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UL21 is a conserved protein in the tegument of alphaherpesviruses and has multiple important albeit poorly understood func-
tions in viral replication and pathogenesis. To provide a roadmap for exploration of the multiple roles of UL21, we determined
the crystal structure of its conserved N-terminal domain from herpes simplex virus 1 to 2.0-Å resolution, which revealed a novel
sail-like protein fold. Evolutionarily conserved surface patches highlight residues of potential importance for future targeting by
mutagenesis.

Herpesviruses are double-stranded DNA (dsDNA), enveloped
viruses that cause lifelong latent infections and ailments

ranging in severity from skin lesions to blindness, encephalitis,
and cancer (1, 2). A unique feature of all herpesviruses is a multi-
protein tegument layer between the capsid and the envelope. Be-

sides being necessary for viral assembly, tegument proteins also
play critical roles at early stages of the viral replication cycle, in
which some are released to regulate expression of viral (3) or cel-
lular genes (4) while others remain bound to the capsid and me-
diate its trafficking (5–7). The involvement of tegument proteins
at multiple stages during viral replication makes them attractive
antiviral targets, yet few have been characterized in detail.

Herpes simplex virus 1 (HSV-1) UL21 is a 535-amino-acid
tegument protein that is conserved within the Alphaherpesvirus
subfamily (8) and may have analogs among other herpesviruses.
UL21 is important for replication in culture because UL21-null
mutants of HSV-1 and pseudorabies virus (PRV) show reductions
in titer and small plaques (9, 10), whereas HSV-2 cannot replicate
without UL21 (8). A lack of UL21 also leads to defects in patho-
genesis of PRV in mice and pigs (11–14). UL21 is involved in
secondary envelopment (15) and cell-cell spread of mature virions
(16) through binding of the tegument proteins UL16 (15, 17) and
UL11 (16, 17). The UL21-UL16-UL11 heterotrimer binds the cy-
toplasmic domain of glycoprotein E (gE), a viral glycoprotein re-
quired for viral cell spread (18, 19) and cell-cell fusion of infected
cells (20), and regulates these functions (16). UL21 may also have
a role in cytosolic capsid transport through association with mi-
crotubules (21). In the absence of UL21, expression of viral genes
is delayed, possibly due to lower mRNA levels (8, 10). Finally,
capsids of UL21-null HSV-2 are unable to undergo nuclear egress
(8), suggesting a potential nuclear function for UL21, which local-
izes not only to the cytoplasm but also to the nucleus (17, 21),
specifically the nuclear rim (8, 9, 16).

Although UL21 clearly plays multiple roles in the viral replica-
tion cycle, little is known about it due to the lack of sequence

Received 5 December 2014 Accepted 19 December 2014

Accepted manuscript posted online 24 December 2014

Citation Metrick CM, Chadha P, Heldwein EE. 2015. The unusual fold of herpes
simplex virus 1 UL21, a multifunctional tegument protein. J Virol
89:2979 –2984. doi:10.1128/JVI.03516-14.

Editor: R. M. Sandri-Goldin

Address correspondence to Ekaterina E. Heldwein, katya.heldwein@tufts.edu.

Copyright © 2015, American Society for Microbiology. All Rights Reserved.

doi:10.1128/JVI.03516-14

TABLE 1 Data collection and refinement statistics

Parameter

Value for:

Native crystal
Thimerosal-soaked
crystal

Data collectiona

Space group P6322 P6322
Cell dimensions

a, b, c (Å) 108.35, 108.35, 65.24 109.48, 109.48, 65.29
�, �, � (°) 90, 90, 120 90, 90, 120

Resolution (Å) 41.68-2.05 (2.09-2.05) 47.41-2.80 (2.90-2.80)
Rsym or Rmerge 0.061 (0.475) 0.111 (0.651)
I/�I 23.26 (2.52) 23.96 (5.78)
Completeness (%) 99.78 (99.58) 100.00 (100.00)
Redundancy 5.3 (5.5) 18.4 (19.1)

Refinement
Resolution (Å) 30.81-2.05
No. of reflections (free) 14,225 (713)
Rwork/Rfree

b 0.166/0.221
No. of atoms

Protein 1,643
Water 66

B-factors
Protein 51.80
Water 49.40

RMSc deviations
Bond lengths (Å) 0.007
Bond angles (°) 1.08

Ramachandran plotd

Favored (%) 98.49
Allowed (%) 1.51
Outliers (%) 0.0

a Values in parentheses are for the highest-resolution shell.
b Rwork and Rfree are defined as �||Fobs| � |Fcalc||/�||Fobs| for the reflections in the
working or the test set, respectively.
c RMS, root mean square.
d As determined using Molprobity (molprobity.biochem.duke.edu) (34).
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homology to other proteins and structural information. Parsing
out these functions requires a roadmap in the form of a high-
resolution three-dimensional structure. Toward this goal, we de-
termined the crystal structure of the conserved N-terminal do-
main of UL21 (residues 1 to 216), which we termed UL21N. The
crystal structure revealed a novel sail-like fold and evolutionarily
conserved features and provides an important framework for elu-
cidating the multiple roles of UL21 in the viral replication cycle
and pathogenesis.

Full-length HSV-1 strain 17 UL21 expressed in Escherichia coli
underwent spontaneous proteolysis, generating a stable N-termi-
nal fragment (UL21N, residues 1 to 216). The corresponding frag-
ment was amplified from the full-length gene and subcloned into
the pET24a vector preceded by an N-terminal StrepII tag and a
Gly-Ser linker. UL21N was expressed in Rosetta E. coli (Novagen)
using overnight induction with 1 mM isopropyl-�-D-thiogalacto-
pyranoside (IPTG) at 16°C. Cell pellets from 1 liter of culture were

resuspended in buffer A [50 mM 4-(2-hydroxyethyl)piperazine-
1-ethanesulfonic acid (HEPES), 100 mM NaCl, 0.5 mM tris(2-
carboxyethyl)phosphine (TCEP)] with cOmplete protease inhib-
itor cocktail (Roche) and egg white avidin (Sigma) and lysed using
a French press. UL21N was purified from the clarified lysate with
StrepTactin Sepharose resin (GE Healthcare) and size exclusion
chromatography (Superdex 200, buffer A) and stored with 1�
Halt protease inhibitor cocktail (Pierce).

Crystals were grown by vapor diffusion in hanging drops {2 �l
protein at 	5 mg/ml and 2 �l crystallization solution [0.8 to 1.2 M
ammonium sulfate, 100 mM HEPES (pH 7.5), 7 to 10% 2-methyl-
2,4-pentanediol (MPD)]} at room temperature and flash frozen in
crystallization solution with 15% MPD for data collection. Hg
derivative crystals were prepared from native crystals by soaking
them in crystallization solution with 1.7 mM thimerosal. X-ray
diffraction data were collected at 100 K on beamline X25 at the
National Synchrotron Light Source and processed with the

FIG 1 UL21N structure. The crystal structure of UL21N is shown in color based on secondary structure (A) and in rainbow coloring (B), from blue (N terminus)
to red (C terminus). The StrepII tag is shown in gray. Residues unresolved in the structure are shown as dashed lines. (C) Topology diagram, colored as described
for panel A. Secondary structure elements are numbered sequentially, and their amino acid boundaries are given. Helices are show as cylinders, strands as arrows,
loops as solid lines, and unresolved loops as dashed lines. All structures were made using Pymol (http://www.pymol.org).
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FIG 2 Multiple-sequence alignment of UL21 homologs from 16 alphaherpesviruses. Sequence alignment was generated and analyzed using ClustalW (32) and
ESPRIPT (33) using sequences from GenBank accession numbers ACM62243, AEV91359, AAU88086, ADO13807, AAK69349, AFR32463, ACT88337,
AAT67298, AAA47475, ABO26208, AAT07796, AAR86141, CAA88112, AEI00223, AAF66756, and AAG45758. Only the alignment of residues corresponding to
residues 1 to 216 of HSV UL21N is shown. The secondary structure of HSV-1 UL21 is shown above the aligned sequences. Similar residues are shown in red text.
Identical residues are boxed in red with white text, and those exposed on the surface of UL21N are marked by asterisks. Gray asterisks identify conserved residues
that are surface exposed in the model but are likely obscured in the protein by the unresolved loop containing residues 76 to 87.
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HKL2000 software package (22) (Table 1). The experimental
phases were obtained using single anomalous dispersion (SAD)
data collected for the thimerosal derivative crystals as imple-
mented in the autoSHARP program (23). The model was built
manually into the experimental SAD electron density using Coot
(24) and improved over several cycles of phase combination and
density modification using SHARP (23). The model was refined
against native data in the phenix.refine structure refinement pro-
gram (25) (Table 1), with 5% of the reflections set aside as a ref-
erence, and rebuilt in Coot (24). The final Rwork is 0.166, and Rfree

is 22.1% (Rwork and Rfree are defined as �||Fobs| � |Fcalc||/�||Fobs|
for the reflections in the working or the test set, respectively).
There is one UL21N molecule in the asymmetric unit, and the
model contains residues 1 to 198 of UL21, the N-terminal StrepII
affinity tag, and the Gly-Ser linker. Residues 38 to 46, 76 to 87, and
199 to 216 were not resolved despite being present in the crystals.
S0 is the first residue of the �1 strand, and residues QEF of the
StrepII tag form a 310 helix.

UL21N adopts a single-domain structure of an unusual �/�
fold that resembles a wind-filled sail with dimensions of 50 by 30
by 30Å. A DALI search (26) revealed no appreciable overall struc-
tural similarity to other proteins. UL21N is composed of two
clearly defined “halves,” segregated by the following secondary
structure: the oblong � bouquet, which is composed of three an-
tiparallel � sheets (�1 to �14), and the � crescent, which is com-
posed of four �-helices (�1 to �4) and two 310 helices (
1 and 
2)
that are arranged along one face of the molecule (Fig. 1). Short 310

helix 
2 and �-helix �4 look like one long helix broken by com-

pletely conserved G190 (Fig. 2). The � bouquet consists of three
antiparallel � sheets oriented at an angle to the longest axis of
UL21N, creating the appearance of a bouquet arranged with the
following topology: an inner seven-stranded � sheet [�2-�3-�4-
�5-(�7)-�6-�14], a three-stranded upper outer � sheet (�1-�11-
�10), and a four-stranded lower outer � sheet (�8-�9-�12-�13)
(Fig. 1). Strand �5 is shorter than the neighboring strand �6 and is
effectively extended by the strand �7 such that both �5 and �7
form hydrogen bonds along the same margin of strand �6 (Fig. 1A
and C). The secondary structure of UL21N matches predictions
(27), except that neither strands �1 and �8 nor 310 helices 
1 and

2 were predicted, long strand �14 was predicted to be a helix, and
helix �2 was predicted to be a strand.

UL21 is 5.2% identical among 16 alphaherpesviruses, and 21 of
28 identical residues are within UL21N (Fig. 2). Twelve of these
are surface exposed (Fig. 2 and 3A) but do not form obvious clus-
ters, which prevented clear assignment of potentially important
sites on the surface of UL21N based on sequence identity alone.
Evolutionary trace analysis (ETA) (28) was performed on the
same sequence alignment. ETA generates a phylogenetic tree from
a sequence alignment of homologous proteins. At each partition,
or branch point, closely related sequences are grouped into classes,
trace residues are defined as conserved within specific classes, and
these residues are assigned importance scores based on the parti-
tion at which they appear. Clustering of important trace residues
on the protein surface may indicate regions of functional impor-
tance (28). ETA has been used to detect functional sites in a num-
ber of proteins (20, 29), including PRV UL37 (31). ETA of UL21N

FIG 3 Analysis of conservation and charge on the surface of UL21N. A dotted line marks a cavity likely obscured by unresolved residues 76 to 87. (A) Completely
conserved residues on the surface of UL21N are shown in magenta. Four orientations based on 90° rotations around the vertical axis are shown. (B) Class-specific
residues identified by universal evolutionary trace analysis (http://mammoth.bcm.tmc.edu/uet/) are highlighted on the surface of UL21N. The 25% of residues
with the highest importance scores are shown. (C) An electrostatic surface potential map of UL21N was generated using the PBEQ Solver function in the Charmm
program (http://www.charmm-gui.org/?doc�input/pbeqsolver). (D) Potential functional regions assigned on the surface of UL21N. Potential functional
regions are composed of the following residues: region 1 (red), D13, D105, D111, and E113; region 2 (orange), M1, E2, R55, N156, Y163, P165, F170, and L172;
region 3 (yellow), Y5, Y17; region 4 (green), Y67, R69, S70, E71, D116, E117, and E121.
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yielded several surface clusters of trace residues of increasing im-
portance (Fig. 3B).

Analysis of the electrostatic potential on the surface of UL21N
revealed two large negatively charged patches, consistent with its
calculated isoelectric point of 5.2, one of which coincides with a
shallow depression and the other of which wraps around the
nearby side (Fig. 3C). A number of the residues within these
charged patches were also identified as important trace residues in
ETA. In combination, conservation and charge patterns pinpoint
several surface regions of potential functional importance (Fig.
3D), which may participate in binding the known partner UL16,
in interacting with UL21C, or in binding to as yet unknown li-
gands. Region 1 (D13, D105, D111, E113) sits on one flat face of
UL21N and is comprised of four aspartate and glutamate residues,
two of which are also identified in ETA. Region 2 (M1, E2, R55,
N156, Y163, P165, F170, L172) extends to three sides of the pro-
tein and contains identical and important ETA trace residues. Re-
gion 3 (Y5, Y17) comprises two conserved, surface-accessible ty-
rosine residues, and the large region 4 (Y67, R69, S70, E71, D116,
E117, E121) wraps around one short side and contains residues
identified in electrostatic and ETA analyses. These regions provide
a more educated starting point for mutational analysis in the con-
text of protein biochemistry and viral infection.

Although UL21 plays multiple roles in the viral replication cy-
cle, including nuclear egress, cytoplasmic capsid trafficking, bud-
ding, and cell-cell spread, the molecular mechanisms by which
UL21 enables these and other processes remain poorly under-
stood. The novel sail-shaped structure of UL21N provides a three-
dimensional template for targeted mutational analysis and en-
ables structure-guided functional exploration of the multiple roles
of UL21 in the replication and pathogenesis of alphaherpesvi-
ruses.

Protein structure accession number. Atomic coordinates and
structure factors for the UL21N structure have been deposited in
the RCSB Protein Data Bank under accession number 4U4H.
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