000+ data points
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All data were divided into two equal groups, subsets A and B,

by stimulus treatment to be used for training and testing of

methods. To ensure similar distributions of signals in both data subsets,

stimuli were separated through a data-driven approach that clustered

stimuli according to phosphorylation level, gene set activation, gene

expression (GEx) batch and differential gene expression. For each cluster,

stimuli were randomly assigned to subset A or B.

Orthologs were identified using the HGNC Comparison of Orthology

Predictions (downloaded December 19, 2012). Only gene symbol map-

pings between human and rat were used. A total of 12 458 orthologs were

common between human and rat Affymetrix arrays after mapping of

probesets to gene symbols.

Gene sets were based on the C2CP (Canonical Pathways) collection

from MSigDB v3.1 of the Broad Institute (Subramanian et al., 2005).

This collection was filtered to remove highly redundant gene sets,

i.e. overlapping gene sets with many shared members, ensuring that

remaining gene sets cover as many pathways/biological functions as

possible. The resulting 246 gene sets were used for the STC. Gene set

enrichment analysis (GSEA) was performed to assess co-regulation of

genes representative of pathways/biological functions. For the analysis,

genes were ranked based on calculated LIMMA t-values comparing re-

spective DME control versus stimulus conditions (Smyth, 2004).

LIMMA was performed using the lmFit and eBayes functions from the

limma R package for the R Statistical Language with default parameters.

The design matrix was constructed to compare the batch-specific DME

control with each stimulus individually. Computed NES and associated

significance values for each gene set were indicative of the activation/

perturbation (increase or decrease) of pathways/biological functions by

each stimulus in NHBE and NRBE cells (Subramanian et al., 2005).

GSEA size parameters were min=15 and max=500. GSEA NES and

FDR q-values were provided to participants.

2.2 Scoring

Sub-challenges 1 (SC1), 2 (SC2) and 3 (SC3) were scored as binary clas-

sification problems. Starting with the postulate that no single metric will

capture all the attributes of a prediction, we used an aggregate of three

metrics for evaluation. The metrics were proposed by IBM team mem-

bers, and an independent panel of experts comprising the External

Scoring Panel (ESP) decided on the final scoring approach. Participant

identities were kept anonymous to the IBM team scoring the submissions.

Five other metrics were considered but rejected as being redundant to the

chosen three. The details of these metrics were not disclosed to the par-

ticipants until the end of the challenge to avoid influencing method

development toward optimizing for the scoring function rather than

solving the scientific question posed. This practice is in keeping

of other prediction evaluation challenges, like CASP, DREAM and a

previous iteration of sbv IMPROVER.

We used non-redundant metrics that highlight three different qualities

of a prediction: threshold versus non-threshold, order-based versus con-

fidence-based and different ways of rewarding correct versus incorrect

predictions. The chosen metrics were also selected to avoid rewarding

pathological predictions, e.g. predicting all items to be of one class.

Further complicating metric selection, the quantities of both classes

(active and inactive) were imbalanced in the STC with active cases

accounting for only� 10% of all cases.

Participants were required to give confidence values for their predictions

of either protein phosphorylation status or gene set activation (increase or

decrease) to a given stimulus, depending on the sub-challenge. Confidence

values could range between 0 and 1, where 1 represents the full confidence

of an element being activated (either up- or downregulated) and 0 for full

confidence of inactivation. A binarized gold standard (GS) was developed

for protein phosphorylation status and gene set activation. For the

phosphoprotein GS, normalized expression levels, which is akin to the

standard deviation of a normal distribution, with an absolute value �3

were considered active, as agreed on by the ESP. Similarly for gene set

activation, GSEA FDR q-values �0.25 were designated active, as recom-

mended by GSEA.

The submitted matrix of predictions (stimuli versus protein or gene set

response) could have been scored column-by-column or row-by-row and

then aggregated together. However, given the sparseness of the GS for

both protein phosphorylation status and gene set activation, we decided

(in agreement with the ESP) to transform the matrix into a vector for

scoring, i.e. columns of the matrix were joined to obtain single vector.

2.2.1 Metric descriptions Area Under the Precision–Recall Curve

(AUPR) is a well-known measure of classifier power. A list of items is

ordered by descending confidence value (used only for ranking and not

directly in the metric). The list is traversed corresponding to increasingly

permissive confidence thresholds, and precision (fraction of ‘active’ pre-

dictions that are correct) is plotted versus recall (fraction of true ‘active’

class members correctly predicted). The area under this precision–recall

curve is the AUPR score and is represented by a single number that

summarizes the tradeoff between both measures.

Balanced Accuracy (BAC) avoids magnifying performance estimates of

imbalanced datasets. It is computed as the average accuracy of either

class.

BAC=
1

2

TP

P
+

TN

N

� �
ð1Þ

where TP is the number of true positives, P is total number of posi-

tives, TN is the number of true negatives and N is the total number of

negatives. For the STC, we used a confidence threshold of 0.5 to binarize

the predictions as either positive (�0.5) or negative (50.5).

Pearson Correlation Coefficient (PCC) describes the linear dependence

between two variables. In the STC, it was computed as the correlation

between the predictions and the binarized GS, where 1 indicates an item is

active and 0 inactive. PCC normally ranges from –1 to 1, but to be

consistent with the AUPR and BAC measures, which range from 0 to

1, we used a normalized PCC:

PCCnormalized=
1

2
PCC+1ð Þ ð2Þ

For simplicity, we will refer to PCCnormalized as PCC when in reference

to the challenge scoring metric.

2.2.2 Metrics aggregation A rank-sum scheme to aggregate scoring

metrics was proposed by the IBM team, along with one alternative, and

was selected by the ESP because it equally weights each metric to produce

an overall ranking. This rank-sum scheme was composed of ranking all

teams within each respective metric. A team’s aggregate rank was then

calculated by summing their rank across these three metrics. This rank

sum was used for the final ordering of participants, with best performers

achieving the lowest rank sum. To determine the robustness of these

rankings, bootstrapping was performed to ensure that best performers

were not highly sensitive to the exact configuration of GS. GS was

sampled without replacement 1000 times, and the rankings recomputed

each time. Given the imbalanced nature of GS, the bootstrapping was

constrained to maintain the same proportion of active versus inactive

items as observed in the entire GS.

2.3 Statistical significance of metrics

The null distribution for each metric in SC1-3 was generated by scoring

106 random predictions. To generate the confidences of a random sub-

mission, a uniform random number r (0� r� 1) was generated for each

‘item’.
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For SC1-3, the null hypothesis simulation was used to compute

Z-scores. The mean (�) and standard deviation (�) of the scores obtained

by the simulated prediction was computed and combined with an

individual team’s score (x) to calculate the Z-score.

Zscore=
x� �

�
ð3Þ

FDRs were computed for each metric using the R (Computing, 2013)

function p.adjust with the method=‘fdr’, which computes the Benjamini

and Hochberg (1995) correction.

To compute a score’s P-value for each of the metrics, we counted the

number of random predictions that were better than or equal to

the observed score and divided it by the number of simulated predictions.

FDR correction (Benjamini and Hochberg, 1995) was applied to the

P-value, and a value of�0.05 was considered to be statistically significant.

The measure S represents the overall response similarity between

human H and rat R GS, and is a Matthews correlation coefficient

(MCC). The MCC represents a Pearson correlation between two

binary vectors. A high S value would indicate a putatively conserved

response and a signal that is expected to be translatable. Similarity meas-

ures can also be calculated per stimulus Ss=MCC(Rs, Hs), where Rs and

Hs are binary vectors of phosphoprotein or gene set responses to stimulus

s; per phosphoprotein Sp=MCC(Rp, Hp), where Rp and Hp are binary

vectors of responses to stimuli for phosphoprotein p; and per gene set

Sg=MCC(Rg, Hg), where Rg and Hg are binary vectors of responses to

stimuli for gene set g.

Predictability Pr represents the overall similarity or agreement between

the GS and a team’s or aggregate of teams’ predictions T, and is a MCC.

A high Pr value would indicate good prediction performance and that the

response was predictable. Like S, Pr can be calculated per stimulus

Prs=MCC(GSs, Ts), where GSs and Ts are binary vectors of predicted

phosphoprotein or gene set responses to stimulus s; per phosphoprotein

Prp=MCC(GSp, Tp), where GSp and Tp are binary vectors of predicted

responses to stimuli for phosphoprotein p; and per gene set

Prg=MCC(GSg, Tg), where GSg and Tg are binary vectors of predicted

responses to stimuli for gene set g.

The empirical P-values for the presence of genes in overlapping

gene sets were calculated by sampling 105 times choosing a group of

25 gene sets of 246 gene sets. The frequency a gene is a member of

the 25 randomly selected gene sets is recorded. The P-value is

obtained by dividing the frequency a gene was found in at least x gene

sets by 105.

3 RESULTS

The STC consisted of four sub-challenges, each addressing a

different aspect of translatability: the intra-species protein

phosphorylation prediction (SC1), the inter-species protein phos-

phorylation prediction (SC2), the inter-species pathway perturb-

ation prediction (SC3) and the species-specific network inference

(SC4). We explored the translatability of signals between differ-

ent layers of transduction pathways by asking whether gene

expression measurements are sufficient to predict upstream

changes in protein phosphorylation. Furthermore, we examined

across-species similarity in pathway activation by testing whether

it was possible to predict the gene set activation and phosphor-

ylation status of different pathways and important signaling

proteins, respectively, in human lung epithelial cells given expres-

sion data in rat. These questions could reveal to what extent

mathematical models are capable of recapitulating perturbed

cellular functions from different data types within the same cell

type and its across-species cell counterpart.

While the primary aim of SC2-4 was species translation,

SC1 focused on assessing the informative power of transcriptional

changes in response to different stimuli to infer phosphorylation

responses. Transcriptional changes are typically the result of

upstream signaling events driven by phosphorylation cascades.

SC1 sought to address whether changes in gene expression are

sufficiently informative to infer the molecular modifications

observed upstream, in particular, the phosphorylation status

of effector proteins. Furthermore, insights derived from this

challenge could be informative for teams in the remaining

sub-challenges. When making across-species predictions, it may

be important to understand to what extent transcriptional data

should be weighted when inferring phosphoproteomic responses.
Hence for SC1, participants were provided with GEx, protein

phosphorylation (P) and secreted cytokine (Cy) data from stimuli

subset A as training data (Fig. 1A). For testing, participants were

asked to predict which proteins showed changes in their phos-

phorylation status (up- or downregulation is hereafter considered

as an activation also stated as a response) for each stimulus in

subset B. These predictions were to be reported as confidence

values between 0 and 1, where 1 indicated the highest confidence

of activation and 0 the lowest confidence. Phosphorylation levels

were measured by the Luminex xMAP technology—a

bead-based assay where microspheres are coated with antibodies

designed to bind specifically to phosphorylated proteins—in

primary NRBE cells under growing conditions (see methods).
As SC1 dealt with inferring protein phosphorylation status

from downstream gene expression response, SC2 extended that

aim to assess the across-species translatability of that phosphor-

ylation status over the same set of proteins and stimuli. This

sub-challenge required the prediction of human phosphoprotein

activation in subset B based on equivalent data from homolo-

gous phosphoproteins in rat. The participants were provided

with P, GEx and Cy data from subsets A and B in rat and

subset A in human (Fig. 1A). Predictions could be based on

translating signals directly from rat phosphoproteins to human

phosphoproteins. They could also be made using GEx data to

generate across-species inferences of gene expression that would

then be used to predict human phosphoprotein status leveraging

computational approaches developed for SC1. Similar to SC2,

SC3 sought to explore the across-species translatability of

molecular changes in the signaling response pathway, here

focused on transcriptomic responses. Though orthologous

genes by sequence conservation do not necessarily share the

same pattern of expression changes, functionally coherent sets

of genes representing biological pathways may often have a more

conserved response between species or continue to operate as a

group. It may also be the case that similar pathways are activated

between species, but each uses different sets of genes from the

same gene families. As such, SC3 asked for a prediction of the

activation status of a broad range of gene sets in subset B of

human cells (Fig. 1A), provided similar data as in SC2, along

with gene set enrichment scores with associated significance

values for subsets A and B in rat and subset A in human.

From this sub-challenge, we hoped to identify which biological

processes/pathways are similarly or differently perturbed

between species, enabling the identification of conserved or

divergent responses between biological systems.
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The goal of SC4 was to infer human and rat networks given P,

GEx and Cy data, as well as an a priori reference network

(Fig. 1B). Participants were asked to use network inference meth-

odologies to add or remove edges from the reference network to

produce rat-specific and human-specific networks (see Bilal et al.

in this issue). This sub-challenge differed from the others in that

there is no obvious GS, but instead looked to leverage the

wisdom of crowds to develop a consensus network that describes

the conservation and divergence of biological pathways and

interactions in response to the stimuli in subset A.

3.1 Challenge results

SC1-3 was scored in three different ways using different criteria

and measured by the PCC, AUPR and BAC between the

submitted confidence values and binarized GS. The ranks of

the participants for each of these metrics were combined to

obtain a final ranking (see methods). The robustness of

these ranks was evaluated by subsampling 10% of the GS

1000�, while preserving the proportion of active/inactive calls,

and calculating P-values (Supplementary Fig. S2).

As shown in Supplementary Figures S1A and S2A and

Supplementary Table S1, from among 21 participating teams

in SC1, the top three teams—teams 49, 50 and 75—could not

be distinguished robustly between one another, and all were

declared best performers (see Dayarian et al. in this issue). We

compared these results to a series of aggregated ‘teams’ formed

by averaging the prediction confidences of the best N teams to

ascertain whether information could be gained by leveraging the

wisdom of crowds. We found that the score for the aggregate of

all teams ranks fourth overall and is better than the best per-

formers in two out of three metrics (AUPR and PCC,

Supplementary Fig. S3A). From among 13 participating teams

in SC2, team 50 was clearly the best performer, followed by

Team 111 [see (Biehl et al., 2014) in this issue]. In this

sub-challenge, averaging the predictions of all teams did not

fare better than the best performer, but ranked fifth overall

and was better than the second best performer in two of three

Fig. 1. Overview of the STC: (A) Schematic of predictions to be made for each sub-challenge. Each sub-challenge required the prediction of the different

sets of responses, indicated in red. (B) Schematic of SC4 to indicate utilization of a provided reference network with species-specific information from the

training dataset to generate species-specific networks through the addition and removal of edges. Though cytokine measurements were made available to

participants, they were not used in scoring, and for simplicity, were not included in this overview figure
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metrics (AUPR and PCC, Supplementary Fig. S3B). Finally
in SC3, of 7 participating teams, team 50 was again the best
performer, followed by Teams 49 and 111, which tied for second

(see Hormoz et al. and Hafemeister et al. in this issue). As in
SC2, averaging the prediction confidences of all teams did not
fare better than the best performer, but the aggregate of all teams

ranked fourth overall and was better than the second
best performer in two of three metrics (AUPR and PCC,
Supplementary Fig. S3C).
A known risk in classification problems is that some

algorithms correctly separate the classes but label them
incorrectly. Having seen such mislabeling in previous challenges,
we attempted to identify similar occurrences in this challenge.

Though reversing class labels may be less likely when datasets
are highly imbalanced, as the STC was with only an� 10% GS
activation level in SC1-3, several teams from across different sub-

challenges would have improved their rank if their class labels
were reversed. It is important to note that if a prediction is close
to random, then evaluating the reversed labels can give a small

increase of performance. However, our aim was to look for
predictions with large differences in their scores and where the
prediction with reversed labels scores much higher. In SC1 four

teams received a slightly better score when their prediction labels
were reversed, and two teams achieved slightly better scores in
SC2. SC3 stood out with one team, Team 111, having clearly

reversed its labels, and its revised score would have positioned
them as the best performer (see Hafemeister et al. in this issue).
The overall success of participants in a sub-challenge can be

measured by the median Z-score of the scoring metrics, which
may be used to quantify the amount of predictive signal available
in the provided data for a given classification problem. Z-scores

offer a useful cross-challenge measure, as it takes into account
size differences in the universe of predictions; important, since
participants had to predict the activity of 16� 26 phosphopro-

tein–stimulus pairs (SC1-2) and 246� 26 gene set–stimulus pairs
(SC3). Comparisons of the Z-scores for the three different met-
rics in Figures 2A–C suggest that protein phosphorylation was

easier to translate across species (SC2) than solely within species
from GEx (SC1), as reflected by higher Z-scores for AUPR and
PCC. Inter-species protein phosphorylation also appeared easier

to translate than inter-species pathway activation (SC3), as sup-
ported by the lower AUPR and PCC Z-scores for SC3 compared
with SC2. The Z-scores for all three sub-challenges were tied for

BAC (Fig. 2A–C).
The diversity of algorithms that participants deployed when

solving the STC and broad rank distribution of similar

approaches indicates these results were independent of the
method used. Indeed, 7 teams used support vector machines
(SVM), 14 teams used regression-based methods, 8 teams used

decision trees or random forest, 4 teams used neural networks
and 3 teams used a Bayesian approach. When the teams’ rank
distribution was separated by the type of approach used for each

sub-challenge, no clear tendency arose as the rankings of similar
methods varied widely (Fig. 2D–F). Teams tried different
combinations of feature selection approaches and classification

algorithms. Although the sub-challenges shared similarities and a
single team was best performer, no single combination of meth-
ods was universally advantageous across all sub-challenges.

Consider that for SC2, 8 of 13 participants did not use GEx to

infer phosphorylation activation in human and restricted their

analysis to rat protein phosphorylation data. This seemed to be

advantageous, as 5 of the 6 top-ranked submissions did not use

gene expression, but no statistically significant difference

was found between those who did and did not use GEx

(P-value=0.35, Fig. 2G). Nevertheless, there were some promis-

ing approaches arising from the STC. Neural network

approaches ranked 1 and 2 for SC2, and it would have ranked

1 in SC3 had the class labels been reversed. The analysis of

methods also suggested that a promising combination for the

task of feature selection and classification is to select a subset

of genes and use Linear Discriminant Analysis, an approach

taken by half of the top 3 performing methods used for SC1

and SC2.

3.2 Analysis of stimulus prediction through gene sets and

phosphoproteins

To assess how the accuracy of the participants’ predictions

depended on the nature of the stimulus applied, we defined the

species similarity S and the predictability or teams’ prediction

performance Pr. Briefly, S is the MCC between rat and human

GS, and Pr is the MCC between a team’s submission and the

human GS. A high S value would indicate a putatively conserved

response between rat and human; a high Pr suggests the signal is

well translated by participants. S and Pr could be defined for

stimuli based on gene set or protein phosphorylation activation.

S and Pr could also be defined for gene set and phosphorylation

activation based on response to stimuli (see methods for details).

Figure 3 shows the mean Prs for all participants plotted against

Ss based on the activation of gene sets (Fig. 3A) and protein

phosphorylation (Fig. 3B).
Based on both gene set and phosphoprotein activation, clo-

mipramine and IL1B were better predicted than expected by Ss

(Prs4Ss40). In addition, formaldehyde, taurocholic acid, cisa-

pride and activation, and insulin were better predicted based

on protein phosphorylation. The correlation between Prs and

Ss was higher for protein phosphorylation activation

(PCC=0.6, P-value50.013) than for gene set activation

(PCC=0.326, P-value50.051), perhaps reflecting not only a

higher predictability for the protein phosphorylation data but

also its smaller prediction space. Overall a higher percentage of

teams performed better than Ss when predicting gene set acti-

vation in response to stimuli versus predicting phosphorylation

status. Figure 3 shows that in 12 stimuli at least 50% of teams

achieved a Prs4Ss when predicting gene set activation

(Fig. 3C), but only in one stimulus, HBEGF, when predicting

phosphorylation status (Fig. 3D). The individual team values

Prs for protein phosphorylation and gene set activation are

displayed in Supplementary Figure S4, and it shows that the

translation of epigallocatechin and dimethyloxalyglycine was

particularly difficult for both data types. Finally although

aggregating the results of all teams did not yield a better over-

all prediction of stimuli effects when predicting protein phos-

phorylation, the aggregate of the five best teams performed

better than individual predictions for insulin, clomipramine,

IL1B, dimethyloxalyglycine, NaCl and epigallocatechin

(Supplementary Fig. S4B).
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3.3 Analysis of pathway predictions through gene sets

and phosphoproteins

We also set out to assess the accuracy of the participants’ pre-

dictions regarding different biological pathways and to test

which gene expression regulatory processes (biological path-

ways/functions) were translatable and therefore predictable

across species. To do so, we defined the species similarity for

protein and similar measures of predictability, or teams’ predic-

tion performance, Prp and Prg (see methods).
Figure 4A and B show the mean Prp and Prg for all partici-

pants plotted against Sp and Sg, respectively, based on activation

in stimuli. A total of 49 of 246 gene sets were predicted better

than expected by Sg (Prg4Sg40, Fig. 4A). Prediction perform-

ance per phosphoprotein Prp showed a ribosomal protein S6

kinase (KS6A1) and mitogen-activated protein kinases (MK09

andMP2K6) were predicted better than expected by Sp (Fig. 4B).
Although aggregating all teams’ results did not yield a better

overall prediction for protein phosphorylation activity, the
aggregate of the five best teams performed better than individual

predictions (Supplementary Fig. S5B). The high correlation
between Prp and Sp (PCC=0.71, P-value50.0087) reveals
that most of the pathways defined by the protein phosphoryl-

ation activation were predicted with an accuracy expected by
species similarity. We observed a similar situation for gene set

activation prediction, with a lower but still significant correlation
(PCC=0.38, P-value51e-6). These results again suggested a

slightly higher predictability in the protein phosphorylation
data, though the prediction space was smaller. The individual
team values for Prp and found that participants’ predictions

were well translated for 71 of 176 active gene sets and for 8 of

Fig. 2. Scores and computational methods used for solving the STC. The null hypothesis simulation was used to compute and plot team Z-scores of

AUPR curve, balance accuracy (BAC) and PCC for SC1 (A), SC2 (B) and SC3 (C). Z-scores are used to compare the apparent difficulty of each of the

sub-challenges. Panels (C–G) reflect actual performance differences—as measured by overall rank of three metrics—for different methodological

approaches. Teams’ rank distributions are plotted separately by the type of approach for SC1 (D), SC2 (E) and SC3 (F). (G) In SC2, teams’ rank

distribution is separated by usage of solely protein phosphorylation data or in combination with gene expression data. SVM: support vector machines,

Trees: random forest and other tree-based methods, NN: neural networks, GA: genetic algorithm
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16 phosphorylated proteins (Fig. 4A and B). Overall a higher

percentage of teams performed better than species similarity

when predicting protein phosphorylation activation (55%)

versus predicting gene set activation (41%; see Fig. 4C and D).

Nevertheless, when looking specifically at the set of active gene

set and stimulus pairs (n=560), 30% were correctly predicted

by at least three teams (Fig. 5A), and in contrast to phosphor-

ylation activation, six of seven teams in SC3 were better at glo-

bally translating the effects of stimuli than gene set activity

(Fig. 5B).

The 25 best-predicted gene sets showed some concordance in

the biological processes they represent; in particular, translation

and protein folding, apoptosis, metabolism, immune response

(TCR, cytokine), growth signaling pathways (insulin, NGF,

MET, TGFB), kinase signaling (ERK, PI3K), cell cytoskeleton

and adhesion [extracellular matrix (ECM), integrin, actin,

L1CAM] were well predicted (Fig. 5C). It was possible that spe-

cific genes were especially important for reaching high levels of

predictability. To identify such biological drivers, the gene mem-

bership of the top 25 best-predicted gene sets (Z-score� 1.9) was

reviewed to identify genes that were consistently present.

Moreover, from GSEA, genes identified as part of the CORE

enrichmentmay be considered as the most biologically relevant as

they contributed significantly to the enrichment score and were

part of the ‘leading edge’ subset (Subramanian et al., 2005).

Figure 5D reflects a hierarchical clustering of genes that were

present in at least 4 of the top 25 best-predicted gene sets (49

genes among 19 gene sets), as well as the frequency they were

found as part of the CORE enrichment for that gene set. The TF

CREB1, the elongation factor eIF4EBP1 and kinases like AKT1,

PIK3, PDPK1 and MAPK3 were in many of these gene sets and

were also part of the CORE enrichment set for those gene sets,

though their presence was not statistically significant. Notably,

CREB1 and AKT1 phosphorylation activity was also well pre-

dicted by participants in SC2 (Fig. 4B). Yet, MAPK3 activity

was not, showing some but not total coherence between the

drivers of predictability in the two different data types, gene

set and protein phosphorylation activation. Finally we per-

formed a similar analysis looking for the most biologically rele-

vant genes when considering the gene sets that were better

Fig. 3. Predictability versus species similarity for stimuli. (A) The y-axis indicates for each stimulus the mean predictability Prs of all team predictions

when considering gene set activation in SC3. The x-axis is species similarity Ss of gene set activation. In red are stimuli where Prs4Ss40. (B) The y-axis

indicates for each stimulus the mean predictability Prs of all team predictions when considering protein phosphorylation activation in SC2. The x-axis is

Sp of phosphoprotein activation. In red are stimuli where Prs4Ss40. (C, D) Plots showing the percentage of teams where Prs4Ss for each stimulus

when predicting gene set activation (C) or phosphoprotein activation (D). Stimuli are ordered by percentage of teams and the number of activated gene

sets or phosphorylated proteins is indicated on top of each stimulus. The number of active calls per gene set is shown on the top of the graph. Nineteen

stimuli are not shown in (B) and (D) because no proteins were measured as phosphorylated
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predicted than expected by species similarity (Supplementary

Fig. S6). Unexpectedly, we found that nuclear pore genes and

replication factors were significantly enriched, as was a paxilin

gene related to the FAK1 kinase, whose phosphorylation status

was not very well translated by the participants (Fig. 4B).

4 DISCUSSION

We organized the STC as part of the sbv IMPROVER initiative

and provided participants with experimental data describing

multiple layers of different signaling pathways. The goal was to

assess the ability of computational methods to predict biological

responses in primary NHBE cells based on responses observed in

primary NRBE cells. Several of our observations support the

conclusion that changes in phosphorylation status and gene set

activation induced by cellular response to 52 different perturb-

ations in human cells can be predicted to some extent given

responses generated in rat cells. Overall, stimuli caused more

activation in rat than in human cells for most gene sets and for

all phosphoproteins, except for phosphoproteins KS6A1 and

HSPB1 (Supplementary Fig. S7). The differences in stimulus-

induced activity could be due to a more homogenous biological

sample in rats than in humans, or simply to higher sensitivity and

faster signaling of NRBE cells compared with NHBE cells.

Interestingly, differences between the kinetics of activation of

homolog phosphoproteins at the 5 and 25min time points were

minimal [14 pairs for the whole dataset; see Figure 3 in (Biehl

et al., 2014) in this issue].
Although not statistically significant, the average performance

over all participants tended to be higher in SC2 than in SC3. This

was seen in the higher Pr values when predicting stimuli activity

across all phosphoproteins or gene sets and also when predicting

the challenges’ respective signaling layer, gene set activation or

phosphorylation responses across all stimuli. This observation

holds when considering the performance of the best performer

in both sub-challenges, where Team AMG’s prediction Pr values

were higher for SC2 versus SC3.
When we considered cases where the majority of participants

performed better than species similarity, i.e. a na€ıve, direct trans-

lation, 12 stimuli and 71 (of 176) active gene sets were well

predicted in SC3, and 8 phosphoproteins and 1 stimulus in

SC2 (Figs 3C and D and 4C and D). The greater number of

Fig. 4. Predictability versus species similarity for gene sets and phosphoproteins. (A) The y-axis indicates for each gene set the mean Prg of all team

predictions when considering response to 26 stimuli in SC3. The x-axis is Sg of gene set activation. In red are stimuli where Prg4Sg40. (B) The y-axis

indicates for each protein the mean Prp of all team predictions when considering response to 26 stimuli in SC2. The x-axis is Sp for phosphoprotein

activation. (C and D) Plots showing the percentage of teams where Prg4Sg (C) and Prp4Sp gene sets and phosphoproteins are ordered by number of

active calls, indicated on top of each black dot
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well-predicted stimuli by gene set activation may have to do with

the relatively lower levels of similarity Sg as compared with Sp,

although, importantly teams were able to find informative bio-

logical signal in spite of these lower levels of response conserva-

tion. Finally, 10 teams in SC2 and 5 teams in SC3

submitted predictions that were statistically significantly different

from random in two of the three metrics used (Supplementary

Tables S1–S3). Overall for SC1-3, about two-thirds of the

submissions were statistically significant (26 of 41), this indi-

cates that in SC1, GEx data were sufficiently informative to

infer upstream phosphorylation responses and that overall

across-species predictions were achievable for specific stimuli,

phosphoproteins and gene sets.

While many teams achieved a statistically significant result

when considering random submissions as a null hypothesis,

most teams in SC2 found their methods were unable to outper-

form a completely na€ıve approach to the challenge. If a team had

submitted the rat’s subset B protein phosphorylation status in

SC2 and the gene set activations in SC3 as their predictions, they

would have ranked second and fifth, respectively. However,

best-performer teams used approaches that did significantly

better than the na€ıve approach, suggesting that their computa-

tional methods could capture additional informative biological

signal in rat data [see in this issue (Biehl et al., 2014), Hafemeister

et al, and Hormoz et al.]. Interestingly, there was also not a

statistically significant difference between the five teams that

used both P and GEx data and all others. The SC2 second

place team, Team IGB, went further to test multiple variations

of their Neural Network method to include GEx data and found

it fared worse than methods using phosphorylation data alone

[see (Biehl et al., 2014) in this issue]. This may be owed to the

smaller difference in relative standard deviations (RSD) between

human and rat phosphorylation response data versus GEx data

(Supplementary Fig. S8). The similarity in phosphorylation

response across species may have been difficult to detect due to

the low number of replicate samples—only 3. These observations

suggesting that it was relatively easier to predict a response of the

phosphoproteomic layer are also reflected in the median Z-scores
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Fig. 5. Best translated gene sets representative of different pathways. (A) Histogram of the percentage of active gene set/stimulus pairs [560 pairs from

6396 (246 gene sets� 26 stimuli)] correctly predicted by N teams. Blue line represents the cumulative of the histogram values. (B) Distribution of teams’

Prg (blue) and Prs (red) values. (C and D) Best predicted gene sets as measured by Prg. (C) Barplot of 25 gene sets having a Prg Z-score� 1.9. Blue star
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of the challenge metrics, where SC2 Z-scores were higher than
SC3 for AUPR and PCC (Fig. 2A–C). These results likely reflect
both the larger universe of predictions for SC3, which were an

order of magnitude greater than for SC2 (246� 26=6396 gene
sets/stimuli pairs versus 16� 26=416 phosphoproteins/stimuli
pairs) and also a higher conservation between rat and human for

protein phosphorylation activation (Sp=0.71) compared with
the gene set activation (Sg=0.38). It is also possible that the
higher similarity in phosphorylation response and smaller differ-

ence in the RSD between human and rat in the protein phos-
phorylation data with respect to the GEx data enabled more
accurate predictions (Supplementary Fig. S8). This is likely due

to the greater heterogeneity of human samples coming from two
different donors compared with rat samples coming from an
inbred laboratory strain but also given the increased complexity

of human signaling. Transcriptional responses are a relatively
downstream event from phosphorylation in signaling cascades.
Hence, it is possible that when the signal finally propagates to the
transcriptional layer, many other species-specific factors may

amplify the differences of response between both species.
An alternative explanation could be related to platform-specific
biases due to inherent differences in mRNAs. However, we paid

special attention to experimental design and execution as well as
sample and data processing to minimize, as much as possible,
experimental biases and avoid confounding effects within and

between species (Poussin et al., 2014).
Additionally, phosphorylation response predictions benefited

from more targeted experiments, which looked at 16 phospho-

proteins enriched for active signals (Poussin et al., 2014) while
GEx data was genome-wide and would only be expected to have
a small percentage of genes differentially expressed. An interest-

ing follow-up experiment would be to look at targeted gene
expression for the pathway components using more specific
measurements, like qRT-PCR or deep-sequencing. More

sampled time points for GEx could provide greater granularity
and may reveal patterns difficult to observe with a single 6 h
exposure time point, and also confirm whether this choice left

transcriptional responses to particular stimuli undetected.
The STC’s results indicate that GEx data were potentially

noisier and the numbers of active gene set–stimulus pairs were

low, however participants in SC3 made better predictions
per stimulus than per gene sets (Fig. 5B). This shows that
given sufficiently large datasets, it was still possible to extract a

biologically relevant signal. Stimuli such as the chemical formal-
dehyde, cholesterol-derived taurocholic acid and the serotonin
5-HT4 receptor agonist cisapride were predicted better than the

conservation of the response between both species. Similarly, the
hydroxylase inhibitor dimethyloxalyglycine, the cytokine CCL3,
the TLR activator PolyIC (Fortier et al., 2004) and the nerve

growth factor NT3 were effectively translated and predictable at
a level comparable with the observed conservation of response
S (Fig. 3A) when based only on activation of protein phosphor-

ylation. When we considered the overall prediction performance
for phosphorylation response and gene set activation by all
teams in SC2 and SC3, the antidepressant clomipramine and

cytokine IL1B were better predicted than the levels of response
conservation. This observation indicates that teams were able to
identify human-specific signals that were not significantly present

in the rat data. We also found that predictions based on the two

data-generating platforms were not always in agreement, as in

the case of insulin, which was well predicted based on protein

phosphorylation but not based on gene set activation, and vice

versa for NaCl (Fig. 3A and B).

Regarding the inference of biological processes, the gene sets

predicted better than species similarity and/or best-predicted

were related to DNA synthesis, cytoskeleton and ECM, transla-

tion, immune/inflammation and growth factor/proliferation

(Fig. 5 and Supplementary Fig. S6). The gene sets associated

with growth factor/proliferation processes shared a subset of

CORE driver genes belonging to the following signaling

pathways PI3K, RAS, RAF, MAPK, ERK and CREB.

When considering only gene sets that were among the top 25

best predicted and had at least 1 member shared with at least 3

other best predicted gene sets, both CREB1 and AKT1 genes

were present in, respectively, 4 and 6 of 19 gene sets (Fig. 5D).

To note, the empirical P-values calculated for their presence

across gene sets was not significant, indicating that these genes

are frequently present in gene sets (see Fig. 5D). This may be due

to a central role of these genes in many biological functions

leading to a broad representation of those genes through C2CP

gene sets. At the protein level, the activity of CREB1, AKT1 and

MAP kinases such as MAPK9 and MP2K6 was well translated

based on protein phosphorylation activation, showing a consist-

ency in similar pathway perturbation prediction at different

layers of the cellular system. It is interesting to note that the

species similarity of MAPK9 and MP2K6 activation profile

across stimuli was low, whereas the activation of both proteins

was well predicted. The best predicted protein activity was that of

KS6B (p70S6K). This protein is activated upstream by PI3K/

AKT/mTOR protein kinases and regulates downstream phos-

phorylation of p70S6 protein, which is directly involved in the

translation process found to be among the top best-predicted

functions at the gene expression level. Interestingly, EIF4EBP1

and EIF4G1 factors involved in rate-limiting steps during the

initiation phase of protein synthesis (Franke, 2008) were identi-

fied as CORE driver genes of translation-related gene sets, and

the P-value associated to their presence across best-predicted

gene sets was significant, indicating that those genes were

rarely shared with other genes sets and therefore were specific

to this biological function. Importantly, EIF4G1 gene also

belonged to CORE genes contributing to the enrichment of

translation-related gene sets in rat cells, suggesting a conserved

role for this gene between human and rat species. Other proteins,

such as TF65 and IKBA, associated to the NFkB signaling path-

way showed good predictability in their activity in human cells.

This result was coherent with the observation of good predict-

ability for immune/inflammatory-related gene sets.
Except for some proteins such as MAPK9 and MP2K6 as

mentioned above, many proteins of our measured panel have a

level of species similarity that positively correlated with the level

of predictability. This suggests that conserved responses at the

protein levels possibly drive the translatability between both

species in this cellular context.
Agreement in the biological processes that are similar between

rat and human extends to the results of SC4, for the insulin,

IL1R, MAPK, CREB1 and NFKB pathways (see Figs 2 and 5

in Bilal et al. in this issue). Participants of SC4 also found that
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regulation of RPS6KA1, active in human, and WNK1, in rat,
differed between the two species (see Bilal et al. in this issue).
Finally, we observed that gene sets related to metabolism,

which were generally expected to be conserved between
species—such as insulin secretion, the CREB pathway, amino
acid and fatty acid metabolism—were indeed well translated,

although oxidative phosphorylation and gluconeogenesis
were less well translated than expected by conservation
(see Supplementary Table S6). The 49 different submissions to

the STC used a diverse set of approaches including SVM, regres-
sion-based methods, tree-based methods like random forest,
neural networks, Bayesian analyses and a genetic algorithm.

The diversity of approaches might explain why the aggregate
of all participant results performed better for two of three metrics
in SC1 and SC2 (Supplementary Fig. S3). A lower participation

level in SC3 may also explain why aggregation of all seven teams’
predictions did not perform better than the best performers.
Interestingly, similar computational methods could have a wide

range of performance within the same challenge, and no single
method emerged as the clear winner (Fig. 2). Yet, methods that
selected a subset of genes and used Linear Discriminant Analysis

ranked among the top 3 performing approaches for SC1 and
SC2. For SC2, one would have naively expected that using
more data would benefit a prediction, and while not statistically

significant, participants that used only protein phosphorylation
data tended to rank higher than participants using protein phos-
phorylation data in conjunction with gene expression data

(Fig. 2G).
A notable challenge in the STC was the imbalance in data, as

only� 10% of stimuli/phosphoprotein and stimuli/gene set pairs

were active. Such a strong bias toward the inactive class compli-
cates the training of models, although usage of ensemble
methods that repeatedly sample the data, either over- or

under-sampling, to converge on stable predictions could help
overcome this imbalance. Generally, teams did not explicitly
compensate for these imbalances, though methods like random

forest inherently addressed such concerns. Yet as seen in the
challenge results, random forests were not uniformly superior
to all other methods and so there is potential for improved

approaches that more explicitly account for class imbalance.
For their predictions, participants exclusively used data-driven

approaches, and no computational method included a priori

biological knowledge, as would be the case for topological
approaches (Anvar et al., 2011; Melas et al., 2011). This rendered
the interpretation of results with respect to biology more

difficult. The construction and usage of a priori knowledge is
characteristic of topology-based approaches. For example,
Melas et al. used such approaches with data similar to the

STCs to reconstruct pathways from input stimuli to the output
cytokine release with phosphoprotein levels as intermediate sig-
nals. The initial construction of canonical pathways was based

on gathering information from different databases (e.g. KEGG,
Biocarta, etc.) combined with manual curation from the litera-
ture (e.g. reviews). Later, the Boolean networks were refined with

a data-driven method using multi-linear regression on the
phosphoprotein and cytokine data.
Alternative methods, beyond traditional machine learning

approaches that assume training and test sets from the same
dataset/domain, would be necessary to generalize predictions

and enhance biological conclusions. Transfer learning and

domain adaptation would be worth examining specially in prob-

lems that aim to integrate multiple layers of information—such

as distances between stimuli based on the similarity of their

chemical structure or their distance similarity in a protein inter-

action/transcriptional response network (Blitzer, 2006; Iorio

et al., 2010; Napolitano et al., 2013; Pan et al., 2011).

The current work constitutes a proof of principle that predict-

ability of responses in an in vitro system from one species is

feasible to some extent given responses from another species.

The results of this challenge provide insights on the predictabil-

ity/accuracy in the context of diverse data types generated at

various layers of the biological system studied; on the importance

of time resolution to gain in prediction accuracy for species-spe-

cific sequential molecular events; on the different performance of

similar computational methods due to variations in data prepro-

cessing, feature selection and the classification algorithm (Tarca

et al.); and on the different degrees of predictability of pathways/

processes depending on the stimulus-induced perturbation in

human and rat bronchial epithelial cells. Processes such as

DNA synthesis, cytoskeleton and ECM, translation, immune/in-

flammation and growth factor/proliferation were better

translated.
It will be important to test whether results and methods dis-

cussed here can be extended to more complex systems such as

tissue, organ and whole organisms, the ultimate objective of

translation between species. A better understanding of the

range of applicability of the translation concept will impact the

predictability of signaling responses, mode of action and efficacy

of drugs in the field of systems pharmacology as well as increase

the confidence in the estimation of human risk from rodent data

for toxicological risk assessment.
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