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In this study, we show that replication-competent subgenomic hepatitis C virus (HCV) RNA can be transferred to permissive
Huh7 cells, leading to the establishment of viral RNA replication. Further, we show that these events are mediated by exosomes
rather than infectious virus particles. If similar events occur in vivo, this could represent a novel, albeit inefficient, mechanism of
viral spread and immune escape.

Hepatitis C virus is a positive-sense RNA virus that causes acute
and chronic hepatitis, cirrhosis, and hepatocellular carci-

noma. Infectious virions contain full-length HCV RNA encapsi-
dated by the viral core protein and enveloped by the E1 and E2
viral glycoproteins. It was recently reported that HCV RNA can
be transferred from HCV subgenomic replicon (SGR) cells
(that lack the viral structural proteins and cannot produce vi-
rus particles) to plasmacytoid dendritic cells (pDCs) in a viri-
on-independent, cell contact-dependent manner, triggering
the secretion of type 1 interferon (1), and that SGR-to-pDC
cell-cell transfer is mediated by HCV RNA-containing exo-
somes (2) produced by the SGR cells (3), in which HCV RNA is
highly enriched relative to cellular (glyceraldehyde-3-phos-
phate dehydrogenase [GAPDH]) mRNA (3).

Extending these findings, Ramakrishnaiah and colleagues
recently reported that exosome preparations from infected
cells can “infect” naive Huh7.5.1 cells (4). However, because
exosomes display the same size, density, and sedimentation
characteristics as infectious HCV particles (5–9), exosome
preparations unavoidably contain infectious virions, making it
difficult to separate canonical virus infection from exosome-
mediated HCV RNA transfer in those studies. To avoid that
ambiguity, here and previously (1, 3) we used HCV SGR cells to
investigate the role of exosome-mediated HCV RNA transfer
under conditions in which the contribution of virions can be
excluded.

Replication-competent subgenomic HCV RNA is transferred
from SGR cells to cocultured Huh7 cells. In these studies, Huh7
cells that contain (i) an HCV SGR that encodes the viral non-
structural proteins and an antibiotic resistance protein (either
hygromycin [hygro] or neomycin [G418] [neo] resistance) (10,
11) and (ii) retroviruses (12) that encode the reciprocal antibi-
otic resistance genes (neomycin/G418 or hygromycin resis-
tance) served as “donor” cell lines (Huh7-SGRneoR-RVhygroR

and Huh7-SGRhygroR-RVneoR) in which neomycin/G418 and
hygromycin resistance were encoded either by cytosolic HCV
RNA or chromosomal DNA (via retroviral insertion). We also
engineered an Huh7-derived “recipient” cell line (Huh7-
RVblastR-YFP) by retrovirally inserting a blasticidin (blast) resis-
tance gene and a yellow fluorescent protein (YFP) cassette. By
applying dual-antibiotic selection with either neo and blast or
hygro and blast (Fig. 1A and B), we could distinguish between
cell-cell transfer of HCV SGR RNA to HCV-negative recipient
cells by an RNA transfer mechanism and a DNA transfer mech-

anism mediated by cell-cell fusion which would also produce
HCV RNA-positive daughter cells via cytoplasmic mixing.
For example, neo and blast double-resistant cell colonies de-
rived after 19 days of antibiotic selection of cocultured Huh7-
SGRneoR-RVhygroR donor cells and Huh7-RVblastR-YFP recipient
cells would reflect HCV RNA transfer from donor to recipient cells,
whereas hygro and blast double resistance in a parallel culture would
reflect DNA transfer presumably due to cell-cell fusion. The reverse
would be expected for Huh7-SGRhygroR-RVneoR donor cells cocul-
tured with the Huh7-RVblastR-YFP recipient cells.

As shown in Fig. 1A and B, approximately 55 resistant col-
onies per well survived after a coculture containing 1E5 donor
cells and 1E5 recipient cells was subjected to double selection
for RNA transfer, suggesting that replication-competent HCV
RNA can indeed be transmitted in a virion-independent man-
ner to HCV-permissive uninfected cells. In contrast, fewer and
smaller colonies were observed after double selection for DNA
transfer, suggesting that cell fusion cannot account for more
than a fraction of the HCV RNA-containing colonies after se-
lection for RNA transfer. Cell mass measured by crystal violet
staining confirmed the colony counts. Consistent with the need
for direct SGR cell-pDC contact for exosome-mediated pDC
activation by HCV SGR cells in previous experiments (3), no
RNA or DNA transfer was observed when donor and recipient
cells were separated in a Corning Transwell plate and subjected
to double-resistant colony formation (not shown).

HCV RNA transfer leads to HCV replication in recipient cells.
To verify that drug resistance after double selection reflected
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HCV RNA transfer and subsequent RNA replication, we per-
formed fluorescence in situ hybridization (FISH) analysis to
visualize HCV RNA (Fig. 2A) as well as real-time reverse tran-
scription-quantitative PCR (RT-qPCR) to measure HCV RNA
levels in the resistant colonies (Fig. 2B) (3, 13). Indeed, HCV
RNA was easily detected in recipient cells selected for RNA
transfer (Fig. 2A, lower left), although it replicates less effi-
ciently in the resistant colonies than in the donor cells (Fig.
2B). Cells selected for DNA transfer may contain less HCV
RNA than cells selected for RNA transfer, suggesting that cyto-
solic HCV RNA is transferred during fusion but may not
be able to replicate in all fused cells (Fig. 2A, lower right,
and B).

To asses HCV RNA transfer at earlier time points, we
stained cocultured cells by FISH for HCV plus-strand RNA at

0, 3, and 10 days after coculture (Fig. 3A) and detected HCV
RNA (red) in recipient cells (green) over time at low frequency,
consistent with the low rate of RNA transfer observed in Fig. 1.

We hypothesized that DNA transfer likely occurs via cell
fusion, which should yield cells with double the normal chro-
mosome count. To test this hypothesis, we examined the DNA
profile of cells in double-resistant colonies by flow cytometry
using the DNA marker Hoechst (Fig. 3B). Whereas cells se-
lected for RNA transfer exhibit a normal DNA profile similar to
the donor and recipient cell lines, cells selected for DNA trans-
fer show a shift in Hoechst staining, suggesting they have dou-
ble the amount of chromosomes as would be expected after
cell-cell fusion.

Exosome release inhibitors strongly reduce the rate of HCV
RNA transfer. Since HCV RNA is known to be transferred from

FIG 1 Virion-independent RNA transfer between Huh7 cells. A total of 1 � 105 SGR cells were cocultured with 1 � 105 Huh7-RVblastR-YFP cells for 2 days
in the absence of selection. On day 2, cells were split 1:2 and cultured in the presence of antibiotics, as indicated using blasticidin S (5 �g/ml; InvivoGen),
hygromycin B (75 �g/ml; InvivoGen), and neomycin/G418 (250 �g/ml; InvivoGen). Selection medium was replaced twice a week. After 19 days of
selection, the cells were fixed and stained with crystal violet. Resistant colonies were counted blindly by three people, and cell mass was subsequently
measured. Both donor cell lines, Huh7-SGRneoR-RVhygroR (A) and Huh7-SGRhygroR-RVneoR (B), were able to transfer RNA-encoded antibiotic resistance
to the recipient cells. DNA transfer was less efficient. Shown are representative images of resistant crystal violet-stained colonies after 19 days of selection
and quantification of the means from 3 independent experiments done in duplicate. P values were calculated by a two-tailed, paired Student t test. Error
bars indicate standard deviations.

Exosomal HCV RNA Transfer between Hepatocytes

March 2015 Volume 89 Number 5 jvi.asm.org 2957Journal of Virology

http://jvi.asm.org


SGR cells to pDCs via exosomes (3), we hypothesized that exo-
somes may be responsible for HCV RNA transfer from donor
to recipient Huh7 cells. To test this hypothesis, we performed
the coculture experiments described in Fig. 1 in the presence of
two different neutral sphingomyelinase inhibitors (GW4869
and spiroepoxide), known to block exosome secretion (14–19).
Both inhibitors severely reduced the level of RNA transfer (Fig.
4A) without affecting cell viability or HCV RNA replication in
the donor cells (not shown). This suggests that exosomes are
likely the dominant mode of transmission of HCV RNA be-
tween hepatocytes. In support of this, we also found that HCV
RNA extracted from exosomes released by our donor cell line is
replication competent when transfected into Huh7 cells (Fig. 4B).

We are intrigued by the fact that although HCV RNA trans-
fer is exosome mediated, it appears to require cell-cell contact

since coculture experiments done in Transwell plates did not
lead to exosomal HCV RNA transfer, and exosomes concen-
trated from SGR cells were not able to transmit HCV RNA to
target cells directly (data not shown). This suggests that, simi-
lar to exosome-mediated transfer of HCV RNA from SGR cells
to plasmacytoid dendritic cells (3), SGR cells appear to secrete
exosomes into the culture supernatant at concentrations that
are below a functional threshold that is easily reached in the
intercellular space during cell-cell contact. Furthermore, in pi-
lot studies (not shown), we found that only 0.1% of all secreted
exosomes contain HCV RNA, and we were unable to isolate
sufficient numbers of exosomes from SGR cell supernatants to
achieve a high enough HCV RNA/cell ratio to initiate RNA
replication. These results contrast with previous reports (4, 20)
in which the authors conclude that exosomes prepared from

FIG 2 Visualization of replication-competent HCV RNA transfer to recipient cells. (A) After coculture as described for Fig. 1A, donor SGR, recipient, and
resistant colony cells were plated at equal densities and fixed 24 h later, and HCV RNA was labeled using FISH. HCV plus-strand RNA (HCV RNA�; red)
and HCV minus-strand RNA (HCV RNA�; yellow) were detected using probe sets that target a region comprised within NS3 and NS4 proteins (reference
no. VF4-11069; Panomics/Affymetrix, Santa Clara, CA) according to the manufacturer’s instructions and as described previously (12). Nuclei were
stained by Hoechst33342 dye (blue; Life Technologies product no. H1399). The picture on the bottom right shows the overlay. Images were acquired with
a Zeiss LSM 710 laser scanning confocal microscope. Both positive- and negative-strand HCV RNA are readily detected in cells selected for RNA transfer
but are found rarely in cells selected for DNA transfer. (B) Real-time RT-qPCR of the same cells as in panel A, detecting HCV RNA. Shown are the averages
from 3 independent experiments. Error bars indicate standard deviations. GE, genome equivalents; YFP, yellow fluorescent protein (green). P values were
calculated using a two-tailed, unpaired Student t test with GraphPad Prism software.
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HCV-infected cell supernatants efficiently transfer infection to
recipient cells. The interpretation of those results is compli-
cated by the difficulty inherent in separating exosomes from
infectious HCV particles because of their similar size and den-
sity characteristics, raising the possibility that infection was
mediated by virus particles in those experiments.

In summary, these data support the notion that replication-
competent HCV RNA can be transferred in a virion-indepen-

dent manner between permissive Huh7 cells that support ge-
nome expansion and expression. These events do not require
infectious virus particles, because subgenomic replicon cells
lacking viral structural genes were used in all experiments, and
they appear to be dependent on an exosome-mediated, cell-cell
transfer mechanism. If these events occur in vivo, exosomes
containing replication-competent HCV RNA may be able to
“infect” replication-permissive hepatocytes and contribute to

FIG 3 Chromosomal DNA transfer leads to polyploidy, whereas RNA transfer does not. (A) Donor and recipient cells were cocultured as described for
Fig. 1, and cocultured cells were labeled for plus-strand HCV RNA using FISH as described for Fig. 2 after 0, 3, and 10 days of coculture. In rare instances,
HCV RNA can be detected over time in YFP-positive (green) recipient cells (B). After coculture as described for Fig. 1A, donor SGR, recipient, and
resistant colony live cells were labeled with Hoechst33342 dye (Life Technologies product no. H1399) to detect DNA levels and analyzed by flow
cytometry.
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viral spread in a manner that would avoid immune inhibition,
although our results indicate that this process is much less
efficient than infection by authentic virus particles.
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