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Abstract

The numerous and diverse eukaryotic viruses with large double-stranded DNA genomes that at
least partially reproduce in the cytoplasm of infected cells apparently evolved from a single virus
ancestor. This major group of viruses is known as Nucleocytoplasmic Large DNA Viruses
(NCLDV) or the proposed order Megavirales. Among the “Megavirales”, there are three groups of
giant viruses with genomes exceeding 500 kb, namely Mimiviruses, Pithoviruses, and
Pandoraviruses that hold the current record of viral genome size, about 2.5 Mb. Phylogenetic
analysis of conserved, ancestral NLCDV genes clearly shows that these three groups of giant
viruses have three distinct origins within the “Megavirales”. The Mimiviruses constitute a distinct
family that is distantly related to Phycodnaviridae, Pandoraviruses originate from a common
ancestor with Coccolithoviruses within the Phycodnaviridae family, and Pithoviruses are related to
Iridoviridae and Marseilleviridae. Maximum likelihood reconstruction of gene gain and loss
events during the evolution of the “Megavirales” indicates that each group of giant viruses
evolved from viruses with substantially smaller and simpler gene repertoires. Initial phylogenetic
analysis of universal genes, such as translation system components, encoded by some giant
viruses, in particular Mimiviruses, has led to the hypothesis that giant viruses descend from a
fourth, probably extinct domain of cellular life. The results of our comprehensive phylogenomic
analysis of giant viruses refute the fourth domain hypothesis and instead indicate that the universal
genes have been independently acquired by different giant viruses from their eukaryotic hosts.

Introduction

The discovery of giant viruses infecting protists, sometimes called giruses, pioneered by the
isolation of Acanthamoeba polyphaga mimivirus (APMV), is one of the most unexpected
and spectacular breakthroughs in virology in decades (Claverie, 2006; Claverie and Abergel,
2010; Claverie, Abergel, and Ogata, 2009; Claverie et al., 2006; Koonin, 2005; La Scola et
al., 2003; Raoult et al., 2004; Van Etten, 2011; Van Etten, Lane, and Dunigan, 2010). The
giant viruses shatter the textbook definition of viruses as “filterable” infectious agents
because their virions do not pass bacterial filters and obliterate all boundaries between
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viruses and cellular life forms in terms of size. Indeed, not only are the particles of giant
viruses larger than the cells of numerous bacteria and archaea but also the genomes of
Pandoraviruses, the current record holders at approximately 2.5 Mb (Philippe et al., 2013),
are larger and more diverse in gene content than many bacterial and archaeal genomes, from
both parasites and free-living microbes (Koonin and Wolf, 2008). The recent identification
of Pandoraviruses and Pithoviruses (Legendre et al., 2014) that are not only huge, by the
standards of the virology, but also possess a previously unseen, asymmetrical virion
structure, shows that the true diversity of giant viruses has been barely tapped into.

The unexpected, “cell-like” features of giant viruses led several researchers to propose
fundamental concepts that go far beyond the study of these particular viruses and beyond
virology in general. The foremost of these conceptual developments is the proposition that
giant viruses represent a “fourth domain of life” that is distinct from but comparable to the
three cellular domains, bacteria, archaea and eukaryotes (Claverie et al., 2006; Colson et al.,
2012; Colson et al., 2011; Desnues, Boyer, and Raoult, 2012; Legendre et al., 2012; Raoult
et al., 2004). It seems useful to distinguish the fourth domain concept as a general idea and
as a specific hypothesis. As a general notion, the claim that giant viruses represent a fourth
domain of life simply refers to the “cell-like” character of these viruses in terms of size of
the virions and genomes and, in addition, to the observation that many genes of these viruses
have no detectable homologs and so might come from some unknown source. With these
general statements, the fourth domain concept does not make any falsifiable predictions. In
contrast, the specific fourth domain hypothesis is steeped directly in the original definition
of the three domains of cellular life. These three domains, bacteria, archaea and eukaryota,
correspond to the three major trunks in the unrooted phylogenetic tree of 16S ribosomal
RNA (Pace, 1997; Pace, 2006; Pace, Olsen, and Woese, 1986; Woese, 1987; Woese and
Fox, 1977; Woese, Kandler, and Wheelis, 1990; Woese, Magrum, and Fox, 1978) that is
topologically consistent with the phylogenies of most of the other (nearly) universal genes
that encode primarily components of the translation and the core transcription machineries
(Brown and Doolittle, 1997; Brown et al., 2001; Puigbo, Wolf, and Koonin, 2009; Puigbo,
Wolf, and Koonin, 2013). Strikingly, and unlike other viruses, the giant viruses encode
several proteins that are universal among cellular life forms, in particular translation system
components, such as aminoacyl-tRNA synthetases and translation factors. The presence of
these universal genes provides for the opportunity to formally incorporate the giant viruses
into the tree of life (Raoult et al., 2004). The outcome of the phylogenetic analysis of the
universal genes is (at least, in principle) readily interpretable: the placement of the viral
genes outside the three traditional domains of cellular life is compatible with the fourth
domain hypothesis whereas their placement within any of the three domains is not. Several
studies, starting with the original analysis of the mimivirus genome, have reported
phylogenetic trees that appeared compatible with giant viruses comprising a fourth domain
(Colson et al., 2012; Colson et al., 2011; Nasir, Kim, and Caetano-Anolles, 2012; Raoult et
al., 2004). However, such observations could be inherently problematic. Indeed, accelerated
evolution of viral genes that is likely to have occurred, especially immediately following the
acquisition of the respective genes from the host, has the potential to obscure their affinity
with homologs from cellular organisms within one of the recognized domains (a common
problem in the analysis of deep phylogenies (Felsenstein, 2004). A subsequent re-analysis of
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the phylogenies of several universal genes has failed to find support for the fourth domain
hypothesis (Williams, Embley, and Heinz, 2011).

Notwithstanding their unusual size, genetic complexity and the presence of some universal
cellular genes, all giant viruses contain a set of core genes that define an expansive group of
eukaryotic double-stranded (ds) DNA viruses that is referred to as Nucleo-Cytoplasmic
Large DNA viruses (NCLDV) (lyer, Aravind, and Koonin, 2001; lyer et al., 2006; Koonin
and Yutin, 2010) or the proposed order Megavirales (Colson et al., 2012; Colson et al.,
2013; lyer, Aravind, and Koonin, 2001; lyer et al., 2006; Koonin and Yutin, 2010).
Hereinafter we refer to this major group of viruses as “Megavirales” to signal our support of
this amendment to virus taxonomy while indicating that the order so far has not been
officially adopted by the International Committee for the Taxonomy of Viruses. The
“Megavirales” unite 7 families of viruses infecting diverse eukaryotes, namely Poxviridae,
Asfarviridae, Iridoviridae, Ascoviridae, Marseilleviridae, Phycodnaviridae, and
Mimiviridae, as well as the recently discovered giant Pandoraviruses and Pithoviruses that
could found new families. Evolutionary reconstructions have mapped about 50 genes
encoding essential viral functions to the putative common ancestor of the “Megavirales”
although some of these putative ancestral genes have been lost in certain groups of viruses
(Koonin and Yutin, 2010; Yutin et al., 2013; Yutin et al., 2009). This ancestral gene set does
not include genes for components of the translation system or any other genes that might be
considered suggestive of a cellular nature of the common ancestor of the “Megavirales”
implied by the fourth domain hypothesis.

Phylogenetic analysis of the universal “Megavirales” genes reveals apparent evolutionary
relationships between giant and smaller viruses. Specifically, Mimiviruses cluster with the
so-called Organic Lake phycodnaviruses and Phaeocystis globosa viruses (Santini et al.,
2013; Yutin et al., 2013), Pandoraviruses with Phycodnaviruses, in particular
Coccolithoviruses (Yutin and Koonin, 2013), and Pithoviruses with Marseilleviruses and
Iridoviruses (Legendre et al., 2014). Combined with the results of evolutionary
reconstructions based on the phyletic patterns of “Megavirales” genes (i.e. matrices of gene
presence and absence), these relationships suggest that different groups of giant viruses
could have independently evolved from smaller ancestral viruses (Yutin and Koonin, 2013).

There is an obvious tension between the fourth domain of life hypothesis and the monophyly
of the “Megavirales”. The fact that giant viruses encode the large set of ancestral
“Megavirales” genes, some of which are “virus hallmark genes” without close homologs
encoded in cellular life forms (Koonin, Senkevich, and Dolja, 2006), constrains the fourth
domain hypothesis to a specific version. Specifically, one would have to postulate that a
viral ancestor of the giant viruses reproduced in a host that belonged to a fourth domain of
cellular life and acquired numerous genes including some that are universal in cellular life
forms. After the fourth cellular domain went extinct, the resulting giant viruses would
remain the only “living fossils” of their original hosts.

We sought to formally test the fourth domain hypothesis as comprehensively as possible and
additionally to address the origins of the gene repertoires of giant viruses, and their
evolutionary relationships with other “Megavirales”. The results of this phylogenomic
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analysis effectively falsify the fourth domain hypothesis, reveal diverse origins of the genes
of giant viruses, and reaffirm the origin of giant viruses from simpler ancestors.

RESULTS and DISCUSSION

Origins of universal cellular genes present in giant viruses: testing the fourth domain

hypothesis

The three domains of (cellular) life were originally introduced from the topology of the
phylogenetic tree of the 16S rRNA (Pace, 1997; Pace, Olsen, and Woese, 1986; Woese,
1987; Woese and Fox, 1977; Woese, Kandler, and Wheelis, 1990). Subsequently, these
domains have been validated by phylogenetic analysis of multiple, (nearly) universal genes
all of which encode components of the translation and transcription systems (Brown and
Doolittle, 1997; Brown et al., 2001; Ciccarelli et al., 2006). The high topological congruence
between the phylogenies of all these genes has been demonstrated indicating that each of
them can be used to test the fourth domain hypothesis (Puigbo, Wolf, and Koonin, 2009;
Puigho, Wolf, and Koonin, 2013).

Table 1 lists the (nearly) universal genes of cellular life forms that are represented in each of
the virus families that comprise the “Megavirales”. These genes fall into two distinct,
uneven-sized groups with contrasting phyletic patterns across the “Megavirales”. The two
large subunits of the RNA polymerase (RNAP) are present in all “Megavirales” except for
most of the phycodnaviruses that apparently have lost these genes upon evolving a nuclear
phase of the reproduction cycle (Koonin and Yutin, 2010; Yutin et al., 2009). In contrast, the
translation system components, i.e. aminoacyl-tRNA synthetases and translation factors,
typically occur in one or two groups of the “Megavirales”. The translation system
components are represented primarily in giant viruses as opposed to the members of the
“Megavirales” with smaller virions and genomes (for the purpose of this work, we define
giant viruses strictly, as those with genomes in excess of 500 kb; this leaves only three
groups in the giant category: mimiviruses, pandoraviruses and pithoviruses). Specifically,
these genes are (nearly) missing in the families Poxviridae, Asfarviridae, Iridoviridae and
Ascoviridae (Table 1). Even within the family Mimiviridae, translation-associated genes
show a patchy distribution, the exception being tyrosyl-tRNA synthetase that is encoded in
all mimiviruses sensu stricto(Table 1). CroV, although a smaller virus than the mimiviruses
and pandoraviruses, encodes the largest number of translation-associated proteins.
Conversely, the most common translation-associated protein in giant viruses is the cap-
binding subunit of translation initiation factor 4E (Table 1). This, however, is not a universal
but rather a eukaryote-specific protein.

We performed a comprehensive phylogenetic analysis of the genes of “Megavirales” that are
homologous to genes widely represented in at least two domains of cellular life forms and
encode proteins involved in transcription and translation, with the specific aim to test the
fourth domain hypothesis. To this end, we adopted the following criterion: if a giant virus
gene reliably placed inside a subtree corresponding to one of the three domains of cellular
life, the respective tree was taken to be incompatible with the fourth domain hypothesis.
Conversely, when a giant virus gene placed outside any of the three cellular domains, the
outcome was considered to be compatible with the fourth domain hypothesis. In addition to
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the bootstrap values that reflect the reliability of each internal branch in the tree, we used the
approximately unbiased (AU) test to compare the likelihoods of alternative tree topologies,
namely those compatible and incompatible with the fourth domain hypothesis (Yutin and
Koonin, 2012).

Figure 1 shows the phylogenies of the two large RNAP subunits. As noticed previously
(Yutin and Koonin, 2012), the RNAPs of the NLCDV appear to be polyphyletic, and in
particular, both large RNAP subunits of the mimiviruses and asfarviruses confidently
clustered with eukaryotic RNAP Il. The constrained tree, in which the mimivirus branch was
joined with the rest of the “Megavirales”, had a significantly lower likelihood than the
original tree according to the AU test (Supplementary Table S1). The rest of the
“Megavirales” formed astrongly supported sister group to RNAP Il in both trees (Figure
l1ab). As proposed previously, the ancestral RNAP of the “Megavirales” probably was
replaced by RNAP 11 of the eukaryotic host during the stem phase of the mimivirus
evolution (Yutin and Koonin, 2012). Thus, the phylogenies of the two RNAP subunits,
genes that are nearly universal and definitely ancestral among the “Megavirales”, do not
conform to the fourth domain hypothesis.

Figure 2 shows the phylogenetic trees for all aaRS encoded in “Megavirales” genomes.
Tyrosyl-aaRS is encoded by all mimiviruses and pandoraviruses, and strikingly, the genes of
the two “Megavirales” do not share a common origin. The mimivirus TyrRS clusters with
homologs from Entamoeba whereas the Pandoravirus TyrRS is highly similar to the
Acanthamoeba homolog with which it forms a tight cluster in the tree (Figure 2a). It should
be noticed that the phylogeny of TyrRS is complex, with the two major eukaryotic branches
apparently evolved from distinct archaeal ancestors. Further investigation of the evolution of
this universal enzyme is beyond the scope of the present work, but it should be emphasized
that the TyrRS from two families of “Megavirales” confidently place each within one of the
two eukaryotic branches (Figure 2a). The conclusion that TyrRS was independently
acquired by mimiviruses and pandoraviruses from distinct eukaryotic hosts appears
inescapable.

Arginyl-tRNA synthetase, cysteinyl-tRNA and methionyl-tRNA synthetases are encoded by
the majority of the mimiviruses and in the respective phylogenetic trees, are all deeply
embedded within the eukaryotic subtree (Figure 2bcd). Again, these aaRS seem to have been
acquired from the eukaryotic hosts, an evolutionary scenario that is incompatible with the
fourth domain hypothesis.

Aspartyl- and asparaginyl-tRNA synthetases have evolved under a complex scenario
whereby opisthokonts inherited the archaeal enzyme whereas the rest of the eukaryotes
possess the bacterial version. The asparaginyl-tRNA synthetases present in a subset of the
mimiviruses appears to be of the bacterial variety, suggestive of acquisition from a
respective eukaryotic host (Figure 2e).

Tryptophanyl-tRNA synthetase is the second, after TyrRS, aaRS that is present both in
mimiviruses (in this case, only one species, Megavirus chilensis) and pandoraviruses. As in
the case of Tyr-RS, the two viral TrpRS appear to be of distinct origins, each originating
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from a different group of eukaryotes (Figure 2f). Notably, in both cases, Pandoraviruses
clustered with Acanthamoeba, compatible with a relatively recent acquisition of the
respective aaRS genes from this host. In constrast, the mimiviruses belonged to a composite
protist branch, suggestive of a more ancient acquisition, possibly from a different host
(Figures la and 1f).

The only giant virus aaRS that forms a sister group to the eukaryotes (albeit with a low
bootstrap support), as opposed to placing within the eukaryotic subtree, is 1leRS that is
represented in several mimiviruses and in CroV (Figure 2g). Thus, among the 7 aaRS
encoded by giant viruses (Table 1), there is only one case where the phylogenetic tree
topology is formally compatible with the fourth domain hypothesis. Furthermore, the two
aaRs that are encoded in two families of giant viruses showed a clear polyphyletic origin,
most likely due to independent acquisition of the respective aaRS genes from distinct
eukaryotic hosts.

Figure 3 shows the phylogenies of translation factors encoded by giant viruses. Two of these
translation factors, EF1-a and elF1 (SUI1), are universal in cellular life forms. The first of
these is only represented in the family Marseilleviridae (large but not giant viruses under the
definitions adopted in this work), with the viral branch deeply embedded within the
eukaryotic subtree (Figure 3a). The elF1 tree generally is of poor quality due to the small
size of the protein. Nevertheless, it is notable that the genes of mimiviruses, CroV and
Marseillevirus appear to be polyphyletic and place in different parts of the eukaryotic
subtree, suggestive of multiple acquisitions from eukaryotes (Figure 3b). A similar tree
topology, with polyphyletic Megavirales, was observed for the archaeo-eukaryotic
translation factor, the beta subunit of elF5 (Figure 3c) and for a translation factor of apparent
bacterial origin, elF-4a (Figure 3d). The initiation factor SUAS appears to have a complex
history, with apparent multiple acquisitions by eukaryotes from bacteria; the SUA5 protein
encoded by pandoraviruses belongs to one of the eukaryotic groups embedded within a
bacterial branch (Figure 3e). Finally, the phylogeny of the archaeo-eukaryotic peptide chain
release factor eRF1 showed the typical pattern of polyphyletic “Megavirales” inside the
eukaryotic subtree (Figure 3f).

Altogether, we analyzed the phylogenies of 13 translation-associated genes of the
“Megavirales” that are widely represented in at least two recognized domains of cellular life
and thus provide for a meaningful test of the fourth domain hypothesis. Among these genes,
only one showed a poorly supported tree with a topology that is formally compatible with
the origin of the giant viruses from a fourth cellular domain. In most of the trees, the viral
branches were separated from the eukaryotic root by multiple edges with high bootstrap
support. Moreover, whenever a gene is present in more than one family of Megavirales,
these viral genes appeared to be polyphyletic. Statistical testing using the constrained tree
approach and the AU test rejected the fourth domain-compatible topology in only a subset of
these cases as can be expected for trees that include highly diverged sequences. However,
except in a single case, the likelihood of the constrained tree was lower than the likelihood
of the original tree (Supplementary table S1). Collectively, the results of this phylogenetic
analysis appear to be incompatible with the fourth domain hypothesis and instead strongly
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suggest that the (nearly) universal cellular genes were acquired by the giant viruses from
their eukaryotic hosts at different stages of evolution.

Where do the genes of giant viruses come from: a phylogenomic analysis

We developed a computational phylogenomic pipeline aimed at genome-wide inference of
the origins of the genes of giant viruses (see Methods for details). The phylogenomic
analysis was performed for 7 giant and large viruses that represent the four major branches
of the extended family Mimiviridae (Yutin et al., 2013), pandoraviruses and pithoviruses. It
is well known that numerous genes of large and especially giant viruses are ORFans, with
no homologs detectable apart from closely related isolates. Many other viral genes have few
homologs and/or show limited similarity to the detectable homologs, resulting in
uninformative phylogenetic trees. Nevertheless, overall 1292 trees passed the criteria for
origin inference. The results indicate that, apart from the small core of “Megavirales” genes,
these phylogenetically tractable genes of giant and large dsDNA viruses appeared to be
primarily of eukaryotic origin, with a sizable minority of genes of likely bacterial descent
(Figure 4). The viruses differed dramatically in the phylogenetic breakdown of their genes.
Pandoraviruses are particularly rich in eukaryotic genes, followed by some of the
mimiviruses. In contrast, the Pithovirus and especially the smaller members of the extended
family Mimiviridae (Organic Lake phycodnaviruses and Phaeocystis globosa viruses) had
few phylogenetically tractable genes such that the eukaryotic and bacterial contributions are
comparable with the core of “Megavirales” genes. Notably, the Pithovirus appeared to
possess nearly as many bacterial as eukaryotic genes (Figure 4). These observations point to
distinct evolutionary histories of the giant viruses that have shaped substantially different
gene repertoires.

Evolutionary relationships between giant viruses and other “Megavirales”

Previous studies on the evolution of the “Megavirales” have suggested evolutionary
connections between giant viruses and other, smaller members of the Megavirales, based
primarily on the phylogenies of the core genes. With the current updated collection of viral
genomes, we revisited these relationships. The updated version of the NCVOGs was used to
extract the patterns of gene presence-absence across all members of the “Megavirales”; the
matrix of shared genes (Figure 5a) was then used to construct a tree of the relationships
between the gene complements of the viruses (Figure 5b).

We then updated the phylogenetic tree of the “Megavirales” using concatenated alignments
of 6 (nearly) universal core genes. The main features of the resulting phylogeny are
compatible with the previous observations (lyer et al., 2006; Yutin and Koonin, 2012; Yutin
and Koonin, 2013; Yutin et al., 2009). The giant viruses fall within three distinct groups of
“Megavirales”: i) Mimiviruses within the extended family Mimiviridae that is the sister
group of Phycodnaviridae; ii) Pandoraviruses inside the family Phycodnaviridae, as the
sister group of coccolithoviruses; iii) Pithovirus as the sister group of Marseilleviridae,
within the branch that also includes the families Iridoviridae and Ascoviridae (Figure 6). In
each of these cases, the sister group of the giant viruses includes viruses with substantially
smaller genomes.
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The topology of the tree constructed using the matrix of shared genes (Figure 5b) was
similar to the topology of the phylogenetic tree (Figure 6), which is indicative of a general
congruence of the evolution of the extended core gene sets of the “Megavirales” with the
evolution of the universal genes that were used as phylogenetic markers. Two exceptions
involved giant viruses: Pandoraviruses and Pithoviruses became a clade that was the sister
group of Mareilleviruses, whereas the Mimiviridae place within the phycodnavirus clade.
The similarities of gene complements that led to these changes in the tree topology might
reflect a combination of ancestral gene conservation, intervirus gene transfer (particularly, in
coinfected amoeba) and parallel acquisition of homologous genes from hosts. However,
these affinities were based on small numbers of shared genes (Figure 5a). Therefore, on the
whole, the results of gene composition analysis emphasizes distinct histories of genome
evolution in the giant viruses.

Finally, we combined the phyletic patterns extracted from the NCVOGs and the
phylogenetic tree of the core genes (Figure 6) to obtain a maximum likelihood
reconstruction of the gene complements of the “Megavirales”. When superimposed over the
phylogenetic tree, the results suggest evolution from moderate-sized ancestors, with massive
gene gain inferred for all three groups of giant viruses (Figure 6).

Discussion

The results of the present phylogenomic analysis clarify the status of giant viruses by
showing that their evolution is part and parcel of the evolutionary history of the
“Megavirales”, in a general agreement with previous observations (lyer et al., 2006; Yutin
and Koonin, 2012; Yutin and Koonin, 2013; Yutin et al., 2009). Indeed, all three groups of
giant viruses share the core genes of the “Megavirales” albeit with an unusual extent of loss
in the Pandoraviruses ((Yutin and Koonin, 2013) and Figure 5a). Moreover, phylogenetic
analysis of the core genes firmly places each of the three groups of giant viruses inside
subtrees of the “Megavirales” that otherwise consist of viruses with moderate-sized
genomes.

The evolutionary reconstruction for the gene complements of the “Megavirales” (Figure 6)
suggests that the giant viruses evolved independently, through extensive gene gain. The
paucity of shared genes between different groups of giant viruses (Figure 5a) effectively
rules out their origin from a common giant ancestor, with extensive gene losses in the
related smaller viruses. The only alternative, however non-parsimonious, to the massive
gene gain scenario appears to be independent early emergence of multiple ancestral giant
viruses followed by massive losses in the branches leading to the smaller extant viruses.
Deletion of large portions (up to 20%) of the mimivirus genome during the cultivation of the
virus in amoeba has been reported (Boyer et al., 2011). However, these deletions show a
distinct pattern whereby genes are lost from the terminal regions of the genome that
primarily encode proteins involved in virus-host interaction. A similar pattern of deletion
involving non-essential genes in the terminal regions has been observed in other members of
the “Megavirales” as well, in particular in poxviruses (Kotwal and Moss, 1988; Perkus et al.,
1991). This limited evolutionary process is unlikely to produce the extent of gene loss that
the evolution of moderate-size viruses from giant ones would have required.
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In and by themselves, the presence of the core “Megavirales” genes in the giant virus
genomes and the evolutionary connections between the giant viruses and other
“Megavirales” do not invalidate some versions of the fourth domain hypothesis. In
particular, one could imagine that a moderate-sized member of the “Megavirales” that
reproduced in a host cell that belonged to an extinct fourth domain acquired numerous genes
including those for translation system components, and thus remains the only extant relic of
that fourth domain of cellular life. Actually, given the above argument on the implausibility
of a common giant ancestor of the three giant virus groups, one would have to postulate not
one but three unknown domains of cellular life at the respective roots of these viral lineages.

The fourth domain (more precisely, multiple domains as discussed above, but we will
continue to use the more popular phrase “fourth domain) hypothesis is falsifiable through
phylogenetic analysis of genes that are universal in cellular life forms, conform to the three-
domain tree topology and are also represented in giant viruses. The genes that meet these
criteria are those encoding RNAP subunits and universal translation system components. As
shown here and elsewhere (Williams, Embley, and Heinz, 2011; Yutin and Koonin, 2012),
the phylogenies of almost all of these genes are incompatible with the fourth domain
hypothesis. Instead, these phylogenies consistently derive the respective viral genes from
within one of the three known domains of cellular life, namely eukaryotes. Moreover, in
those few cases when different giant viruses encode the same component of the translation
systems, these genes show affinities with different eukaryotic lineages. In particular, the
translation-associated genes in Pandoraviruses might represent relatively recent acquisitions
from the amoebal hosts whereas the functionally similar genes in Mimiviruses could be
older acquisitions from different protist sources.

A more complete, automated phylogenomic analysis points to preferential capture of
eukaryotic genes by giant viruses but also a substantial contribution of bacterial genes, in a
general agreement with several previous analyses (Filee and Chandler, 2008; Filee and
Chandler, 2010; Filee, Pouget, and Chandler, 2008; Filee, Siguier, and Chandler, 2007;
Moreira and Brochier-Armanet, 2008). A large fraction of genes in giant viruses remain
ORFans (Colson and Raoult, 2010; Saini and Fischer, 2007) but it is inconceivable that
these genes are heritage of missing domains of cellular life. The implausibility of the latter
hypothesis follows from the very fact that the ORFans lack any recognizable structural
domains and thus hardly could have come from extinct cellular domains. Indeed, in archaea,
bacteria and eukaryotes, proteins containing detectable domains and structural features, such
as metabolic enzymes, transporters, transcriptional regulators, and signaling system
components, represent a substantial majority (Koonin et al., 2004; Koonin and Wolf, 2008).
Notably, ORFans are abundant also in the comparatively small genomes of bacteriophages
and especially archaeal viruses, and appear to be fast evolving proteins, often small in size
(Prangishvili, Garrett, and Koonin, 2006; Yin and Fischer, 2008). The high prevalence of
ORFans reflects the vastness of viral gene pools but not the existence of unknown cellular
domains (Kristensen et al., 2013).

Taken together, these findings are fully compatible with the scenario of evolution of giant
viruses from smaller viruses by gene accretion (Filee, 2013; Filee and Chandler, 2010; Yutin
and Koonin, 2013) which apparently occurred on at least three independent occasions. All
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the giant viruses so far discovered reproduce in protists, in particular in amoeba. These
phagocytic unicellular eukaryotes routinely harbor diverse endosymbionts and parasites and
hence apparently present an environment that is highly conducive to gene exchange, and in
some lineages, extensive gene accumulation (Raoult and Boyer, 2010). Understanding the
factors that led to genome explosion in some but not other lineages of protist viruses is of
major interest. It has been proposed that giant and large viruses evolve under a “genomic
accordion” model whereby phases of genome expansion alternate with contraction phases
(Filee, 2013). So far the reconstruction of gene gain and loss in the evolution of the
“Megavirales” failed to identify phases of major genome reduction (Figure 6). However,
given the apparent dominance of genome reduction in the evolution of cellular life forms
(Wolf and Koonin, 2013), the existence of such phases in the evolution of large viruses
appears highly likely and can be expected to become apparent with further genome
sequencing of diverse viruses.

Finally, shifting the discussion from the falsifiable fourth domain hypothesis to the fourth
domain as a general concept, it should be noted that the refutation of the hypothesis by no
account undermines the fundamental distinctness of large DNA viruses and viruses in
general. On the contrary, these findings emphasize the primary divide of organisms into
cellular life forms and selfish, virus-like agents (Koonin, Senkevich, and Dolja, 2006;
Raoult and Forterre, 2008). In many respects, the differences between major classes of
viruses and virus-like agents run deeper than the differences between the three cellular
domains: to name a most obvious issue, some of the major groups of viruses share no
homologous genes (Koonin and Dolja, 2013; Koonin and Wolf, 2012). Outside the
applicability of straightforward phylogenetic approaches, classification of biological entities,
especially those that cross traditional boundaries, such as giant viruses, can become
complicated and inevitably, to some extent, arbitrary (Raoult, 2013). Whether or not
different classes of viruses should be called domains, is a question of semantics. It might be
advisable to keep the term for its original usage as a primary division of cellular organisms
identifiable from consistent phylogenies of universal genes. Such terminological
conservatism certainly should not and would not diminish the impact of the research on
giant viruses which are among the most remarkable denizens of the vast virus world.

Update of the NCVOGs

For the updated version of NCVOGs, the following genomes were retrieved from GenBank:
Pithovirus sibericum, Pandoraviruses, Megavirus chiliensis, Cafeteria roenbergensis virus
BV-PW1, Acanthamoeba polyphaga moumouvirus, OLPG clade viruses, Prasinoviridae,
Lausannevirus, Wiseana iridescent virus, two entomopoxviruses, and Squirrelpox virus.
Three genomes, Marseillevirus, Acanthamoeba polyphaga mimivirus, and Acanthamoeba
castellanii mamavirus, were updated (see Supplementary table S2 for the full list of species
and their GenBank accession codes). Multiple alignments of viral protein sequences from
the previous version of NCVOGs were used as seeds for the initial psi-COGnitor procedure.
Remaining sequences were clustered using GOCtriangle and proceeded as previously
described (Kristensen et al., 2010). Briefly, the procedure included the following steps: 1)
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Initial clusters based on previous NCVOG profiles and triangles of symmetrical best hits
were constructed; 2) Multiple alignments of the initial cluster members were constructed
using the MUSCLE program (Edgar, 2004). The alignments were used to generate position-
specific scoring matrices (PSSM) for a PSI-BLAST search (Altschul et al., 1997) against the
original protein dataset. Significantly similar proteins were added to the corresponding
clusters; 3) Clusters with nearly complementary phyletic patterns and high inter-cluster
sequence similarity were manually examined and merged whenever appropriate. The
updated NCVOGs are available at ftp://ftp.nchi.nih.gov/pub/wolf/COGs/INCVOG/.

Phylogenetic analysis of (nearly) universal cellular genes present in giant viruses

Translation-related genes in giant viruses were identified using the RPS-BLAST search
against the NCBI CDD database (Table 1). Homologs of giant virus sequences were
identified in the NCBI NR database using BLAST search. Nearly identical sequences were
eliminated using BLASTCLUST (http://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/
blastlab.html website). Protein sequences were aligned using the MUSCLE program with
default parameters (Edgar, 2004); columns containing a large fraction of gaps (greater than
30%) and non-homogenous columns defined as described previously (Yutin et al., 2008)
were removed from the alignment prior to phylogenetic analysis. A preliminary maximum-
likelihood tree was constructed using the FastTree program with default parameters (JTT
evolutionary model, discrete gamma model with 20 rate categories (Price, Dehal, and Arkin,
2010)). The preliminary tree and the alignment were then used to determine the best
substitution matrix using Prottest (Darriba et al., 2011). The best matrices found by Prottest
are shown in Supplementary table S3. The final maximum-likelihood trees were constructed
using TreeFinder (1,000 replicates, Search Depth 2), with the substitution matrix that was
found to be the best for a given alignment (Jobb, von Haeseler, and Strimmer, 2004). The
Expected-Likelihood Weights (ELW) of 1,000 local rearrangements were used as
confidence values of TreeFinder tree branches (Jobb, von Haeseler, and Strimmer, 2004).
For tree topology testing, whenever applicable, alternative (constrained) topologies were
constructed and compared to the initial trees using TreeFinder (Jobb, von Haeseler, and
Strimmer, 2004). Approximately unbiased (AU) test P value cutoff 0.05 was used for
rejecting tree topologies (Shimodaira, 2002).

Phylogenetic analysis of the “Megavirales” core genes

Multiple alignments of 6 core genes (DNApol, Packaging ATPase, D5 helicase, Superfamily
Il helicase, RNApol a and RNApol b) that are nearly universal in 45 “Megavirales” were
constructed using the MUSCLE program and concatenated. Phylogeny was reconstructed
using the TreeFinder program (Jobb, von Haeseler, and Strimmer, 2004) with the LG+G+F
evolutionary model.

Phylogenomic analysis

For automated pipeline, seven genomes were retrieved from the non-redundant database at
the National Center for Biotechnology Information (NIH, Bethesda): Pandoravirus salinus
(2,542 proteins; KC977571), Acanthamoeba polyphaga mimivirus (979 proteins;

NC_014649.1), Megavirus chiliensis (1,120 proteins; JN258408), Cafeteria roenbergensis
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virus BV-PW1 (544 proteins; NC_014637), Organic Lake phycodnavirus 1 (401 proteins;
HQ704802), Phaeocystis globosa virus strain 16T (434 proteins; NC_021312), and
Pithovirus sibericum isolate P1084-T (467 proteins; NC_023423).

For each protein, the following procedure was run. A protein was used as a query for
BLAST searches against nr and Refseq databases (e-value cutoff 0.01, composition-based
statistics); first 200 hits from nr database and first 2,000 hits from Refseq database were
combined; a new BLAST search was run using the same query against the collected
proteins, with composition-based statistics turned off. The latter run produced proper
ranking of the hits. Further, the number of hits was reduced by BLASTClust (http://
www.nchi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html): first 20 hits were clustered
with 95% sequence identity, next 500 hits — with 75%, and the remaining sequences — with
65% sequence identity. The resulting set of sequences was aligned using the MUSCLE
program with default parameters; poorly aligned sequences and columns containing a large
fraction of gaps (greater than 30%) and non-homogenous columns defined as described
previously (Yutin et al., 2008) were removed from the alignment. Alignments retaining 40
or more sequences and 100 or more positions, were subjected to phylogenetic analysis using
the FastTree program (JTT evolutionary model, discrete gamma model with 20 rate
categories (Price, Dehal, and Arkin, 2010)). Trees were rooted using the least-square
modification of the mid-point method (Wolf et al., 1999). Interpretation of these trees used a
slightly modified version of the NCBI taxonomy whereas all “Megavirales”s were collected
into a separate group and further resolved to the finer clades. For each query genome listed
above, a “native clade” was defined as indicated (Supplementary Figure S1). Trees were
traversed starting from the leaf corresponding to the query sequence, toward the root. Nodes
with low support (<0.8 except for the root) were ignored. At each supported node, the
taxonomic affiliations of all descending leaves (including the query) were collected and
classified into 5 categories (Archaea, Bacteria, Eukaryotes, non-"Megavirales” Viruses and
“Megavirales™) plus the native group. Categories represented by only one species were
ignored. If all non-native leaves belonged to the same category, the respective tree was
considered phylogenomically resolved, with the query and its native group affiliated with
that category; otherwise, the tree was considered unresolved. This procedure produced 1141
resolved trees.

Trees that are formally unresolved (according to the above criteria) still can contribute to the
breakdown of the phylogenomic affiliations of genes of the giant viruses. If the set of tree
nodes was not “mostly “Megavirales”* (i.e. <90% belonged to “Megavirales”) and
contained representatives of only one of the 3 cellular domains (criteria for domain
exclusion were <0.5% of Archaea, <5% of Bacteria and <5% of Eukaryotes), the query was
considered affiliated with the respective domain. These criteria allowed classification of 151
additional trees.

Neighbor-Joining tree based on the phyletic patterns

Presence-absence data of NCVVOGs was collected for the 45 virus genomes. For each pair of
genomes (i,j) the number of shared NCVOGs (S;) was used to compute the distance
between the genomes as Djj = —In(S;/sqrt(Ni*N;)), where N; and N; is the number of
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NCVOGs in the two genomes (Yutin et al., 2009). A neighbor-joining tree was constructed
from the distance matrix D using the NEIGHBOR program of PHYLIP package
(Felsenstein, 1996). Support values were obtained using 1,000 bootstrap resamplings of the
families.

Reconstruction of gene content evolution

The tree reconstructed from the concatenated alignment of Neighbor-Joining gene content
tree of (nearly) universal core genes and the gene presence-absence matrix for the NCVOGs
were used to reconstruct the gene loss and gain events in the evolution of the “Megavirales”
using the COUNT program(Csuros, 2010), as previously described (Yutin et al., 2009).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Support values represent expected-likelihood weights of 1,000 local rearrangements;
branches with support less than 50 were collapsed. “Megavirales” sequences are highlighted
in orange, eukaryotic sequences in blue, archaeal sequences in purple. OLPG: Organic Lake
phycodnavirus — Phaeocystic globosa virus clade.
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Figure 2. Phylogenies of aminoacyl-tRNA synthetases encoded by giant viruses

(@) Tyrosyl-tRNA synthetase
(b) Arginyl-tRNA synthetase

(c) Aspartyl/asparaginyl-tRNA synthetases

(d) Cysteinyl-tRNA synthetase

(e) Isoleucyl-tRNA synthetase

(f) Methionyl-tRNA synthetase

(9) Tryptophanyl-tRNA synthetase

Support values represent expected-likelihood weights of 1,000 local rearrangements;
branches with support less than 50 were collapsed. “Megavirales” sequences are highlighted
in orange, eukaryotic sequences in blue, bacterial sequences in green, archaeal sequences in
purple. Taxa abbreviations: Ac, Crenarchaeota; Ae, Euryarchaeota; Az, unclassified
Archaea; Ba, Actinobacteria; Bb, Bacteroidetes/Chlorobi group; Bc, Cyanobacteria; Bi,

Acidobacteria; Bp, Proteobacteria; Bs,

Spirochaetes; Bv, Chlamydiae/Verrucomicrobia

group; E2, Fornicata; E7, Rhodophyta; E8, stramenopiles; E9, Viridiplantae; Ea,
Amoebozoa; Ec, Alveolata; Eh, Cryptophyta; Ek, Euglenozoa; El, Opisthokonta; Eq,

Heterolobosea; Ew, Parabasalidea.
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Figure 3. Phylogenies of translation encoded in “Megavirales” genomes
(a) elongation factor EF-1alpha

(b) initiation factor elF-1 (SUI1)

(c) initiation factor elF-2beta

(d) initiation factor elF-4A

(e) initiation factor SUA5

(f) peptide chain release factor eRF1

Support values represent expected-likelihood weights of 1,000 local rearrangements;
branches with support less than 50 were collapsed. “Megavirales” sequences are highlighted
in orange, eukaryotic sequences in blue, archaeal sequences in purple. Taxa abbreviations:
Aeg, Euryarchaeota; Ba, Actinobacteria; Bf, Firmicutes; Bj, Tenericutes; Bp, Proteobacteria;
E2, Fornicata; E7, Rhodophyta; E9, Viridiplantae; Ea, Amoebozoa; Ec, Alveolata; Eh,
Cryptophyta; Ek, Euglenozoa; El, Opisthokonta; Ep, Haptophyceae; Eq, Heterolobosea; Ew,
Parabasalidea.
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Figure 4.
Phylogenomic breakdown of giant virus genes
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Figure 5. Relationships between the gene contents of giant viruses and their smaller relatives
(a) matrix of shared genes

Lower left: number of shared gene families. Upper right: Jaccard similarity of gene
complements. Diagonal: number of annotated genes in the genome.

Intra-family comparisons are shaded.

(b) tree of gene contents

Bold lines indicate branches with high (>70%) bootstrap support; thin lines indicate
branches with low bootstrap support. Branches that disagree with the tree, reconstructed
with the universal core genes, are highlighted in red (except the poorly resolved branches
inside the Poxviridae), dashed lines indicate the relationships expected from the core

phylogeny.
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Figure 6. Phylogenetic tree of the (nearly) universal core genes of the “Megavirales” and

reconstruction of gene gain and loss

Page 33

Numbers above the branch indicate the estimated number of NCVOG families (plus the
number of singletons for extant genomes) at the end of the branch. Numbers below the
branch indicate the estimated number of gained and lost NCVVOG families (plus the number
of acquired singletons for extant genomes). Dashed lines extend the branches The estimated

number of “Megavirales” ancestral families is indicated in a circle at the tree root.
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