
DIME:

A Novel Framework for De Novo

Metagenomic Sequence Assembly

XUAN GUO,1 NING YU,1 XIAOJUN DING,2 JIANXIN WANG,2 and YI PAN1,3

ABSTRACT

The recently developed next generation sequencing platforms not only decrease the cost for
metagenomics data analysis, but also greatly enlarge the size of metagenomic sequence datasets.
A common bottleneck of available assemblers is that the trade-off between the noise of the
resulting contigs and the gain in sequence length for better annotation has not been attended
enough for large-scale sequencing projects, especially for the datasets with low coverage and a
large number of nonoverlapping contigs. To address this limitation and promote both accuracy
and efficiency, we develop a novel metagenomic sequence assembly framework, DIME, by
taking the DIvide, conquer, and MErge strategies. In addition, we give two MapReduce im-
plementations of DIME, DIME-cap3 and DIME-genovo, on Apache Hadoop platform. For a
systematic comparison of the performance of the assembly tasks, we tested DIME and five other
popular short read assembly programs, Cap3, Genovo, MetaVelvet, SOAPdenovo, and SPAdes
on four synthetic and three real metagenomic sequence datasets with various reads from fifty
thousand to a couple million in size. The experimental results demonstrate that our method not
only partitions the sequence reads with an extremely high accuracy, but also reconstructs more
bases, generates higher quality assembled consensus, and yields higher assembly scores, in-
cluding corrected N50 and BLAST-score-per-base, than other tools with a nearly theoretical
speed-up. Results indicate that DIME offers great improvement in assembly across a range of
sequence abundances and thus is robust to decreasing coverage.

Key words: algorithms, cloud computing, de novo assembly, metagenome, sequences.

1. BACKGROUND

Metagenomics is the study of all micro-organisms coexistent in an environmental area, including

environmental genomics, ecogenomics, or community genomics. In the past, microbial genomic

studies usually focused on one single individual bacterial strain that is suitable to be separately cultivated

(Wu et al., 2007). However, there are limitations when it comes to separately culturing individual stain. This

is because, first, an isolate bacterial strain functions differently in isolation compared to when it works in

communities. Due to experimental limitations, most of the microbes could not be isolated in laboratory

Departments of 1Computer Science and Biology, Georgia State University, Atlanta, Georgia.
2School of Information Science and Engineering, Central South University, Changsha, Hunan, China

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 22, Number 2, 2015

Mary Ann Liebert, Inc.

Pp. 159–177

DOI: 10.1089/cmb.2014.0251

159

conditions and, in fact, all micro-organisms in a habitat have various functional effects on one another and their

hosts, such as the human gut (Gill et al., 2006) and larger ecosystems (Venter et al., 2004). Research (Qin,

2009; Khachatryan et al., 2008; Lin et al, 2009) has shown the strong association between common diseases

and the diversity of microbes in humans, like inflammatory bowel disease and gastrointestinal disturbance. For

this reason, studying how these micro-organisms function is crucial for any project involving curing these

diseases. Population sequencing is an essential tool for recovering the genomic sequences in a genetically

diverse environmental sample, which is known as metagenomics and also known as environmental genomics

or community genomics. These studies are fundamental for identifying and discovering novel genes; studying

ecosystems by utilizing other bioinformatics tools, like multiple sequence alignment services (Nguyen, 2012);

and hence advancing our systemic understanding of biological processes and communities.

With high-throughput next generation sequencing (NGS) technology, like the 454 technology (Turn-

baugh, 2009), solutions for metagenomics analysis become possible. Using automatic tools such as MG-

RAST (Meyer et al., 2008), biologists can analyze the reads in the environmental sample by aligning them

against known genomes, protein families, and functional groups in order to grossly obtain the structure of

taxonomy of species and discover genes. The NSG platforms not only dramatically increase the size of

sequencing datasets in large metagenomic projects (He et al., 2013), but also shorten the average length

of reads with high coverage on the genomes. As demonstrated by the study of Meyer et al. (2009), assembled

sequences help extract more information from the reads and leads to the discovery of more genes and better

functional annotation than using short and noisy individual reads. Current methods for metagenomic se-

quencing assembly are deficient in generating high-quality assembled contigs and handling the large scale of

data, particularly for terascale metagenomics projects. For instance, 454 Roche GS Titanium system could

collect 200 Mbp to 300 Mbp data within 5 hrs. Typically, existing popular assembly tools lack the ability to

achieve a good trade-off between the noise of the resulting contigs and the gain in sequence length for better

annotation in large-scale sequencing projects (Pignatelli and Moya, 2011). As far as we know, there are a few

de novo assemblers aiming at metagenomics (Pignatelli and Moya, 2011), including MetaVelet (Namiki et al.,

2011), Genovo (Laserson et al., 2010), and MetaIDBA (Peng et al., 2011). By analyzing our experimental

results, we can find that some methods, like Genovo, assemble the sequences too long to obtain correct

matching on the reference genome, while for other methods, like MetaVelvet and SOAPdenovo (Luo et al.,

2012), reported consensus sequences are too short for further analysis.

In order to address the aforementioned problems, we present a novel framework based on DIvide,

conquer, and MErge strategies (DIME) for de novo metagenomic assembly. The four phases framework of

DIME are summarized as follows:

� Weight-edge construction (WEC). A weight graph is built to capture the chances that two reads share a

common area sequenced from the same section on the sequence. We first scan all reads to count the

number of l-mers shared between them by transforming a read into a string of l-mer. We then select

pairs of reads to calculate their similarity scores based on the Smith-Waterman algorithm (Smith and

Waterman, 1981), if they share at least b common l-mers.
� Clustering. A graph partition algorithm is applied to the weight graph to split the set of reads into

disjoint subsets with nearly balanced sizes. The basis for clustering is that gaps often remain after

initial contig construction. By separating reads into groups, reads with high similarity to a certain

group will not disrupt the assembly on that group.
� Local-assembling. Traditional overlap-layout-consensus (OLC) assembly tools, including Cap3 and

Genovo, are used to run locally for each reads cluster to generate a set of candidate contigs.
� Merging. A global merging procedure is applied to combine the candidate contigs, correct chimeric

reads, and refine consensus sequences based on the generative probabilistic model.

The four phases framework can be easily deployed on cloud platform, and we give two implementations

on a Hadoop cluster. One of the advantages of cloud technologies is that a large distributed infrastructure

can be readily accessed by nondistributed computing experts since the whole execution environment and

experimental conditions can be easily customized. In addition, as the infrastructure is rented on a pay-per-

use basis, immediate access and release to the required resources become possible without planning

beforehand (Guo et al., 2013). As far as we know, many other bioinformatics tools have been implemented

in Hadoop platform, including Crossbow (Langmead et al., 2009) and Contrail (Schatz et al., 2010).

Crossbow is for searching SNPs. Contrail aims to assemble Illumina datasets, and it relies on the graph-

theoretic framework of de Bruijn graphs. The reported contigs by Contrail only achieved similar size and

160 GUO ET AL.

quality to those generated by Velvet (Namiki et al., 2011), so we drop Contrail in the experiment and select

other two de Bruijn graph–based methods, MetaVelvet (Namiki et al., 2011) and SOAPdenovo (Luo et al.,

2012), which are claimed to be better than Velvet.

For a systematic evaluation of the performance of DIME, we compare DIME to five other popular short

read assembly programs: Cap3 (Huang and Madan, 1999), Genovo (Laserson et al., 2010), MetaVelvet

(Namiki et al., 2011), SOAPdenovo (Luo et al., 2012), and SPAdes (Nurk et al., 2013), on four synthetic

and three real metagenomic sequence datasets with various reads, from fifty thousand to a couple of million

in size. A bunch of commonly used metrics (Salzberg et al., 2012), including N50, corrected N50, un-

aligned reference bases, and unaligned assembly bases, demonstrate that DIME not only gives a high

accuracy partition of the sequence reads, but also reconstructs more bases and yields a better quality

assembly than other tools with nearly theoretical speed-up on a Hadoop cluster. In addition, the four phases

framework of DIME is very flexible to support other next generation sequencing platforms, like Illumina,

with some minor modifications, which are also a future direction for DIME. Therefore, we believe DIME is

a promising framework for large metagenomic projects with diminishing coverage.

2. MATERIALS AND METHODS

In the de novo assembly of environmental samples, the number, length, and content of these sequences

are uncertain. With the observation that gaps often remain after initial contig construction, isolated

overlapping DNA sequences can be clustered and assembled separately. The overall sequenced sample can

be considered as a weight undirected graph, where a vertex represents a single fragment, and an edge

represents the chance that two reads share an area from the same section on the genome. A balanced graph

partition algorithm can be effectively applied to the graph, and the reads set can be grouped into disjoint

sets. Existing assembler then will be executed in parallel for the separated reads set. Due to the similarity of

genomes between closed species in environmental samples, erroneously grouped DNA fragments are

inevitable. In order to cope with the erroneous clustering and further improve the assembly quality, another

phase with generative probabilistic model is formulated to represent the sequencing procedure that DNA

reads are obtained as noise copies of contiguous parts of the contigs. The novel assembly framework with

four phases is proposed to seek the best trade-off between the noise of contigs and the gain in length of

consensus sequence for a better annotation. Furthermore, the novel assembly framework can be well cast

into the popular MapReduce programming model and deployed on commercial cloud platform. In the

following paragraphs, we elaborate our novel metagenomic sequencing assembly framework in four phases

with the Map-Reduce task designs. Figure 1 outlines the four phases of our method.

2.1. Phase I: Weight-edge construction (WEC)

2.1.1. Notations. The entire read set is denoted as R, and we assume that there are n reads. Let ri be

the i-th read (i = 1‚ . . . ‚ n), and jrij be the length of the read i. Given a fix length g of l-mer, read i can be

represented as a string of (jrij - g + 1) l-mers. Let L denote the set of all different l-mers, and lj be the j-th

l-mer in the alphabet order. Giving a specific l-mer lj, we define a set Hj consisting of the reads, which have lj
in their strings. Given two reads ra and rb, the chance that they can be concatenated is denoted as CHC(ra,rb).

2.1.2. WEC. The purpose of weight-edge construction (WEC) is to build a weighted graph where a

vertex represents a read and the weight on an edge represents the measure of the chance that two linked

reads by this edge share an area that is sequenced from the same section on the genome. Two issues are

raised from this phase:

1. It is computationally unacceptable to exhaustively calculate all weights, if we have hundreds of

thousands of reads (the total number of weights is n2

2
- n

2
). Moreover, if two reads differ greatly from

each other, which is usually the case in the sequencing sample, the existence of the edge itself is

unnecessary.

2. How to define the weight function to capture the chance CHC(ra,rb) given two reads ra and rb.

In order to cope with the two concerns, we design two procedures: (1) scanning and (2) aligning, which

are adapted from two methods, ZEBRA algorithm (Grillo et al., 1996) and Smith-Waterman (SW) dynamic

programming algorithm (Smith and Waterman, 1981), respectively. ZEBRA uses a fast scanning rule to

DIME 161

skip nonmatch reads, and SW is a classical local alignment algorithm. The details of the sequential WEC is

as follows:

1. We first transform all reads into strings comprising only l-mers.

2. For each l-mer lj, we construct the set Hj, which comprises the reads that have lj in their strings. We

then get a table with two columns. The first column is for L (the set of all l-mers), and the second

column is for the set Hj. Each row represents the pair of lj and its set Hj.

FIG. 1. The pipeline of DIME. DIME is divided into four major phases: weight-edge construction, clustering,

parallel-genovo, and merging.

162 GUO ET AL.

3. We split the set H into two disjoint parts, H0 and H00. If the cardinality of Hj is less than a predefined

threshold maxH, we put Hj into H0, otherwise it goes to H00. The reasons that we need maxH are

twofold: (1) l-mers coming from the repeated regions on the genome are not so important as the rest

of the l-mers, because a unique l-mer indicates a high probability that reads with the l-mer are from

the same sequence, while the former does not have this attribute. (2) In our MapReduce im-

plementation, we need to enumerate all the subsets of Hj with only two members and send them back

and forth among computing nodes. If jHjj is large, the communication cost is too high.

4. For the reads in Hj ˛ H0, we generate all the pair combinations of reads, and repeat for every j. We

then count the frequency for each unique pair as frera,rb given reads ra, rb.

5. We need to filter out pairs of reads that are less possible to be adjacent on the sequence. If frera,rb ‡ b,

we put the pair (ra, rb) into a candidate list. If frera,rb < b, we search (ra, rb) in Hj ˛ H00, and increment

frera,rb each time, when we find a pair. We add the pair into the candidate list if it is not less than the

threshold.

6. For the pairs in the candidate list, we use SW to get the local alignment and obtain the CHC by the

following formula:

CHC(ra‚ rb) = shnh + smnm + sinnin + sdnd

where the sh, sm, sin, sd are the unit scores for the hit, miss, insert, and delete bases, and the nh, nm, nin,

nd are the counts of the corresponding base pairs, respectively.

7. We connect two vertexes a and b in the weighted graph if we obtain a value of CHC(ra, rb), which is

the weight on the edge.

More details of the algorithm of WEC can be found in the Supplementary Material (available online at

www.liebertpub.com/cmb). In the above steps, two parameters maxH and b are applied. maxH aims to reduce

the computational burden and save communication cost because of the repeat region on the genome. We do not

suffer information loss since jHjj ‡ maxH goes to H00, and the rest pairs of reads with frequencies less than b
will be evaluated if those pairs show up in H. In our experiments, we set maxH to twenty times the expected

value of jHjj. For example, if we fix g to eight letters, and there are 1,000,000 reads, then the expected

frequency of reads having a certain l-mer is 1000000
48 � 16, so we set maxH to 320. The setting of b is related to

the error rate of the sequencing platform. In Margulies et al. (2005), an error rate of about 3% is reported. We

treat a pair of reads as candidates for alignment, if they overlap at least 25 bp. Based on the error rate, it is

expected that there are 10 l-mers sharing between them, if we fix g to 8 bp. We will set b to a slightly smaller

value than 10 instead. From the experimental results in section 3.4, this setting for b can achieve acceptable

clustering accuracy. The MapReduce implementation of WEC can be found in the Supplementary Material.

2.2. Phase II: Clustering

In clustering, we partition the set of reads into disjoint subsets with balanced size, and one property of each

subset by partition is that the average weight of reads in the same subset is larger than the average weight of

reads from different subsets. The weights are from local alignment in phase I. The details of algorithm 2 for

clustering can be found in the Supplementary Material. Specifically, we design clustering based on the following

considerations:

1. We first predefine a number of result cluster N, and set the maximum cardinality of a cluster to
jRj
N

· a
(where a ‡ 1 is a scale factor.)

2. Since the graph generated in WEC may have multiple connected components, we set the target to the

connected component instead of the whole graph. For each connected component, if the cardinality of

vertex set is less than or equal to
jRj
N

· a, we keep it unchanged; otherwise, we use a k-way graph partitioning

algorithm, Kmeits (Karypis and Kumar, 1999), to partition the component until all the partitions have the

cardinality no larger than
jRj
N

· a. Because the graph partitioning problem is NP-complete, we are not going

to redesign a new algorithm to deal with it. We adopt Kmetis (Karypis and Kumar, 1999) to handle this

tough job. More details of Kmeits can be found in the Supplementary Material.

2.3. Phase III: Local-assembling

Through the above two phases, N sets with a limited number of reads are generated, and they can be

treated as separate and independent sequence assembly jobs. In the local-assembling (LA), we modify the

DIME 163

input and output parts of existing assembly tools, like Cap3 and Genovo, and wrap them up in the Hadoop

platform, which can automatically regulate the workload balance among the computing nodes. Note that, in

DIME, only overlap-layout-consensus (OLC) methods are applied. The OLC methods use an overlap graph

where nodes represent the reads and edges represent overlaps between reads. The overlaps are precomputed

by a series of pairwise sequence read alignments. A reason that we select OLC methods is that for the

refinement of candidate contigs from phase III, we need the count information of every base on the

candidate contigs (Fig. 2) to build a generative probabilistic model, and further merge and promote

the quality of assembly. More details of Cap3 and Genovo are described in the following paragraphs.

2.3.1. Local-cap3. The Cap3 assembler proposes a method to resolve assembly problems in the form

of the third generation of CAP sequence assembler. It clips 50 and 30 poor regions of reads, uses forward-

reverse constraints to correct errors in construction of contigs, and generates consensus sequence for

contigs. Among these features, the most outstanding is the algorithm for making use of constraints to

correct assembly errors. The algorithm performs a correction only if the correction is supported by a

sufficient number of constraints. The random distribution of subclones indicates that errors in constraints

are also randomly distributed. Therefore, it is unlikely that a sufficient number of wrong constraints all

consistently support a correction to the same region. If quality values are not available, Cap3 is the better

choice, because Cap3 is able to make full use of redundant coverage in the construction of consensus

sequences. Like the other OLC methods, Cap3 consumes much more time as the size of the datasets

increases. For instance, a typical sequencing reads set from the 454 platform that reaches up to millions of

reads will require around 40 hours to get the contigs.

2.3.2. Local-genovo. Our algorithm for local-genovo derives from the metagenomes de novo as-

sembly approach, Genovo (Laserson et al., 2010). The reason we choose Genovo is that it can reconstruct

more bases and produce an assembly with better quality, especially for the low-abundance dataset com-

pared to other methods. Genovo is an instance of iterated conditional modes (ICM) algorithm, which

sequentially performs a random walk on states corresponding to different assemblies for maximizing local

conditional probabilities. The drawback of Genovo is the computation time. Take a middle-size metage-

nomic dataset, for example, which have 220k reads with 400 bp as average length; Genovo consumes more

than 37 hr on a typical desktop computer in our experiments. The local-genovo is modified to run on the

Hadoop platform and to produce a set of contigs with the count information in the structure as shown in

Figure 2. The count information are from those reads covering the current base. The frequency is also

employed to compute the global merging in phase IV.

2.4. Phase IV: Merging

The merging phase is designed to further merge and refine the candidate contigs for creating high quality

of assembly. In this phase, three general questions are addressed:

1. How to decide whether two contigs should be merged together.

2. How to identify and correct indel bases on overlap of two contigs when they’re merged.

FIG. 2. Count of each deoxyribonucleic acid for one base on the contig. Reads coverage information from local

assembler in phase 3.

164 GUO ET AL.

3. How to remove the chimeric reads (Lasken & Stockwell, 2007), that is, a prefix or a suffix matching

distant locations in the genome.

2.4.1. Generative probabilistic model. For the first question, we present a generative probabilistic

model to describe the process of next generation sequencing. When a DNA fragment is sequenced from the

genome, the sequencing model is Y = (k, ph, pi.d, pm), with k representing the expectation of how many

reads will cover a single base and ph, pi.d, pm denoting the probabilities for base hit, insertion and deletion,

and mismatch, respectively. We assume that the number of short sequencing reads, X, covering a single

base on the genome, follows Poisson distribution (Lander and Waterman, 1988) with parameter k:

Pr(X = k) =
kke - k

k!
(1)

In the generative probabilistic model, we estimate the parameter k as the average count of reads covering a

base given the assembled contig from phase III. By giving a consensus sequence with reads covering it, we

estimate the ph, pi.d, pm as the average hits, indels, and mismatches per base; for example, considering a

consensus sequence with 10 pb and 9 hits from 10 reads per base, then we set p̂h = 0:9 for that assembled part.

For any base with symbol B (B 2 fA‚ C‚ G‚ Tg) on the contig or consensus, let dh denote the count of

reads covering the same position by the same symbol as B, let di.d denote the count of reads skipping this

base, and let dm denote the count of reads covering the base but with another symbol different from B. We

further assume that the vector D = (dh‚ di:d‚ dm) follows a multinomial distribution with parameters k and

P = (ph, pi,d, pm), which are

Pr(D = (dh‚ di:d‚ dm)) =
k!

dh!di:d!dm!
pdh

h pdi:d

i:d pdm

m (2)

Given a set of aligned reads, R, the likelihood generating the candidate contig by our model within the

interval [a, b) is

L(YjR) = Pr(RjY)

=
Yb - a

i = a

Pr(X = ki)Pr(D = (di
h‚ di

i:d‚ di
m))

(3)

Taking Equations 1 and 2 to Equation 3, we can get the following likelihood

L(YjR) =
Yb - a

i = a

kki e - k

ki!

k!

di
h!di

i:d!di
m!

p
di

h

h p
di

i:d

i:d pdi
m

m (4)

Suppose we get an alignment t of two contigs tu,tv, which will be discussed in the next section, two

likelihoods can be calculated. The first is before merging, Lb, and the second is after merging, Lm, assuming

that the range of alignment covering on Ti is [a, b), and the corresponding range on Tj is [c, d) with a length

c on the alignment with all the inserted and deleted bases. Lb and Lm are defined as follows:

Lb = L(YjRtu) · L(YjRtv)

=
Yb - a

i = a

Pois(ktu)Multi(Di‚ ph‚ pi:d‚ pm)

·
Yd - c

i = c

Pois(ktv)Multi(Di‚ ph‚ pi:d‚ pm) (5)

Lm = L(YjRt)

=
Yc

i = 0

Pois(kt)Multi(Di‚ ph‚ pi:d‚ pm) (6)

Based on Equations 5 and 6, we merge the two candidate contigs if Lb < Lm, otherwise we keep them

unchanged.

DIME 165

2.4.2. Consensus sequence and chimeric reads. For the second question, we treat the process of

sequencing as a multinomial distribution with three parameters ph, pi.d, pm for the probabilities of hit, insertion

and deletion, and mismatch per base. Since there are four letters for one base, we set the base on consensus to

one letter each time and compute the probability using Equation 2. Note that if there is a deletion happening

on the consensus, we insert a special letter ‘‘ - ’’ as empty. Therefore, we can get five probabilities for five

hypotheses, and the letter with the highest probability will be the final symbol on the consensus.

For the third question about removing the chimeric reads, we align two ends of contigs in four different states:

both with end reads that are placed on the ends of the contigs, only the first contig with the end read, only the

second contig with the end read, and both without end reads. Thus, only the state with Lb < Lm can be further

merged for two candidate contigs.

2.4.3. Mapreduce implementation for merging. In phase IV, we first use three MapReduce tasks as

shown in phase I to determine a candidate list, which consists of contig pairs. The difference is that we use

contigs instead of reads. A merging process is executed sequentially to calculate the likelihoods based on

our generative probabilistic model, and refine each base on the consensus using the multinomial distri-

bution. The procedure of merging is given in Algorithm 3. More details about Algorithm 3 can be found in

the Supplementary Material.

3. RESULTS

We compared the performances of two cloud implementations of DIME (DIME-cap3 and DIME-

genovo) to four popular assembly tools—Cap3 (Huang and Madan, 1999), Genovo (Laserson et al., 2010),

MetaVelvet (Namiki et al., 2011), SOAPdenovo (Luo et al., 2012)—and SPAdes (Nurk et al., 2013) on

both simulated and real metagenomic datasets from the 454 platform. Following the measurement em-

ployed in Salzberg et al. (2012), seven metrics were used to assess the quality of reported contigs: assembly

size, number of contigs (Num), longest length of contigs (LLC), N50, CorrN50, unaligned references bases

(URB), and unaligned assembly bases (UAB) for simulated datasets. For real dataset, in addition to LLC

and N50, we used another metric, BLAST-score-per-base (Bspb), to evaluate the performance. We also

illustrated the scalability of our novel assembly framework in four aspects, including the running time

comparison of Cap3, Genovo, DIME-cap3, and DIME-genovo; running time analysis for four phases of

DIME; memory usage; and the speed-up of DIME. Note that MetaVelvet and Genovo are specially

designed for metagemomic assembly. MetaVelvet, SOAPdenovo, and SPAdes are specialized for Illumina

Genome-Analyzer platform, but they also support 454 reads. According to the suggestions of a recent

article (Treangen et al., 2013; Nurk et al., 2013), SOAPdenovo and SPAdes can do very well for meta-

genomic datasets. We dropped Newbler, the 454 Life Science de novo assembler, and IDBA-UD, because

Genovo and SPAdes claimed to gain higher quality results compared to them (Laserson et al., 2010;

Nurk et al., 2013). More details on the settings of parameters for these four tools can be found in the

Supplementary Material.

3.1. Evaluation metrics

As done in previous studies (Laserson et al., 2010; Qin, 2009), we evaluated only contigs longer than

500 bp unless otherwise stated. The N50 value x is the size of the smallest contig such that 50% of the

genome is covered by contigs of length ‡ x. The CorrN50 value is the N50 for the corrected contigs.

Following the procedure in Salzberg et al. (2012), we aligned the reported contigs to the reference

genomes by BLAST (Altschul et al., 1990), and corrected the contigs by breaking them at every misjoin

and at every indel longer than five bases. URB are the reference sequences covered by simulated reads that

do not align to any contig. UAB are contig sequences that do not align to the reference genome (Salzberg

et al., 2012). Therefore, for URB and UAB, the lower the value, the better the quality of assembly. Note

that only one aligned interval with the highest bit score (similarity ‡ 95%) can be counted as a valid

matching even if one contig has multiple matchings on the references, or the reference has more than one

contig aligning to it. Assembly size, URB, and UAB are expressed as a percentage of the reference

sequence size or assembled contigs size. We declared in the introduction that a common bottleneck of

available tools is hard to seek a good trade-off between the noise of the resulting contigs and the gain in

166 GUO ET AL.

sequence length for better annotation. So we define another metric, F-accuracy, which can be interpreted

as a weighted average of URB and UAB:

F = 1 -
URB + UAB

2
(7)

And the higher value of F-accuracy means the better coverage on both reference sequences and reported

contigs.

For the real metagenomic sequencing datasets, since we do not have the actual list of genomes, corrN50,

MPR, URB, and UAB are unavailable. In this case, we adopted the same indicator in Laserson et al. (2010),

Blast-score-per-base (Bspb), to estimate the relationship between the quality and the number of sequence

bases that the contigs cover. For Bspb, we used the GenBank’s online tool to BLAST the reported contigs

with default parameters, except for allowing 1000 hits. We then collected the BLAST hits to compile a pool of

genomes that best represents the consensus of the dataset. We threw away the BLAST hits if the genome was

not in the pool. The quality of the remaining BLAST hits was accessed by Bspb, which was calculated as the

BLAST alignment score divided by the length of the aligned interval. We were then able to show the quantity

vs. the quality of the pool bases covered by the result contigs by plotting a curve with varied align threshold of

Bspb. If a contig had more than one BLAST hit on the same area of the genome, we counted it only once and

used the highest Bspb value for those bases. More details about Bspb can be found in Laserson et al. (2010).

3.2. Experimental setting

We deployed our cloud-based de novo assembler on a 10-node cluster. Each node came with 16 GB main

memory and quad-core Opteron(tm) processor 2376 under 2.3 Ghz. The cluster shared a 625 GB secondary

storage that was under the control of HDFS. The typical Hadoop configurations were left without any changes,

including the default 64 MB block size, 3 HDFS replication factor, and one master node for controlling. For the

parameters used by DIME, we fixed l-mer length g = 12 and threshold of frequency b = 7, and assigned the

number of clusters N = 30 for simulated and real datasets, except for the E. coli and Tilapia1 datasets at N = 10.

3.3. Data simulation

We took the existing program, MetaSim (Richter et al. 2008), to artificially construct four metagenome

sequence read datasets with different complexity. According to the simulation conducted in Pignatelli and

Moya (2011), we selected 112 different species from the NCBI bacteria genome library as the genome pool.

The first dataset, named LC, had only two dominant organisms, which are strongly taxonomically related.

The second dataset, named MC, had a few dominant organisms. The third dataset, HC, did not have a

dominant organism; that is, all the species had equal weight to obtain a similar coverage rate. Since we

aimed for a large metagenomic sequencing project using 454 platform, we resampled the HC dataset with

the coverage of each genome 10 times higher than in the original dataset and named it the HCh dataset. The

statistic summary of the four datasets are shown in Table 1. The individual composition of each dataset and

the error profile of MetaSim are presented in the Supplementary Material.

3.4. Clustering experiment on simulated datasets

The general purpose of de novo sequence assembly is to recover consensus correctly. In DIME, the

clustering process is one of the most important parts to achieve high quality assembly. So we defined a metric,

Table 1. Summary of the Simulated Datasets Used in This Study

Dataset Number of species Number of base pairs (Mb) Number of reads

LC 112 89.5 220,288

MC 112 92.8 220,288

HC 112 91.2 220,288

HCh 112 1,077.2 2,202,880

LC, dataset with low complexity of organisms; MC, dataset with medium complexity of organisms; HC, dataset with

high complexity of organisms; HCh, dataset created by resampling the HC dataset with the coverage of each genome

ten times higher than in the original dataset.

DIME 167

clustering accuracy, to evaluate its performance. For the simulated datasets, each sequenced read came with

its position on the original DNA sequences. If two reads share at least j bases on the same genome and the

same area, we consider them in the same ground-truth contig. In reality, assemblers can not align two reads

together with insufficient overlap, so we set j into three levels, 20, 30, and 40 bases. If most of the reads from

the ground-truth contig t were grouped in cluster c, we then assigned t to c, and the reads sharing between the

cluster and the contig, Rc X Rt, was denoted as Rt
0. The clustering accuracy is defined as follows

Acc =
XjT j

i = 1

jR0tj (8)

Based on this definition, we used WEC and clustering to partition the read set into 5, 10, 20, 30, and 60

groups. The performance of clustering is shown in Table 2. In the worst case scenario that the read set is

split into 60 groups for the LC dataset, the accuracy of DIME can still reach up to 94%. From the

perspective of clustering accuracy, WEC and clustering procedures can highly recover the memberships of

reads in terms of rough partition. In the following experiments, we clustered the reads set into 30 groups

unless otherwise stated.

3.5. Experiment on a single sequence dataset

Before the evaluation of the performances on metagenomic datasets, we benchmarked DIME on a single

sequence dataset, E. coli, whose reference strand can be accessed from the NCBI short read archive. This

dataset was sequenced by the 454 Titanium, and the total length of the genome of E. coli was 4.6 Mb, which

contained around 110 k reads with an average length of 351 bp. In our experiment, we clustered the E. coli

Table 2. Clustering Accuracy on Simulated Datasets

Length of minimum overlap2

Dataset # Clusters1 20 30 40

LC 5 97.4% 98.2% 98.8%

10 96.2% 97.2% 97.9%

20 95.7% 96.7% 97.8%

30 95.3% 96.4% 97.2%

60 94.6% 95.8% 96.6%

MC 5 98.7% 98.9% 99.2%

10 98.3% 98.6% 99.0%

20 97.4% 97.7% 98.1%

30 97.3% 97.6% 98.0%

60 97.3% 97.6% 98.0%

HC 5 100.0% 100.0% 100.0%

10 100.0% 100.0% 100.0%

20 99.9% 100.0% 100.0%

30 99.9% 100.0% 100.0%

60 99.9% 100.0% 100.0%

HCh 5 99.0% 99.4% 99.6%

10 98.9% 99.3% 99.5%

20 98.6% 99.1% 99.4%

30 98.5% 99.0% 99.4%

60 98.0% 98.7% 99.1%

1We manually set the output number of clusters to 5, 10, 20, 30, and 60.
2If most of reads from the ground-truth contig t were grouped in cluster c, we then assigned t to c, and the reads

sharing between the cluster and the contig, Rc X Rt, was denoted as R0t. The clustering accuracy is defined as follows:

Acc =
PjTj

i = 1 jR0tj
LC, dataset with low complexity of organisms; MC, dataset with medium complexity of organisms; HC,

dataset with high complexity of organisms; HCh, dataset created by resampling the HC dataset with the

coverage of each genome 10 times higher than in the original dataset.

168 GUO ET AL.

dataset into 10 groups since its size was relatively small. For URB and UAB, it is worth it to note that only

one matching interval with the highest bit score (similarity ‡ 95%) can be counted as a valid matching if

one contig has multiple alignments on the reference. As shown in Table 3, DIME-cap3 and DIME-genovo

outperformed Cap3, Genovo, and SPAdes on URB and UAB, although the last two produced higher N50 or

corrected N50. Higher values of URB and UAB strongly means more generated contigs are mistakenly

constructed. Since the dataset and the genome of E. coli is small, our methods gained a slightly lower N50

and corrected N50 value by comparing to Cap3 and Genovo. However, DIME, Cap3, and Genovo gained

higher value on both by comparing to MetaVelvet and SOAPdenovo, which means that de Bruijn graph–

based methods may be not quite suitable to handle datasets by 454 platform.

3.6. Experiments on multispecies simulated datasets

We also tested DIME and five other tools on four simulation datasets to assess the performance. The

summary of the statistics of reported contigs are listed in Table 4. An overview of the results indicates that

DIME-genovo gained relatively higher corrected N50 on most cases except for the dataset MC. When the

dataset became larger, de Bruijn graph–based methods, MetaVelvet and SOAPdenovo, did not perform as

well as the overlap-layout-consensus methods. DIME and cap3 all obtained more than 700 on corrected N50,

while MetaVelvet and SOAPdenovo stayed around 640. Another clear conclusion is that DIME recovered

more bases than the other five tools. Although we set only one alignment to be counted when aligning to the

reference to calculate unaligned reference bases (URB), DIME can still recover more than 90% of the

reference for the dataset LC and more than 80% for the dataset HCh. In this respect, MetaVelvet, SOAP-

denovo, and SPAdes only reported limited contigs that can be annotated on the reference sequence, although

SPAdes did significantly improve the qualities of assemblies. For example, SPAdes only lost around 30% of

the reference genomes for LC and HCh; Metavelvet lost more than 80% of the reference genomes for all four

datasets, and SOAPdenovo lost more than 70% for all four datasets. In order to take both URB and UAB into

consideration, we defined the F-accuracy in section 3.1. A higher value of F-accuracy indicates a better trade-

off between the noise of assembled contigs and a better annotation. Our methods were much better than any

other four assemblers in terms of F-accuracy with at most 40% improvement.

When restricting the comparisons between DIME, Cap3, and Genovo, we can have some other inter-

esting findings. With the divide, conquer, and merge strategies provided by DIME, we have more bases

recovered and generate contigs with less noise. For instance, URB and UAB of Cap3 for LC were 50.3%

and 25.2%, respectively, while DIME-cap3 lowered the former to 26.8% and the latter to 23.4% for the

same dataset, and it also achieved higher corrected N50. It is also the same scenario for Genovo, where

DIME-genovo decreased the URB from 11.1% to 9.5% and reduced the UAB from 32.3% to 29.2%.

Scrutinizing the results of HCh, we found that Cap3 only assembled 5% of reference genomes, but DIME-

cap3 can obtain 66.3% of the reference sequence. One explanation is that Cap3 is not suitable to assemble

Table 3. Comparing the Methods on a Single Sequencing Task

E. coli

Assembler

Assembly

size (%) Num1
LLC2

(bp)

N501

(bp)

CorrN502

(bp)

URB4

(%)

UAB5

(%) F-accuracy3

DIME-cap3 105.7 822 43,534 9,731 8,600 19.9 25.4 0.77

DIME-genovo 101.0 408 111,514 24,546 12,514 33.4 35.8 0.66

Cap3 107.3 609 49,632 14,291 9,508 24.2 28.1 0.74

Genovo 105.5 90 203,303 95,468 24,009 58.7 59.2 0.42

MetaVelvet 95.6 1,452 20,708 4,553 4,065 18.6 14.8 0.83

SOAPdenovo 99.2 2,536 8,979 2,399 2,282 16.6 16.1 0.84

SPAdes 101.0 112 279,680 93,032 26,067 57.9 58.3 0.42

Only contigs of length ‡ 500 contributed to the statistics.
1N50: the largest value y such that at least 50% of the genome is covered by contigs of length y.
2CorrN50: The CorrN50 value is the N50 for the corrected contigs. We aligned the reported contigs to the reference genomes by

BLAST and corrected the contigs by breaking them at every misjoin and at every indel longer than 5 bases.
3F-accuracy: interpreted as a weighted average of URB and UAB, F = 1 - URB + UAB

2
. The higher F-accuracy, the better quality of results.

Num, number of contigs generated by assemblers; LLC, longest length of contigs; URB: unaligned reference bases; UAB, unaligned

assembly bases.

DIME 169

large sequencing datasets. By examining the unaligned reads, we found that most of them, which can be

aligned in our method, were treated as singlets by cap3. Another explanation is that our generative

probabilistic model used in the global merging process can successfully identify two adjacent contigs and

combine them together. In our experiments, Genovo used up all the memory for the dataset HCh on a

computing node with 32 GB memory and was finally killed by the system.

3.7. Experiments on real metagenomic datasets

We also conducted comparisons on three datasets from real metagenomic projects with different sizes of

read sets (Table 5). The first dataset, named Tilapia1 (SRR001069), is sampled from the gut contents of

hybrid striped bass containing microbial and viral communities. The number of total reads in this sample is

about 50k with 5.7 Mb base pairs. The second real dataset is from the hot springs containing microbial

communities with the name NTS (Vos et al., 2012). NTS is sequenced from Los Alamos National Laboratory.

The largest real dataset is the third one labeled SRR072232 from NCBI. SRR072232 comes from the HMP

Table 4. Summary of the Assemblies of Four Simulated Datasets

LC

Assembler

Assembly

size (%) Num

LLC

(bp)

N50

(bp)

CorrN50

(bp)

URB

(%)

UAB

(%) F-accuracy

DIME-cap3 95.6 18437 3795 721 720 26.8 23.4 0.75

DIME-genovo 127.9 19406 42360 810 809 9.5 29.2 0.81

Cap3 66.3 13568 2588 688 687 50.3 25.2 0.62

Genovo 1.32 20317 28455 810 805 11.1 32.3 0.78

MetaVelvet 12.2 2684 1810 658 656 88.7 7.6 0.52

SOAPdenovo 17.1 3620 1380 721 718 84.7 10.8 0.52

SPAdes 67.8 5093 3795 1014 918 38.5 9.3 0.76

MC

DIME-cap3 58.6 12960 2290 671 669 46.1 8.0 0.73

DIME-genovo 150.0 30704 5451 725 718 20.7 47.4 0.66

Cap3 25.2 5665 2842 660 658 77.1 8.8 0.57

Genovo 157.7 32006 4211 728 717 24.6 52.2 0.62

MetaVelvet 17.2 3878 1356 664 662 84.4 9.3 0.53

SOAPdenovo 21.7 5375 1667 707 700 78.5 1.2 0.60

SPAdes 55.6 7484 5522 847 747 63.1 33.6 0.52

HC

DIME-cap3 57.3 11336 2338 676 675 45.3 4.5 0.75

DIME-genovo 163.7 30742 4247 711 704 15.2 48.2 0.68

Cap3 24.5 4901 1716 669 667 77.3 7.7 0.57

Genovo 171.4 31847 4541 717 703 16.0 51.0 0.66

MetaVelvet 13.2 2684 1810 658 656 87.7 7.6 0.52

SOAPdenovo 29.7 5612 1312 709 706 73.6 11.4 0.57

SPAdes 45.9 5863 5425 898 805 68.8 32.1 0.49

HCh

DIME-cap3 81.5 362658 5096 735 733 33.7 18.6 0.74

DIME-genovo 98.8 308472 36761 1052 1045 15.9 14.9 0.85

Cap3 5.0 22852 4169 718 717 95.6 11.1 0.47

Genovo NA NA NA NA NA NA NA NA

MetaVelvet 10.6 54678 2526 637 637 89.8 4.8 0.53

SOAPdenovo 26.1 137401 1603 635 634 76.7 11.2 0.56

SPAdes 75.5 142296 37059 1200 1103 33.9 12.4 0.77

Only contigs of length ‡ 500 contributed to the statistics.

The value in bold indicates that the assembler obtained the highest F-accuracy.

170 GUO ET AL.

Mock Community staggered sample by 454 sequencing platform, which is one of the largest real metage-

nomic sequence datasets we can freely download thus far. Since we do not have the true reference genome,

we use the total length of contigs (TL) instead of the percentage indicator for the assembly size.

The statistical analysis of results for seven programs on three real metagenomic datasets are shown in

Table 6. Similar to the results in the simulation datasets, DIME-cap3 and DIME-genovo yielded compa-

rable assembly on the small dataset—that is, Tilapia1—but both of our methods aligned more reads in the

contigs and gained longer sequence compared to MetaVelvet and SOAPdenovo. Since there were around

600k reads in NTS and 1,200k reads in SRR072232, Genovo failed again by taking too much memory. For

N50, DIME won much higher value for three datasets as compared to MetaVelvet and SOAPdenovo.

To obtain a comprehensive comparison on real datasets, we adopted the same evaluation metric utilized

in Laserson et al. (2010), that is, BLAST-score-per-base (Bspb). We followed the same procedures in

calculating Bspb, and also the nonsignificant BLAST hit whose E-value was less than 10 - 9 was ignored.

The highest Bspb can reach up to 1.88 in our experiments. Based on Bspb, the BLAST profile can be

Table 5. Summary of the Simulated and Real Datasets Used in This Study

Dataset1 Number of base pairs (Mb) Number of reads

Tilapia1 5.7 50,211

NTS 254.5 683,082

SRR072232 653.1 1,225,169

1Tilapia1 (SRR001069) is sampled from the gut contents of hybrid striped bass containing

microbial and viral communities. NTS is sequenced from Los Alamos National Laboratory.

SRR072232 comes from HMP Mock Community staggered sample by 454 sequencing platform.

Table 6. Summary of the Assembly Statistics of the Real Datasets

Tilapia1

Assembler TL (kb)1 Num2 LLC (bp)3 N50 (bp)4

DIME-cap3 48.7 51 1,896 1,017

DIME-genovo 53.6 59 3,767 939

Cap3 51.7 56 2,856 1,032

Genovo 56.3 49 6,510 1,062

MetaVelvet 1.0 2 541 541

SOAPdenovo 1.5 2 941 941

SPAdes 50.0 32 6,455 2,168

NTS

DIME-cap3 25,054.6 32,032 4,284 773

DIME-genovo 70,998.3 108,765 9,617 558

Cap3 12,250.7 16,859 2,399 731

Genovo NA NA NA NA

MetaVelvet 4,809.8 7,542 1,560 627

SOAPdenovo 801.2 1,438 1,014 553

SPAdes 31,973.0 1,070 11,531 2,929

SRR072232

DIME-cap3 59,664.2 60,399 10,142 1,012

DIME-genovo 63,752.6 57,122 45,359 1,155

Cap3 34,434.7 31,726 8,293 1,112

Genovo NA NA NA NA

MetaVelvet 8,357.7 13,369 2,573 603

SOAPdenovo 36,167.5 53,190 3,024 648

SPAdes 18,252.6 5,883 210,238 7,700

TL, total length of contigs; Num, number of contigs. LLC, longest length of contigs. N50, the N50

value x is the size of the smallest contig such that 50% of the genome is covered by contigs of length ‡ x.

DIME 171

F
IG

.
3

.
B

L
A

S
T

-s
co

re
-p

er
-b

as
e

p
ro

fi
le

s
fo

r
th

re
e

re
al

d
at

as
et

s.
(a

)
B

L
A

S
T

p
ro

fi
le

o
n

T
il

ap
ia

1
an

d
(b

)
B

L
A

S
T

p
ro

fi
le

o
n

N
T

S
an

d
(c

)
B

L
A

S
T

p
ro

fi
le

o
n

S
R

R
0

7
2

2
3

2
fo

r
o

u
r

tw
o

m
et

h
o

d
s

(r
ed

an
d

m
ag

en
ta

so
li

d
li

n
es

),
g

en
o

v
o

(c
y

an
d

o
t

li
n

e)
,

ca
p

3
(b

lu
e

d
o

t
li

n
e)

,
an

d
m

et
av

el
v

et
(g

re
en

d
o

t
li

n
e)

.

172

plotted by moving the threshold of Bspb from low to high. As shown in Figure 3, it is obvious that our

methods cover more base pairs than Cap3, Genovo, MetaVelvet, SOAPdenovo, and SPAdes, along with

decreasing the align threshold for NTS and SRR072232. Similar to the results on simulated datasets,

although SPAdes had higher values for LLC and N50, Bspb values of SPAdes were not as good as others.

This is because lots of contigs were incorrectly assembled. For Tilapia1, all the methods cover similar bases

at the same align threshold, except MetaVelvet, which had less base hits when the align threshold was low.

3.8. Scalability

From a practical point of view, a key issue of metagnomic sequence assembly is computational effi-

ciency. In this section, we evaluate the performances of DIME on Hadoop cloud platform with respect to its

speed-up. To measure the speed-up, we first kept the size of datasets constant and increased the number of

A

B

FIG. 4. Speed-up. Computing nodes

are sampled from 1 to 10 with 1 as

interval. The red, blue, and green

curves show the speed-up of LC,

NTS, and HCh. The black line is the

linear speed-up.

DIME 173

nodes (computing cores) in the cloud system, and then tried three different size settings considering the

small, medium, and large datasets. The speed-up is defined by the following formula (Xu, et al., 2002):

Speedup (p) =
T1

Tp
(9)

where p is the number of nodes (computers), T1 is the execution time on one node, and Tp is the execution

time on p nodes. The ideal parallel method is expected to demonstrate a linear speed-up: a system with p

computing nodes generates a speed-up of p. However, linear speed-up is only a theoretical predication,

because the speed-up is always curved by either the inevitable failures of nodes, or communication cost, or

both. In addition, the communication cost is increasing when we use more computing nodes in cluster. As

shown in Figure 4, our two methods achieved nearly linear speed-up for two datasets, NTS and HCh,

although two curves for the LC are slightly away from the theoretical linear line. Comparing with DIME-

cap3 and DIME-Genovo, we can find that the performance of the latter is slightly better than the former. It

is because Genovo tends to require more time to complete the assembly than Cap3 for the same reads set.

By taking a look at the run-time of DIME on our 10-node cluster (Table 7), we found that WEC, local-

assembling, and merging are the most time-consuming phases. And this exactly explains the theoretical

speed-up achieved by DIME, since these three phases nearly perfectly fit into the MapReduce model.

One may be interested in how much acceleration has been achieved by DIME compared to the original

Cap3 and Genovo. The running time comparison among them is shown in Table 8. There is no doubt that

DIME gains significant acceleration for both Cap3 and Genovo. For example, Genovo needs 141 minutes to

handle 110k reads for E. coli, but it becomes unacceptable to use Genovo to assemble LC, MC, and HC

since it requires nearly 3,000 min. Using DIME-genovo, we only need half an hour to do the same jobs. The

acceleration of DIME for Cap3 is not as much as what we do for Genovo. This can be explained by the fact

that Cap3 itself is efficient enough to complete the assembly for a moderate read set.

Table 7. Run Time in Seconds for Different Stages of DIME Executed

on Our 10 Node Hadoop Cluster

Stages LC (89.5 Mb) (small) NTS (254.5 Mb) (medium) HCh (1077.2 Mb) (large)

WEC 259 2,078 6,406

Clustering 199 228 398

Local-cap3 90 156 860

Local-genovo 1,029 5,898 34,422

Merging-cap3 238 448 1,125

Merging-genovo 303 1,419 4,123

Phase 1: WEC (weight-edge construction); phase 2: clustering; phase 3: local assembling with two versions, local-

cap3 and local-genovo modified from Cap3 and genovo; phase 4: merge the candidate contigs from local-cap3 and

local-genovo, respectively.

Table 8. Run Time in Minutes for Eight Datasets by Using Cap3, Genovo,

and Two DIME Methods

DIME-cap3 Cap3 DIME-genovo Genovo

E. coli 17 42 17 141

LC 13 28 30 2,702

MC 13 38 35 2,923

HC 7 36 25 3,170

HCh 146 418 756 NA

Tilapia1 6 12 5 5

NTS 49 113 160 NA

SRR072232 229 681 1,955 NA

DIME-cap3 and DIME-genovo were running on a 10-node Haddoop cluster. Cap3, Genovo,

MetaVelvet, SOAPdenovo, and SPAdes were running on a single computing node.

174 GUO ET AL.

We now give a glance at the memory usage for all six assemblers (Table 9). Note that DIME-cap3 and

DIME-genovo were running on a 10-node Haddoop cluster with 16 GB memory on each computing node. So

we sampled each node and took the maximum peak value along with their executions from the cluster. The

other tools were tested on a single node with memory up to 64 GB. To our knowledge, Genovo cannot pass the

tests on NTS and HCh, because it soaked up all 64 GB memory. Table 9 also suggests that if a powerful server

with enough memory is available, SOAPdenovo and Cap3 can be two options; otherwise, by setting up a

cluster of ordinary computing nodes and using DIME, we can gain better results within acceptable time frames.

4. DISCUSSION

4.1. Relationship between our method and De Bruijn graph methods

The assembly of NGS data is a challenging computational problem for large metagenomic sequencing

projects. To speed up this process, many methods (Flicek and Birney, 2009; Schatz et al., 2010; Miller et al.,

2010; Compeau et al., 2011) have been proposed to construct De Bruijn graph (DBG) and infer the whole

genome sequence from the DBG. The DBG is constructed from l-mers by chopping reads into a set of much

shorter fragments with a fixed length. An explicit advance of DBG methods is that there is no need to store

individual reads and the overlapping information. However, the l-mer graph constructed from real sequencing

data will become extremely large with increasing l caused by sequencing errors. In addition, nonuniformity or

low coverage will lead a dead-end short path in the graph to make the gap problem even worse. Our novel

framework and implementations do not suffer these issues. It uses a weight-edge construction algorithm to

generate overlapping information, takes balanced graph partition algorithm to cluster reads in a very fast way

with high accuracy, and finally merge and refine the resulting contigs based on a generative probabilistic model.

4.2. Relationship between our method and khmer

Pell et al. (2012) proposed a graph representation based on Bloom filter to decrease the memory usage of

DBG-based methods. A partitioning of the assembly graphs is implemented in the tool khmer. As they

claimed, the assembly results from partitioned dataset and intact dataset are identical by using ABySS

(Simpson et al., 2009). Therefore, we believe that khmer does not aim to improve the quality of the

assembly results but to find a memory-efficient solution for DBG-based methods. In contrast, the goal of

our novel framework, DIME, is to seek a better trade-off between the noise of the resulting contigs and the

gain in sequence length for better annotation. From recent literature (Salzberg et al., 2012), SOAPdenovo

was proven to gain better assembly results than ABySS and Velvet, so we dropped khmer and selected

SOAPdenovo as a fair comparison in our experiments.

5. CONCLUSION

Sequence assembly of large-scale environmental samples is considered a difficult and challenging

problem in metagenomics. Our work is motivated by the accuracy and computational issues when existing

Table 9. Peak Memory Consumption in Gigabyte of Six Assemblers

LC (89.5 Mb) (small) NTS (254.5 Mb) (medium) HCh (1077.2 Mb) (large)

DIME-cap3 2.7 3.3 6.9

DIME-genovo 2.7 3.6 10.2

Cap3 2.8 7.6 28.5

Genovo 20.7 NA NA

MetaVelvet 2.7 7.6 24.9

SOAPdenovo 8.7 15.8 45.0

SPAdes 4.0 9.0 26.0

DIME-cap3 and DIME-genovo were running on a 10-node Haddoop cluster with 16 GB memory on each computing

node, and the peak memory consumption was recorded for just one singe node. Cap3, Genovo, MetaVelvet,

SOAPdenovo, and SPAdes were running on a single computing node with memory up to 64 GB.

DIME 175

methods are applied to large-scale metagenomics projects sequenced by the 454 platform, especially for the

dataset with a range of sequence abundances. To address the limitation and promote both accuracy and

efficiency, we develop a novel metagenomic sequence assembly framework, DIME, with four phases:

construction of a weight graph representing the chances that reads are sequenced from the same regions of

genomes, clustering the graph using a balanced graph partition algorithm to split reads set, local execution

of popular assembly programs, and global merging process to continue combining the contigs, eliminating

chimeric reads, and refining consensus sequences using a generative probabilistic model. We tested DIME

with two implementations by taking the advantage of the MapReduce programming model against five

other popular short read assembly programs—Cap3, Genovo, MetaVelvet, SOAPdenovo, and SPAdes—on

four synthetic and three real metagenomic sequence datasets with various read sizes from fifty thousand to

a couple million. The experimental results demonstrated that our methods highly improved the sequence

assembly results as shown in the experiments on multiple simulated and real metagenomics datasets with

nearly theoretical speed-up on the Hadoop cloud cluster environment. Therefore, we believe DIME is

suitable for large metagenomic projects with diminishing coverage.

There are limitations of DIME with respect to datasets. In this work, we focus mainly on the datasets

generated by the 454 platform, which has a longer average length of reads and less reads than the datasets

generated by other next generation sequencing platforms like Illumina. Since the number of reads in

Illumina datasets can easily reach up to a billion in size, DIME may need some minor modifications to

solve speed and accuracy problems. We will investigate this issue and extend DIME in future work.

ACKNOWLEDGMENTS

This study is supported by the Molecular Basis of Disease (MBD) program at Georgia State University.

This work is also supported in part by the National Natural Science Foundation of China under grant

numbers 61379108 and 61232001.

AUTHOR DISCLOSURE STATEMENT

The authors declare that no competing financial interests exist.

REFERENCES

Altschul, S.F., Gish, W., Miller, W., et al. 1990. Basic local alignment search tool. J. Mol. biol. 215, 403–410.

Compeau, P.E.C., Pevzner, P.A., and Tesler, G. 2011. How to apply de bruijn graphs to genome assembly. Nat. Biotech.

29, 987–991.

Flicek, P., and Birney, E. 2009. Sense from sequence reads: methods for alignment and assembly. Nat. Meth. 6, 1548–7091.

Gill, S.R., Pop, M., DeBoy, R.T., 2006. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359.

Grillo, G., Attimonelli, M., Liuni, S., and Pesole, G. 1996. Cleanup: a fast computer program for removing re-

dundancies from nucleotide sequence databases. Computer Applications in the Biosciences: CABIOS 12, 1–8.

Guo, X., Ding, X., Meng, Y., and Pan, Y. 2013. Cloud computing for de novo metagenomic sequence assembly, 185–

198. In Bioinformatics Research and Applications Springer, New York.

He, Y., Zhang, Z., Peng, X., et al. 2013. De novo assembly methods for next generation sequencing data. Tsinghua

Science and Technology 18, 500–514.

Huang, X., and Madan, A. 1999. Cap3: A dna sequence assembly program. Genome Res. 9, 868–877.

Karypis, G., and Kumar, V. 1999. Parallel multilevel series k-way partitioning scheme for irregular graphs. SIAM

Review 41, 278–300.

Khachatryan, Z.A., Ktsoyan, Z.A., Manukyan, G.P., et al. Predominant role of host genetics in controlling the com-

position of gut microbiota. PLoS ONE 3, e3064+ .

Lander, E.S., and Waterman, M.S. 1988. Genomic mapping by fingerprinting random clones: a mathematical analysis.

Genomics 2, 231–239.

Langmead, B., Schatz, M.C., Lin, J., et al. Searching for SNPs with cloud computing. Genome Biol. 10, R134.

Laserson, J., Jojic, V., and Koller, D. 2010. Genovo: De novo assembly for metagenomes, 341–356. In Berger, B. ed.,

Research in Computational Molecular Biology. Springer Berlin/Heidelberg.

176 GUO ET AL.

Lasken, R., and Stockwell, T. 2007. Mechanism of chimera formation during the multiple displacement amplification

reaction. BMC Biotechnology 7, 19.

Lin, G. N., Cai, Z., Lin, G., 2009. Comphy: prokaryotic composite distance phylogenies inferred from whole-genome

gene sets. BMC Bioinformatics 10, S5.

Luo, R., Liu, B., Xie, Y., et al. 2012. Soapdenovo2: an empirically improved memory-efficient short-read de novo

assembler. Gigascience 1, 18.

Margulies, M., Egholm, M., Altman, W.E., et al.2005. Genome sequencing in microfabricated high-density picolitre

reactors. Nature, 437(7057), 376–380.

Meyer, E., Aglyamova, G.V., Wang, S., et al. 2009. Sequencing and de novo analysis of a coral larval transcriptome

using 454 gsflx. BMC Genomics 10, 219.

Meyer, F., Paarmann, D., D’Souza, M., et al. 2008. The metagenomics rast server—a public resource for the automatic

phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386.

Miller, J.R., Koren, S., and Sutton, G. 2010. Assembly algorithms for next-generation sequencing data. Genomics 95,

315–327.

Namiki, T., Hachiya, T., Tanaka, H., and Sakakibara, Y. (2011). Metavelvet: an extension of velvet assembler to de

novo metagenome assembly from short sequence reads, 116–124. In Proceedings of the 2nd ACM Conference on

Bioinformatics, Computational Biology and Biomedicine. ACM, New York.

Nguyen, K.D. 2012, dec. On the edge of web-based multiple sequence alignment services. Tsinghua Science and

Technology 17, 629–637.

Nurk, S., Bankevich, A., Antipov, D., et al. 2013. Assembling single-cell genomes and mini-metagenomes from

chimeric MDA products. J. Comp. Biol. 20, 714–737.

Pell, J., Hintze, A., Canino-Koning, R., et al. 2012. Scaling metagenome sequence assembly with probabilistic de

Bruijn graphs. Proceedings of the National Academy of Sciences 109, 13272–13277.

Peng, Y., Leung, H.C.M., Yiu, S.M., and Chin, F.Y.L. 2011. Meta-idba: a de novo assembler for metagenomic data.

Bioinformatics 27, i94–i101.

Pignatelli, M., and Moya, A. 2011. Evaluating the fidelity of de novo short read metagenomic assembly using simulated

data. PLoS ONE 6, e19984+ .

Qin, J. 2009. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–65.

Richter, D.C., Ott, F., Auch, A.F., et al. 2008. MetaSimA sequencing simulator for genomics and metagenomics. PLoS

ONE 3, e3373+ .

Salzberg, S.L., Phillippy, A.M., Zimin, A., et al. 2012. Gage: A critical evaluation of genome assemblies and assembly

algorithms. Gen. Res., 22, 557–567.

Schatz, M., Sommer, D., Kelley, D., and Pop, M. 2010. Contrail: Assembly of large genomes using cloud computing. In

Cshl Biology of Genomes Conference.

Schatz, M.C., Delcher, A.L., and Salzberg, S. L. 2010. Assembly of large genomes using second-generation se-

quencing. Gen. Res. 20, 1165–1173.

Simpson, J.T., Wong, K., Jackman, S.D., et al. 2009. Abyss: a parallel assembler for short read sequence data. Gen. res.

19, 1117–1123.

Smith, T.F., and Waterman, M.S. 1981. Identification of common molecular subsequences. J Mol. Biol. 147, 195–197.

Treangen, T.J., Koren, S., Sommer, D.D., et al. 2013. Metamos: a modular and open source metagenomic assembly and

analysis pipeline. Genome Biol. 14, R2.

Turnbaugh, P.J. 2009. A core gut microbiome in obese and lean twins. Nature 457, 480–484.

Venter, J.C., Remington, K., Heidelberg, J.F., et al. 2004. Environmental genome shotgun sequencing of the sargasso

sea. Science 304, 66–74.

Vos, M., Quince, C., Pijl, A.S., et al. 2012. A comparison of rpob and 16s rRNA as markers in pyrosequencing studies

of bacterial diversity. PLoS One 7, e30600.

Wu, X., Cai, Z., Wan, X.-F., et al. 2007. Nucleotide composition string selection in hiv-1 subtyping using whole

genomes. Bioinformatics 23, 1744–1752.

Xu, X., Jger, J., and Kriegel, H.-P. 2002. A fast parallel clustering algorithm for large spatial databases, 263–290. In

Guo Y., and Grossman, R. Eds., High Performance Data Mining. Springer, New York.

Address correspondence to:

Prof. Yi Pan

Department of Biology

Georgia State University

Petit Science Center, Rm 490

Atlanta, GA 30303

E-mail: yipan@gsu.edu

DIME 177

