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The influence of hypoxia on the in vitro activities of amphotericin B, azoles, and echinocandins against Aspergillus spp. was eval-
uated by comparing MICs, minimal fungicidal concentrations (MFCs), and epidemiological cutoffs (ECOFFs). Changes of MIC
distributions due to hypoxia largely depend on the method, the species, and the growth ability under hypoxia. The activities of
antifungals were not significantly altered under hypoxia, except for Aspergillus terreus, for which the activity changed from fun-
gicidal to fungistatic.

At sites of infection, microenvironmental factors influence the
growth of fungal pathogens and most likely also the efficacy of

antifungal drugs (1). Hypoxia is one microenvironmental stress
that occurs during pulmonary fungal infections in vivo (2) and has
a significant impact on antifungal targets such as ergosterol bio-
synthesis or �-glucan in Aspergillus fumigatus (3, 4). Simulating
the host environment in in vitro susceptibility testing will contrib-
ute to a better understanding of how these conditions influence
antifungal activity.

In this study, the in vitro activities of amphotericin B, triazoles,
and echinocandins against Aspergillus spp. under hypoxia were
evaluated by using the Etest (bioMérieux, France) and broth mi-
crodilution method according to EUCAST guideline 9.2 (5). Epi-
demiological cutoff values (ECOFFs) were established and set two
dilution steps higher than the modal MIC (6). Both methods were
chosen to verify the different impacts of oxygen on surface (expo-
sure to 1%) or liquid cultures, where the oxygen concentration
might also vary in normoxic cultures. Putative changes from fun-
gicidal to fungistatic activity were determined based on minimal
fungicidal concentrations (MFCs) (7), defined as the lowest drug
concentration resulting in 99.9% killing.

All clinical isolates tested (n � 49) were identified by internal
transcribed spacer sequencing, according to the methods of White et
al. (8). The strain set comprised A. fumigatus (n � 25), including
five azole-resistant isolates with a mutation in cyp51A (9), A. ter-
reus (n � 16), and A. flavus (n � 8). Hypoxic conditions were set
to 1% O2, 5% CO2, 94% N2 (C-Chamber and Pro-Ox, Pro-CO2

controller; Biospherics), and all experiments were done in parallel
under normoxia (�21% O2). To check for a normal distribution,
the D’Agostino and Pearson omnibus normality test was per-
formed. The Kruskal-Wallis test was applied, since data were not
normally distributed. P values of �0.05 were regarded as statisti-
cally significant. For supplemented media, ergosterol or choles-
terol (25 �M) was mixed with coenzyme Q10 (5 �M) and added to
RPMI agar. Additionally, Etests were conducted on blood agar
(25% [vol/vol]). To compare fungal growth under both oxygen
conditions, radial growth assays were performed according to
methods described previously (10).

With the Etest, the influence of hypoxia on the susceptibility
profile demonstrated a species- and drug-dependent manner (Fig.
1; Table 1). Among all Aspergillus spp. tested, A. fumigatus isolates
exhibited the lowest oxygen-dependent changes in MICs for all
antifungals tested. A significant reduction of the MIC distribution

was observed for amphotericin B, while no alterations in MICs for
azoles and echinocandins were detected. A. fumigatus strains car-
rying a mutation in the cyp51A gene did not show differences in
azole susceptibility. Aspergillus terreus isolates, a species that is
intrinsically resistant to amphotericin B (11, 12), exhibited sus-
ceptibility under hypoxia, with a significant decrease in the MIC
distribution (12 log2 dilutions). Lower MICs were mainly due to
the missing mycelium sterilium zone (Fig. 1). For the azoles, a
significant reduction in the MIC distribution was observed under
hypoxia while, as for A. fumigatus, no alteration was detected for
echinocandins. The same results were found for A. flavus. Reduc-
tions in MICs under hypoxia were abrogated by addition of ergos-
terol, cholesterol, or whole blood to the medium (Fig. 2). MIC
changes under hypoxia correlated with impaired growth under
hypoxia; the in vitro susceptibilities of fungi that were less sensitive
to low oxygen concentrations were less affected (Fig. 3).

In broth microdilution assays, MICs of voriconazole and po-
saconazole were not altered under hypoxia for all Aspergillus spp.
tested (Table 2). For only amphotericin B was a stepwise decrease
in MICs (�2 log2 dilutions) under hypoxia prominent for A. ter-
reus and A. flavus strains, while no difference was detected for A.
fumigatus strains. Minimal effective concentrations (MECs) for
caspofungin were not significantly influenced by hypoxia.

MFCs demonstrated no alterations between hypoxic and nor-
moxic conditions for A. fumigatus and A. flavus strains (Table 2),
and this correlated with already published data (7). For A. terreus
strains, either increased or no MFCs were detected for azoles un-
der hypoxia. Similarly, significantly more colonies were able to
recover from cultures treated with amphotericin B under hypoxia,
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although no MFCs could be determined under either oxygen con-
dition.

So far, only a few studies have investigated the effect of hypoxia
on antifungal susceptibility of Aspergillus spp., focusing either on
some antifungal agents (13) or on one standard in vitro test
method (7). Similar to what was shown for anidulafungin (13),
MIC/MEC readings were much easier to obtain under hypoxia, as
typical “trailing” (microcolonies within the inhibition zone [14])
was less pronounced for echinocandins. The observed reductions
in the MICs, being more pronounced with the agar-based method
than in liquid assays, matched results obtained by Warn et al. (7)
and might have been due to oxygen depletion in microtiter plates,
even under normoxia. Increased susceptibility to antifungals that
target ergosterol itself or its biosynthesis (oxygen-dependent
pathway [3]) indicated that the fungus has to cope with two stres-
sors: antifungal pressure and maintenance of membrane stability,
despite lacking oxygen as a cofactor for ergosterol biosynthetic
enzymes. Additionally, MICs under hypoxia rose to the levels of
those under normoxia when membrane compounds were avail-
able. Xiong et al. (15) demonstrated that cholesterol is integrated
into fungal membranes to compensate for ergosterol depletion
during azole treatment. Further, cholesterol can be used as a pu-
tative carbon source in filamentous fungi (16) and thereby en-
hance growth.

Except for A. terreus, MFCs were less influenced by oxygen
than were MICs of surface cultures. This may even better reflect
the actual situation in the host, as Rex et al. (17) already suggested
that MFCs are more relevant for predicting the clinical outcome.
For A. terreus, no MFCs were detectable, suggesting a shift to fun-
gistatic activity under low-oxygen conditions. Slesonia et al. (18)
showed that A. terreus is able to persist and survive without ger-
mination within acidified phagolysosomes due to the resistance
against microbicidal enzymes. Also, conidia are more resistant to
environmental conditions than are hyphae (19). Therefore, de-
layed germination, especially after diluting the antifungal agent by
plating on agar, could contribute to enhanced resistance against
antifungal drugs under hypoxia.

In conclusion, hypoxia influenced in vitro antifungal suscepti-
bilities of Aspergillus spp. marginally, and observed differences
were most pronounced with the Etest. Importantly, changes in
antifungal activities against A. terreus strains under hypoxia might
partially explain the high failure rate of antifungal therapy in vivo
(12, 20).
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FIG 2 Supplementation of ergosterol/coenzyme Q10 (Q10), cholesterol/Q10, and blood enhances antifungal susceptibilities to amphotericin B (AMB),
voriconazole (VRC), and posaconazole (POS) of Aspergillus spp. in hypoxia. Final concentrations of ergosterol or cholesterol and Q10 (Sigma-Aldrich, Germany)
in RPMI 1640 agar were 25 �M for the sterols and 5 �M for Q10, respectively. Chocolate agar consisted of 25% (vol/vol) whole blood added to water agar, cooked
for 30 min at 80°C. Bars represent MICs of one representative isolate of A. fumigatus, A. fumigatus, and A. flavus.

FIG 3 Hypoxia influences the growth of Aspergillus species. A total of 1 � 104 conidia were point inoculated on RPMI 1640 plates and incubated for 48 h at 37°C
under normal oxygen and hypoxic growth conditions before colony diameter was determined. (A) Percentage of radial growth of hypoxic cultures normalized
to normoxic growth (� 100%). (B) One representative example of six parallels.
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