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ABSTRACT

Motivation: Shape-based alignment of small molecules is a widely

used approach in computer-aided drug discovery. Most shape-

based ligand structure alignment applications, both commercial and

freely available ones, use the Tanimoto coefficient or similar functions

for evaluating molecular similarity. Major drawbacks of using such

functions are the size dependence of the score and the fact that the

statistical significance of the molecular match using such metrics is

not reported.

Results: We describe a new open-source ligand structure alignment

and virtual screening (VS) algorithm, LIGSIFT, that uses Gaussian mo-

lecular shape overlay for fast small molecule alignment and a size-

independent scoring function for efficient VS based on the statistical

significance of the score. LIGSIFT was tested against the compounds

for 40 protein targets available in the Directory of Useful Decoys and

the performance was evaluated using the area under the ROC curve

(AUC), the Enrichment Factor (EF) and Hit Rate (HR). LIGSIFT-based

VS shows an average AUC of 0.79, average EF values of 20.8 and a

HR of 59% in the top 1% of the screened library.

Availability and implementation: LIGSIFT software, including the

source code, is freely available to academic users at http://cssb.biol

ogy.gatech.edu/LIGSIFT.

Supplementary information: Supplementary data are available at

Bioinformatics online.

Contact: skolnick@gatech.edu
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1 INTRODUCTION

Identification of new lead molecules is a major challenge in the

drug discovery process, as the experimental screening of large

chemical databases is very expensive and depends on how

representative the library is. Virtual screening (VS) approaches

are frequently used for lead identification, which can be then

verified under laboratory settings. VS approaches can be broadly

classified into protein-centric approaches (e.g. docking) and

ligand centric approaches. Protein-centric approaches do not

depend on known ligand information and are generally expected

to perform better, as they enable one to explicitly evaluate

protein–ligand interactions. However, these approaches rely

heavily on the quality of the receptor structure and suffer from

inherent limitations of the applied protocol. Ligand centric VS

methods, on the contrary, do not need receptor information and

often use known ligands as a seed to identify potential binders

based on their 2D or 3D similarity to the known active molecule

(Eckert and Bajorath, 2007). 2D VS methods generally represent

a molecule as a vector with entries indicating the presence or

absence of molecular features. These methods are popular, as

they provide a fast and easy way of fishing out similar active

molecules. However, the scaffold hopping potential of such

methods is controversial (Renner and Schneider, 2006), and

both molecular size and complexity negatively affect the search

performance of such methods (Holliday et al., 2003).

In contrast, 3D VS methods are computationally taxing due to

complexities associated with ligand flexibility and determination

of the optimal 3D alignment. Nevertheless, with improvement in

computational power, 3D VS methods have become popular, as

they capture the physical and functional features required for the

biological interaction and are generally capable of scaffold

hopping (Quintus et al., 2009; Rush et al., 2005). The scaffold

hopping potential of 3D methods not only help to reduce false

negatives during VS experiments, but also provide important

insights for bioisostere replacement (Jennings and Tennant,

2007), potential off-target interactions and cross-reactivity of

existing drugs.
Three-dimensional methods for aligning small molecules con-

sist of three basic components: (a) a descriptor to represent the

molecule, (b) a scoring function to assess the alignment quality

and (c) an optimization procedure to find the best possible align-

ment with respect to the chosen scoring function. Common

choices of descriptors include molecular interaction field-based

(Cheeseright et al., 2008), pharmacophore-based (Sperandio

et al., 2007) and shape-based representations of small molecules.

A number of algorithms for shape-based VS have emerged in the

last few years; each seeks to maximize the shape overlap between

the pair of molecules under consideration. Most use atom

centered, smooth Gaussian functions to model molecular

volume, as it helps to achieve rapid overlay and can also be

performed relatively easily using simple mathematical oper-

ations. For example, Rapid Overlay of Chemical Structures

(ROCS), a highly popular closed-source algorithm, uses a

Gaussian description of the molecular shape and chemical

nature of the ligand (Grant et al., 1996; Grant and Pickup,

1995) for ligand screening. Similarly, Align-itTM, an open-

source tool uses a Gaussian description of molecular pharmaco-

phores, but follows a different optimization approach to find the

best overlay (Taminau et al., 2008). These and other similar tools

use the Tanimoto Coefficient (TC) or similar size-dependent

functions for measuring molecular similarity (Hamza et al.,

2012; Holliday et al., 2003). Moreover, these scoring functions*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 539

http://cssb.biology.gatech.edu/LIGSIFT
http://cssb.biology.gatech.edu/LIGSIFT
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu692/-/DC1
mailto:skolnick@gatech.edu
-
n't
3D 
,
virtual screening
ROCS (
size 


lack a statistical model that can indicate the significance of struc-

tural/chemical match between molecules (Baldi and Nasr, 2010).

In this study, we present a new open-source, ligand-based VS

algorithm that provides a size-independent scoring function to

measure shape and chemical similarity and also reports the

P-value to assess the statistical significance of the match between

a pair of molecules. Performance evaluation of LIGSIFT on the

40 targets in the Directory of Useful Decoys (DUD) set shows

overall improved performance compared with other well-

established shape-based VS methods such as ROCS and

Align-itTM.

2 METHODS

2.1 Molecular representation and alignment

The 3D structure of a small molecule is represented using atom-based

descriptors in LIGSIFT (supplementary Table S1). The molecular shape-

density of every heavy atom i is described using a spherical Gaussian

function:

�i rð Þ=’iexp ��i r� Rið Þ
2

� �
;where �i=� 3’i

�
4��i3

� �2 3=

ð1Þ

is the decay factor, ’i=2�2 is the amplitude, Ri is the atomic coordinate

for the ith atom and �i is its van der Waals radius. The chemical nature of

pharmacophore heavy atoms (supplementary Table S1) is identified using

SMARTS expressions in OpenBabel (O’Boyle et al., 2008), and is

modeled using the same Gaussian description as the atomic shape.

Additionally, the spatial orientation of some atom-types (H-bond

donor and acceptor) is calculated based on the position of neighboring

atoms (supplementary Table S1).

Using this model, the shape/chemical density of any molecule can be

calculated as the sum of atomic densities, defined as:

V=
Xn
i=1

Z
dr�iðrÞ ð2Þ

and the overlap between two molecules A and B is calculated as the sum

of the overlaps of individual atoms’ Gaussian functions:
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where i and j are the heavy atom indices of molecules A and B, �i and �j
are the atomic Gaussian distributions of each atom and dij is the distance

between atom i and j.

To identify the correct shape and chemical similarity between mol-

ecules A and B, we need to first identify the relative poses of A and B

that maximizes VAB. To achieve this, two types of quickly identifiable

initial alignments are used. The first type of initial alignment is generated

by aligning the principal axes of the moment of inertia tensors of mol-

ecules A and B. This procedure helps to quickly scan the complete 3D

space with minimum iterations, but is more suitable for aligning mol-

ecules of similar size. The second type of initial alignment is based on a

three-atom superposition of an atomic triad selected from A and B.

Although a systematic search would involve all combinations of atom

pairs from both the molecules and would provide a very close to optimal

alignment, this is not a practical solution for fast VS applications.

Therefore, only pairs of atoms having similar chemical nature are used

as triad pairs to generate sub-optimal initial alignments.

Starting from each sub-optimal initial alignment, the optimal non-

sequential alignment is identified using the Jonker–Volegenant shortest

augmenting path algorithm (Jonker and Volgenant, 1987), which aims to

minimize the total cost of misaligning heavy atom pairs. A cost matrix is

calculated for every heavy atom pair (i 2 A; j 2 B), where the cost (Cij)

for aligning atom i and j is defined as:

Cij=k� Vij; ð4Þ

where Vij is the overlap of the atomic Gaussian distribution between atom

i and j, and k=100 is an arbitrary constant larger than Vij. When

evaluating chemical similarity, Vij is evaluated as zero for atom pairs

with dissimilar chemical types, in order to encourage matches between

atom pairs with same or similar chemical type.

Finally, a short Metropolis Monte-Carlo simulation with rigid body

rotation and translation of coordinates is performed to refine and

maximize the overlap (VAB) between molecules A and B.

2.2 Molecular similarity of overlapped structures

Once the relative pose of molecules A and B that results in max-

imum overlap (VAB) is identified, the scaled TC (sTC) score is calculated

as:

sTC=
TC+s0
1+s0

;where TC=
VAB

VA+VB � VAB
ð5Þ

Here, TC is the Tanimoto coefficient of the shape/chemical similarity, VA

and VB are the shape/chemical densities of molecules A and B calculated

using the Gaussian model (Equation 2). s0 in Equation(5) is the scaling

factor that ensures that the mean molecular similarity scores are size-

independent and is calculated as:

s0=
a+b ln VAð Þ+cln VBð Þ+d ln VA+VBð Þð Þ � e

e� 1
ð6Þ

To estimate s0, we need a random background distribution of molecu-

lar similarity (MS) scores consistent with the conformational variability

of small molecules. Therefore, a conformational pool of 737 PubChem

molecules of various sizes was generated using RDKit’s distance-geom-

etry conformer generator. For each molecule, a maximum of 50 low-

energy conformers were generated, and each conformer was structurally

aligned with 11 604 representative PDB ligands. In addition, all PDB

ligands were also aligned to each other. Pairwise TC values for shape

similarity and chemical similarity obtained after aligning molecule pairs

of various sizes were used for calculating s0 (using Equation 6). This

scaling of TC values ensures that the molecular similarity scores are

size-independent for random match between ligands. The parameters

for a, b, c, d and e in Equation 6 for different optimization schemes

(shape similarity, chemical similarity and combination of shape and

chemical similarity) are listed in supplementary Table S2.

Figure 1 shows the distribution of scaled TC mean and unscaled TC

mean obtained for random structural alignments. Both scaled shape and

chemical similarity scores have a narrow distribution with a maximum

density near 0.49 and 0.42, respectively, reflecting that the mean scores

for alignment between random pair of molecules are size independent.

Meanwhile, molecular similarities measured using unscaled TC have a

large spread, which reflects their size dependence.

2.3 Statistical significance of molecular similarity

The statistical significance of the sTC between any two molecules is

estimated by comparing the similarity score with values obtained for

the alignment between random molecule pairs. The structure similarity

of random pairs of various sizes was calculated using the same procedure

as described above for calculating s0 and modeled by Gumbel distribution

fitting in the R evir package. A statistical model of fitted distributions was
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obtained through linear regression fits

�=a+bVA+cVB+d ln ðVA+VBÞ+ejVA � VBj

�=a+b ln ðVAÞ+cln ðVBÞ+d ln ðVA+VBÞ;
ð7Þ

where � is the location parameter and � is the scale parameter of the

fitted Gumbel distributions. Parameters a to e in Equation (7) for esti-

mating P-values are listed in supplementary Table S3. The P-values of

sTC scores can be then calculated by:

P-value=1� exp �exp �zð Þ
� �

;where z=
MS-score� �

�
ð8Þ

is the z-score of sTC, � and � are parameters computed based on the

fitted statistical model (Equation 7). Observed and modeled distributions

for molecules of various sizes are shown in supplementary Figures S1

and S2.

2.4 Validation dataset

For the validation, we have used a standard database of active and decoy

molecules for 40 pharmaceutically relevant protein targets, listed in the

DUD (Huang et al., 2006). For each active molecule, there are approxi-

mately 36 physically similar but topologically dissimilar decoys, selected

based on matching molecular weight, number of hydrogen-bond donor

and acceptors, number of rotatable bonds and logP. Duplicate entries

were removed; thus only a single entry for each molecule in the database

is retained. The list of all the 40 targets along with the number of actives

and decoys is found in supplementary Table S4.

To evaluate the effect of conformational flexibility on VS, conform-

ational models of the ligand derived from the 40 DUD protein–ligand

complexes and database molecules were generated using OMEGA

(Hawkins et al., 2010) with default settings.

2.5 Evaluation of VS

To evaluate the performance of different screening approaches, we used

the standard evaluation metrics: (a) the receiver operating characteristic

(ROC) curve and (b) the enrichment factor (EF) of screened compound

library and (c) the hit rate (HR). The ROC curve plots the true positive

rate as a function of false positive rate. The area under the curve (AUC) is

frequently used to quantify the shape of the ROC curve, with values in

the range [0–1], with 0.5 indicating random performance.

For evaluating the performance in the top x% of the screened library,

a common metric EF has been applied, which is defined as:

EFx%=
True Positivesx%=Nx%

selected

Nactives=Ntotal
ð9Þ

We have used EF1%
, EF

5% and EF10% to analyze the performance.

A known problem of EF is its dependency on the ratio of active and

decoy molecules in the database. Therefore, we have used an additional

metric HR, defined as:

HRx%=
EFx%

actual

EFx%
ideal

� 100 ð10Þ

where EFx%
ideal is the ideal EF that would be obtained in x% of the

database.

3 RESULTS

VS was performed for all the 40 DUD targets using bioactive
and both single and multiple database conformers and database

molecules were ranked using various shape and chemical simi-
larity metrics. Multi-conformer models of database molecules
were generated using OMEGA (OpenEye Inc.).

3.1 Effect of size-independent scoring function on VS

A common problem in VS is the large number of false negative

predictions. One possible cause is the size dependence of the
scoring functions that are used in scoring and ranking. We
sought to address this problem by scaling a widely used metric

TC, so that it becomes size independent (scaled TC). To examine
the effect of scaling, independent of the contribution from dif-
ferent conformers of the database molecules, we used a single

conformer per database molecule, as provided in the downloaded
DUD structure file, which was generated using CORINA

(Huang et al., 2006). Table 1 shows the average AUC and EF
values obtained for the 40 DUD targets, using the bioactive
query conformer and a single conformer of the database mol-

ecules (see Section 2.4). The same molecular overlay was used for
both TC and sTC.

Overall, sTC shows a small improvement in both average
AUC and EFs on the DUD set. In most cases, AUC and EF
values either remain unchanged or the improvement was mar-

ginal, because the size of seed ligand and database molecules are
mostly similar in the DUD set (supplementary Table S5). Only
for the targets where database molecules were of much different

size than the seed ligand does the advantage of scaling TC
become apparent on average (supplementary Table S5). To

examine this, we increased the size and heterogeneity of database
molecules by including active and decoy molecules from other 39
proteins in the DUD set. We observe (supplementary Table S6)

that as the size of database molecules diverge from the seed
ligand, the difference between AUC and EF1% of sTC and un-

scaled TC becomes larger. This suggests that sTC helped to rank
active molecules, which had statistically more significant matches
but lower TC scores higher than those that had statistically

less significant but higher TC scores. For example, Figure 2
shows structural superposition of a cdk2 active molecule

ZINC03814437, on the seed ligand taken from cdk2 receptor
structure (PDB: 1ckp). As the size of the active database mol-
ecule (in tan) is smaller than the seed ligand (in cyan), the large

volume of the seed ligand overwhelms the unscaled chemical TC
score of TC=0.415. Based on TC, ZINC03814437 is ranked at
position 123 (6.7% of database). For sTC, the chemical similar-

ity is scaled, so the same overlap has a sTC=0.54, which ranks
the active molecule at position 62 (3.3% of database); highlight-

ing the advantage of a size-independent scoring function.

Fig. 1. Distribution of mean shape and chemical similarity scores for

random pairs of molecules of various sizes
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3.2 VS performance of LIGSIFT

The performance of LIGSIFT is next benchmarked using the

bioactive conformation of the seed ligand and modeled multiple
conformations of database molecules. Table 2 shows the AUC

values of the ROC curves (supplementary Fig. S3) for each of the
40 DUD targets.

Overall, LISIFT shows very good VS performance. The
average AUC for the 40 targets is 0.79� 0.20, which is better

than the well-established shape-based VS tools like ROCS
(AUC=0.73� 0.2), that uses a similar combo scoring function,

and is much better than available open source tools like

Align-ItTM (AUC=0.75� 0.23). For 38 targets, LIGSIFT VS
rankings were better than random (AUC40.5), while it failed for

two targets: PDGFRB and SRC. The control methods, Align-It
and ROCS, also failed on these two target proteins (AUC50.5),

in addition to another three and four other proteins (Table 2),
respectively. A detailed analysis of these two failed target

proteins suggests that the seed ligand may not be a good repre-

sentative for fishing out other active molecules for this receptor.
For instance, when we used other active molecules in the

database as our seed molecule, AUC values as well as EF and
HR generally improved for both the proteins (supplementary

Table S7). As expected, the performance using these database

seed molecules depends on how well they represent other actives
molecules in the database. These cases highlight the applicability

and advantage of using multiple seed ligands to identify similar
active molecules from the database.

Nevertheless, as observed in case of single conformers, even
when we use multiple database conformations, the size-independ-

ent scaled TC (sTC) scoring performs slightly better than simply

using the unscaled TC as the metric. A closer examination of the

results highlights that AUC of the ROC curves improved for 20

of the 40 proteins (underlined values in Table 2), suggesting that

the scaling of the similarity scores was helpful in alleviating false

negatives for 50% of the test proteins.
The VS results are further analyzed using the EF (Equation 9),

with the results summarized in Table 3. Using chemical similar-

ity, LIGSIFT achieved an average EF of 20.8� 12.6, highlight-

ing the ability of the method to recognize active molecules

at the beginning of ranked database. High enrichment rates

Table 2. Area under the ROC curves for all 40 DUD targets using X-ray

conformation of seed ligand and modeled conformers of database

molecules

DUD target LIGSIFT (sTC) LIGSIFT (TC) Align-It ROCS#

ACE 0.79 0.78 0.86 0.70

ACHE 0.80 0.80 0.82 0.77

ADA 0.73 0.74 0.88 0.86

ALR2 0.69 0.66 0.71 0.57

AMPC 0.93 0.94 0.89 0.82

AR 0.83 0.83 0.79 0.79

CDK2 0.71 0.69 0.45 0.68

COMT 0.90 0.81 0.79 0.32

COX1 0.62 0.62 0.68 0.53

COX2 0.95 0.95 0.95 0.93

DHFR 0.97 0.97 0.97 0.92

EGFR 0.93 0.93 0.94 0.95

ER agonist 0.92 0.92 0.87 0.94

ER antagonist 0.90 0.90 0.94 0.98

FGFR1 0.62 0.60 0.59 0.49

FXA 0.77 0.76 0.62 0.39

GART 0.86 0.87 0.92 0.93

GPB 0.94 0.94 0.94 0.92

GR 0.87 0.84 0.56 0.79

HIVPR 0.79 0.77 0.78 0.56

HIVRT 0.78 0.76 0.63 0.66

HMGA 0.96 0.95 0.92 0.92

HSP90 0.87 0.87 0.65 0.66

INHA 0.72 0.73 0.77 0.72

MR 0.89 0.87 0.72 0.87

NA 0.96 0.97 0.88 0.97

P38 0.51 0.50 0.45 0.52

PARP 0.68 0.69 0.94 0.58

PDE5 0.57 0.56 0.64 0.53

PDGFRB 0.46 0.44 0.23 0.34

PNP 0.98 0.98 0.95 0.91

PPAR � 0.85 0.84 0.91 0.92

PR 0.79 0.78 0.66 0.67

RXR � 0.98 0.98 0.98 0.96

SAHH 0.97 0.97 0.96 0.97

SRC 0.38 0.37 0.38 0.38

THROMBIN 0.59 0.56 0.69 0.66

TK 0.92 0.92 0.78 0.86

TRYPSIN 0.64 0.55 0.75 0.78

VEGFR2 0.67 0.64 0.29 0.43

Average AUC 0.79�0.20 0.78�0.20 0.75�0.23 0.73�0.2

#AUC values are taken from Kirchmair et al. (2009).

TC: Tanimoto Coefficient; sTC: scaled TC

Fig. 2. Structural superposition of the active molecule ZINC03814437

(tan) on seed cdk2 ligand (cyan), using LIGSIFT

Table 1. VS performance on 40 DUD targets using scaled and unscaled

TC scoring functions

Ranking score AUC avjsd EF1% avjsd EF5% avjsd EF10% avjsd

TCshape+chem 0.73� 0.20 17.0� 10.9 7.3� 4.8 4.4� 2.5

TCshape 0.68� 0.21 13.6� 11.2 5.7� 4.4 3.7� 2.4

TCchem 0.77� 0.20 17.6� 10.8 8.0� 5.3 4.8� 2.6

sTCshape+chem 0.75� 0.20 17.1� 11.1 7.4� 4.9 4.4� 2.5

sTCshape 0.70� 0.21 13.5� 11.3 5.8� 4.4 3.7� 2.5

sTCchem 0.78� 0.19 17.9� 10.8 8.1� 5.3 4.9� 2.7

av: average; sd: standard deviation; TC: Tanimoto coefficient; sTC: scaled TC
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(EF1% 430) were observed for 15 proteins: ACHE, ADA,

AMPC, AR, COMT, COX2, DHFR, GPB, HMGA, HSP90,

INHA, MR, NA, PNP and RXR; while no enrichment

(EF1%=0) was observed for SRC (supplementary Table S8).

These values are comparable to those reported for

ROCS (EF1%=19.4� 12.9) (Kirchmair et al., 2009), and

much better than what is obtained using Align-It

(EF1%=16.9� 12.5). However, the enrichment of active mol-

ecules using ROCS VS is null (EF1%=0) for four proteins

(FGFR1, GART, TRYPSIN and VEGFR2), while Align-It

failed on three proteins (COMT, PR and VEGFR2).
Although the AUC of ROC curves along with EF1% are

commonly used for evaluating VS performance, a known disad-

vantage of EF is its dependence on the ratio of actives and

decoys in the database, which makes comparison of various

methods on different datasets ambiguous. Therefore, we add-

itionally used the Hit Rate (Equation 10) for evaluating VS per-

formance. The average hit rate of LIGSIFT in the top 1% of the

screened library was 59%, better than the ROCS hit rate of 54.6

and the Align-It hit rate of 48.0%. These results clearly show

that on average LIGSIFT ranks a large number of active mol-

ecules as best among the screened molecules in the database. For

example, 22 of the 40 DUD proteins achieved a hit rate450%,

while only two proteins had a hit rate of510% (supplementary

Table S9).
It is interesting to note that even though multiple ligand

conformations should result in better molecular overlap and is

expected to have better VS performance, the observed improve-

ment in average AUC was marginal (increasing from 0.78 to

0.79). The average EF1% showed the largest improvement,

increased from 17.9 to 20.8. To examine the effect of molecular

flexibility on VS performance, we further analyzed EF1% for

molecules with different molecular flexibility (supplementary

Table S10), measured by their number of rotatable bonds, but

found no correlation between molecular flexibility and VS

performance.

4 DISCUSSION AND CONCLUSION

Shape-based ligand structural alignment has multiple applica-

tions, the most practical being drug discovery. Even though

there is a rapid increase in the number of tools developed for

this purpose, the metrics used for evaluating molecular similarity

in these applications are size dependent and lack statistical sig-

nificance quantification.
Here, we have developed a new algorithm (LIGSIFT) for the

structural overlay of small molecules and quantification of

molecular similarity (both shape and chemical) using a size-

independent scoring function (sTC). This score is essentially a

scaled TC based on a random background distribution of shape

and chemical TC calculated for millions of overlays of molecules

of various sizes. A rigorous benchmark and evaluation done

using three standard metrics, namely AUC of ROC curve, EF

and Hit Rate (HR), highlight the improvements in VS using

scaled TC (sTC) over commonly used size-dependent ranking

functions like TC, especially for database molecules that have

different size than seed ligand.

In a commonly used DUD benchmark dataset, LIGSIFT

performs better (AUC=0.79� 0.2) than other well-established

shape-based VS methods like ROCS (reported

AUC=0.73� 0.2) (Kirchmair et al., 2009), ShaEP (reported

AUC=0.64� 0.17) (Vainio et al., 2009), MolShaCS (reported

AUC=0.63� 0.08) and Align-It (0.75� 0.2). Overall, for 95%

of the test proteins, the VS performance of LIGSIFT was non-

random and the hit rate of active molecules was410% in the top

1% of screened library.
While these results are encouraging, we noticed that using a

given seed ligand, LIGSIFT was able to retrieve only half of the

active molecules in nearly 55% of the tested proteins. This

phenomenon is not restricted to only LIGSIFT, but was also

observed for other shape-based VS tools, suggesting that a

single-seed ligand contains a limited imprint of the physicochem-

ical information of the ligand-binding site and may not be suffi-

cient for identifying all active molecules present in the ligand

database. In addition, it is also possible that these missed

active molecules bind at a different location on the protein.

For these cases, it might be useful to use a diverse set of

known active ligands as seeds. If other active molecules are

unknown, ligands from homologous proteins can be useful as

seeds in VS experiments. In future work, we will explore this

option in further detail.

Table 3. EF comparisons of shape-based VS methods

Method EF1% av j sd EF5% av j sd EF10% av j sd

Align-It 16.9� 12.5 8.1� 5.9 4.9� 3.2

ROCS# 19.4� 12.9 8.4� 6.0 5.2� 3.0

LIGSIFT(comb TC) 19.8� 12.7 8.9� 5.5 5.2� 3.0

LIGSIFT(shape TC) 16.9� 12.6 7.4� 5.5 4.5� 2.9

LIGSIFT(comb TC) 20.7� 12.6 9.3� 6.0 5.4� 3.0

LIGSIFT(comb sTC) 19.8� 12.7 9.0� 6.1 5.3� 3.0

LIGSIFT(shape sTC) 17.0� 12.6 7.5� 5.5 4.6� 2.9

LIGSIFT(chem sTC) 20.8� 12.6 9.3� 6.0 5.4� 3.0

#EF values are taken from ref (Kirchmair et al., 2009).

TC: Tanimoto Coefficient; sTC: scaled TC; av: average; sd: standard deviation;

comb: combined shape and chemical similarity scores (1:1)

Table 4. HR of various shape-based VS methods on DUD targets

Method HR1% av j sd HR5% av j sd HR10% av j sd

Align-It 48.0� 35.5 40.6� 29.6 49.4� 31.8

ROCS# 54.6� 36.3 38.3� 30.0 46.0� 30.4

LIGSIFT(comb TC) 56.3� 36.1 44.5� 30.2 52.3� 29.7

LIGSIFT(shape TC) 47.9� 35.9 37.2� 27.6 45.3� 28.5

LIGSIFT(chem TC) 58.9� 35.7 46.4� 30.2 53.8� 29.8

LIGSIFT(comb sTC) 56.4� 36.2 45.1� 30.3 53.4� 30.1

LIGSIFT(shape sTC) 48.3� 36.1 37.7� 27.5 45.9� 29.0

LIGSIFT(chem sTC) 59.0� 35.6 46.6� 30.2 54.5� 29.9

#HR values calculated using EF data reported in (Kirchmair et al., 2009).

av: average; sd: standard deviation; comb: combined shape and chemical similarity

scores (1:1)
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