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Background. Despite effective antiretroviral therapy (ART), patients with chronic human immunodeficiency
virus (HIV) infection have increased microbial translocation and systemic inflammation. Alterations in the intestinal
microbiota may play a role in microbial translocation and inflammation.

Methods. We profiled the fecal microbiota by pyrosequencing the gene encoding 16S ribosomal RNA (rRNA)
and measured markers of microbial translocation and systemic inflammation in 21 patients who had chronic HIV
infection and were receiving suppressive ART (cases) and 16 HIV-uninfected controls.

Results. The fecal microbial community composition was significantly different between cases and controls. The
relative abundance of Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae, Erysipelotrichi,
Erysipelotrichales, Erysipelotrichaceae, and Barnesiella was significantly enriched in cases, whereas that of Rikenel-
laceae and Alistipes was depleted. The plasma soluble CD14 level (sCD14) was significantly higher and the endotoxin
core immunoglobulin M (IgM) level lower in cases, compared with controls. There were significant positive corre-
lations between the relative abundances of Enterobacteriales and Enterobacteriaceae and the sCD14 level; the relative
abundances of Gammaproteobacteria, Enterobacteriales, and Enterobacteriaceae and the interleukin 1β (IL-1β) level;
the relative abundances of Enterobacteriales and Enterobacteriaceae and the interferon γ level; and the relative abun-
dances of Erysipelotrichi and Barnesiella and the TNF-α level. There were negative correlations between endotoxin
core IgM and IL-1β levels.

Conclusions. Patients who have chronic HIV infection and are receiving suppressive ART display intestinal dys-
biosis associated with increased microbial translocation and significant associations between specific taxa and mark-
ers of microbial translocation and systemic inflammation. This was an exploratory study, the findings of which need
to be confirmed.
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In the current era of effective antiretroviral therapy
(ART), human immunodeficiency virus (HIV) infection
has become a chronic manageable disease. However,

noninfectious complications such as cardiovascular
disease, diabetes, metabolic syndrome, obesity, and accel-
erated aging, all associated with chronic inflammation,
are being reported with increased frequency in these pa-
tients [1–3]. Although ART is effective at suppressing
viral replication to below the limits of detection in
blood, immune activation persists and is associated
with HIV disease progression [4]. This ongoing immune
activation and associated inflammationmay also contrib-
ute to noninfectious complications in patients with chron-
ic HIV infection who are receiving suppressive ART.

The mechanisms underlying immune activation in
these patients have been attributed to persistent viral
replication in the gut, residual immune dysregulation,
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or microbial translocation [5–9]. Increased microbial transloca-
tion, immune activation, and inflammation have been reported
in HIV-infected individuals, compared with HIV-uninfected
individuals [10–13]. Microbial translocation in these patients
is thought to be associated with loss of mucosal barrier function
and increased intestinal permeability secondary to immune dys-
regulation and/or alterations in the intestinal microbiome.

The gut microbiome is critical for maintaining intestinal
homeostasis and plays vital roles in maintenance of mucosal
barrier function and regulation of innate and adaptive immune
responses [14]. Dysbiosis (an imbalance in the composition of
the microbiota) has been implicated in chronic inflammation
associated with conditions such as obesity, diabetes, and inflam-
matory bowel disease [7, 15–21]. Previous studies have reported
alterations in the intestinal microbiota in HIV infection, with or
without associated microbial translocation, immune activation,
and inflammation [22–27]. However, few studies have ad-
dressed the role of the intestinal microbiota in microbial trans-
location and inflammation in patients with chronic HIV
infection who are receiving suppressive ART.

To determine whether individuals with chronic HIV infec-
tion who are receiving suppressive ART display dysbiosis and
whether there is an association between dysbiosis, microbial
translocation, and systemic inflammation in these individuals,
we profiled the intestinal microbiota and measured plasma
markers of microbial translocation and systemic inflammation
in an exploratory study of 21 patients who had chronic HIV in-
fection, were receiving ART, and had an undetectable plasma
HIV RNA level (cases) and 16 HIV-uninfected controls.

METHODS

Study Design, Subjects, and Data and Sample Collection
Patients with chronic HIV infection, were receiving suppressive
ART, and had an undetectable plasma HIV RNA level (cases)
and HIV-uninfected subjects (controls) were recruited from ongo-
ing studies of cardiovascular risk during HIV/AIDS at Tufts Uni-
versity School of Medicine [28, 29] and from the Infectious
Diseases Clinic at Tufts Medical Center by flyers at local commu-
nity centers or by advertisement in the greater Boston area. All sub-
jects were from eastern Massachusetts. Inclusion criteria for cases
included documented HIV infection, current ART use, and a plas-
ma HIV RNA level below the limit of detection. Inclusion criteria
for controls included documented lack of HIV infection. Exclusion
criteria for all subjects were based on factors known or likely to im-
pact the intestinal microbiota or known to be associated with mi-
crobial translocation: age >60 years, body mass index (BMI;
defined as the weight in kilograms divided by the height in meters
squares) of >30, antibiotic or probiotic use within the previous
4 weeks, gastrointestinal morbidity (including irritable bowel syn-
drome, inflammatory bowel disease, history of gastrointestinal can-
cer or surgical resection, or acute, severe gastrointestinal symptoms

requiring medical attention), opportunistic infection, and evidence
of hepatitis B or C virus infection. A total of 21 cases and 16 con-
trols were enrolled in the study. Sociodemographic data and past
medical history were obtained at enrollment. Recreational drug,
alcohol, and tobacco use and behavioral or lifestyle data were
obtained via an audio computer assisted self-interview survey
(http://acasi.tufts.edu) [30].

The study was approved by the Tufts Health Sciences Institu-
tional Review Board, and informed consent was obtained from
all participants.

Stool DNA Extraction, 16S rRNA Gene Amplicon Generation,
and Pyrosequencing
Stool samples were collected and stored and DNA extracted as
described elsewhere [27]. The V3-5 region of the gene encoding
16S ribosomal RNA (rRNA) was amplified by polymerase chain
reaction (PCR). Amplicons were pooled in equimolar concen-
trations, purified, and sequenced on a Roche 454 Genome
Sequencer GS FLX+ at the Tufts University Core facility Geno-
mics Core as previously described [27].

Computational analyses were performed using QIIME, ver-
sion 1.6 (http://qiime.org) [31]. Noise was removed from se-
quences, using Chimera Slayer (version 2010-12-12). Similar
sequences were clustered into operational taxonomic units
based on a minimum identity of 97%, using UClust [32]. The
most frequent sequence within each operational taxonomic
unit was used for alignment, using PyNAST [33] with Green-
genes (http://greengenes.secondgenome.com/), and assigned
to the lowest possible taxonomic level, using the Ribosomal Da-
tabase Project Classifier (http://rdp.cme.msu.edu) [34]. The
number of sequences was normalized, and alpha diversity mea-
sures, including equitability, number of observed species, Shan-
non diversity index, Chao-1, and PD (phylogenetic diversity),
were determined. Sequences were submitted to the Sequence
Read Archive in GenBank. The accession number for the pro-
ject is SRP039076.

Markers of Microbial Translocation and Systemic Inflammation
Blood samples were collected, processed, and stored as de-
scribed elsewhere [27]. Plasma levels of endotoxin core immu-
noglobulin M (IgM; EndoCAb IgM) and soluble CD14
(sCD14) were measured using enzyme-linked immunosorbent
assay kits from Hycult (Uden, the Netherlands) and R&D
(Minneapolis, MN), respectively. Plasma lipopolysaccharide
(LPS) levels were measured as described elsewhere [35],
using a Limulus amebocyte lysate assay (Associates of Cape
Cod, East Falmouth, MA). 16S rRNA gene levels in plasma
were measured by quantitative real-time PCR as described
elsewhere [35]. Plasma levels of interferon γ (IFN-γ), interleu-
kin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor
α (TNF-α) were measured using the Multi-Array system
(Meso Scale Discovery, Rockville, MD).
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Statistical Analyses
Statistical analyses were performed in GraphPad Prism, ver-
sion 6.0 (La Jolla, CA) and in the R programming environment
(http://www.r-project.org/), using the Mann–Whitney test for
continuous variables, the Fisher exact test for dichotomous
variables, and the Spearman test for correlations. Beta diver-
sity was assessed by nonmetric dimensional scaling with the
R package ecodist, using a Canberra dissimilarity matrix.
The R package ellipse was used to generate 95% confidence in-
tervals, and differences were determined using Adonis with
1000 permutations in the R package vegan. Median regression
analysis was performed using the R package quantreg. Univar-
iate analysis was performed first for all variables, using HIV
status and age as sole predictors. The association of those var-
iables at a P value of ≤.2 (Table 1) and/or those that may have
an effect on the intestinal microbiota, microbial translocation,
or inflammation was assessed in multivariate analysis. Given
the number of variables and the small sample size, multivari-
ate analyses with >3 predictors (HIV status, age, and 1 other
parameter) were not performed, to avoid model instability.
The standard errors (and P values) for each model were calcu-
lated using bootstrapping with R equal to 15 000. Linear dis-
criminant analysis effect size (LEfSe) analysis was performed
according to the methods of Segata et al, using default param-
eters (http://huttenhower.sph.harvard.edu/galaxy/) [36]. Since

this was an exploratory study, corrections for multiple testing
for other parameters were not performed [37].

RESULTS

Sociodemographic Characteristics
Cases were significantly older than controls (P = .04; Table 1).
There were no significant differences in other parameters be-
tween cases and controls. The HIV infection status of the
cases is shown in Table 2. The median duration of HIV infec-
tion was 15.9 years (interquartile range [IQR], 10.2–20.4 years)
from first diagnosis, indicating the chronic nature of the disease.
The median duration of ART was 13.3 years (IQR, 5.8–15.1
years) with protease inhibitors and/or nonnucleoside reverse
transcriptase inhibitors. The median CD4+ T-cell count was
668 cells/mm3 (IQR, 424–870 cells/mm3), and HIV RNA was
below the level of detection (<400 copies/mL), confirming effec-
tive suppression of HIV infection by ART in all cases.

Intestinal Microbiota
Pyrosequencing of 16S rRNA gene amplicons from fecal DNA
yielded 122 470 sequences with an average of 3310 sequences
per sample and 29 782 operational taxonomic units in all
samples.

There were no significant differences in alpha diversity
between cases and controls (Supplementary Table 1). Beta diver-
sity analysis, performed using nonmetric dimensional scaling
with a Canberra community dissimilarity matrix, revealed signif-
icant clustering of cases and controls (Adonis, P < .05; Figure 1).
In both groups, the 2 dominant phyla were Bacteroidetes and
Firmicutes, with the exception of 1 case, who had an unusually
high relative abundance of fusobacteria (Figure 2). The relative

Table 1. Sociodemographic Characteristics of Human
Immunodeficiency Virus (HIV)-Infected Subjects Who Were
Receiving Suppressive Antiretroviral Therapy and Had
Undetectable Plasma HIV RNA (Cases) and HIV-Uninfected
Subjects (Controls)

Characteristic Cases (n = 21) Controls (n = 16)
P

Value a

Age, y 50.6 (45.5–54.5) 45.6 (34.4–50.3) .04b

Male sex 17 (80.9) 12 (75) .70

High school education 8 (38.1) 4 (25) .49
Post–high school
education

11 (52.4) 11 (68.8) .50

Employed 6 (28.6) 9 (56.3) .11
Homeless 2 (9.5) 5 (31.3) .20

BMIc 25 (22.6–27.7) 27.1 (24.2–28.9) .20b

Alcohol consumptiond 4 (19) 1 (6.3) .36
Recreational drug usee 10 (47.6) 3 (18.8) .09

Current smoker 14 (66.7) 7 (43.8) .20

Data are median (interquartile range) or no. (%) of subjects. P values of <.05 are
considered statistically significant.
a By the Fisher exact test, unless otherwise indicated.
b By the Mann–Whitney test.
c Body mass index (BMI) is calculated as the weight in kilograms divided by the
height in meters squared.
d In the past month.
e Defined as use of ≥1 of the following: heroin, cocaine, marijuana, sedatives,
and/or poppers.

Table 2. Characteristics of Human Immunodeficiency Virus (HIV)
Infection Among Subjects Who Were Receiving Suppressive
Antiretroviral Therapy (ART) and Had Undetectable Plasma HIV
RNA (Cases)

Parameter Value Cases, no.

HIV infection duration, y 15.9 (9.48–19.8) 21

CD4+ T-cell count, cells/mm3 668 (424–870) 21
HIV RNA load, copies/mL <400a 21

ART duration, y 12.6 (5.14–15.1) 17b

ART component(s)
PI . . . 8

NNRTI . . . 11

PI plus NNRTI . . . 2

Data are median (interquartile range), unless otherwise indicated.

Abbreviations: NNRTI, nonnucleoside reverse transcriptase inhibitor; PI,
protease inhibitor.
a Considered undetectable.
b Unknown for 4 subjects.
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abundance of Proteobacteria was significantly greater in cases
than controls in univariate analysis (Supplementary Table 2).
This difference remained significant in multivariate analysis

when controlling for age, BMI, smoking status, alcohol use, or
recreational drug use. There were no significant differences in
the relative abundance of other phyla between cases and controls.

To identify differentially abundant taxa in cases and controls,
we used the LEfSe algorithm, which identifies genomic features
characterizing the differences between ≥2 biological conditions
[36]. It emphasizes statistical significance, biological consisten-
cy, and effect relevance. Since there was a significant difference
in age between cases and controls, we included age (above and
below the median) as a subclass. LEfSe analysis confirmed en-
richment in cases of Proteobacteria and revealed enrichment of
Gammaproteobacteria, Enterobacteriales, and Enterobacteria-
ceae, enrichment of Erysipelotrichi, Erysipelotrichales, and Er-
ysipelotrichaceae of the phylum Firmicutes, and enrichment of
the genus Barnesiella in the phylum Bacteroidetes in cases,
whereas Rikenellaceae and Alistipes in the phylum Bacteroidetes
were enriched in controls (Figure 3A and 3B). Standard statis-
tical analysis (using the Mann–Whitney test) performed on the
relative abundance of each taxon that was identified by LEfSe as
being differentially abundant confirmed that the relative abun-
dance of all these taxa were significantly different between cases
and controls (Figure 3C).

Markers of Microbial Translocation and Systematic
Inflammation
We used 4 biomarkers to assess microbial translocation. Three
are markers of translocation of gram-negative bacteria: LPS (or
endotoxin); the soluble form of the LPS coreceptor CD14
(sCD14), which is upregulated in response to LPS stimulation
and is a marker of monocyte activation [38]; and IgM levels
to the LPS core antigen (EndoCAb), which decrease following

Figure 1. Stool microbial community composition in cases, compared
with that in controls. Community composition dissimilarity was analyzed
using nonmetric dimensional scaling (NMDS) based on a Canberra commu-
nity dissimilarity matrix. Each dot represents the microbiota of a single sub-
ject. Ellipses represent 95% confidence intervals for the standard error of
weighted NDMS score means of cases and controls. Community differenc-
es were verified using Adonis (P = <.05).

Figure 2. Relative abundance of major phyla in cases (+) and controls (−). In both groups, the 2 dominant phyla were Bacteroidetes and Firmicutes, which
made up >95% of each individual’s microbiota, with the exception of case 9, who had an unusually high relative abundance of fusobacteria in lieu of
Firmicutes.
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LPS binding [38–42]. The fourth, bacterial 16S rRNA gene copy
number, is a marker of translocation of both gram-negative and
gram-positive bacteria [43, 44]. In univariate analysis, plasma
levels of sCD14 were significantly higher (P < .01), and, corre-
spondingly, levels of EndoCAb were significantly lower
(P < .01) in cases, compared with controls (Supplementary
Table 3). This difference remained significant in multivariate me-
dian regression analysis after adjustment for possible confound-
ing factors (Figure 4). There was a trend toward significantly
higher levels of plasma LPS (P = .08) in cases, compared with
controls (data not shown). However, there was no significant dif-
ference in plasma 16S rRNA gene copy numbers between the
groups (Figure 4).

We assayed 5 markers of systemic inflammation: proinflam-
matory cytokines IL-6, IFN-γ, IL-1β, and TNF-α, as well as a
nonspecific marker of inflammation, high-sensitivity C-reactive
protein (hsCRP). Plasma IL-1β and TNF-α levels were signifi-
cantly increased in cases (P = .02 and .03, respectively), com-
pared with controls, in univariate analysis (data not shown).
However, these differences were not significant in multivariate
analysis. There were no significant differences in IL-6, IFN-γ,
and hsCRP levels between the 2 groups (Figure 4).

Correlations Between Dysbiosis, Microbial Translocation, and
Systemic Inflammation

We found statistically significant positive correlations between
LPS and IL-6 levels, LPS and TNF-α levels, and LPS and
hsCRP levels (P < .01, P < .01, P = .01, respectively; data not
shown), as well as between sCD14 and IL-1β levels (P = .03;
data not shown).

Since the microbiota of cases was significantly enriched or
depleted in specific taxa, we examined possible correlations be-
tween the relative abundance of these taxa and markers of mi-
crobial translocation and systemic inflammation. There were
significant positive correlations between the relative abundance
of both Enterobacteriales and Enterobacteriaceae and sCD14
levels (P < .01 for both; Table 3). There were also significant
positive correlations between the relative abundance of Gam-
maproteobacteria, Enterobacteriales, and Enterobacteriaceae
and IL-1β levels (P < .01 for all). The relative abundance of En-
terobacteriales and Enterobacteriaceae were also significantly
positively correlated with IFN-γ levels (P = <.05 for both).
The relative abundance of Erysipelotrichi correlated negatively
with EndoCAb levels (P = .04) and positively with IL-1β levels
(P = .03). Finally, there was a significant positive correlation

Figure 3. Linear discriminant analysis (LDA) effect size (LEfSe) detects specific differentially abundant taxa in cases and controls. A, Cladogram showing
differentially abundant taxonomic clades with an LDA score >2.0 among cases and controls. B, LDA scores of differentially abundant taxa among cases and
controls. The LDA score indicates the effect size and ranking of each differentially abundant taxon. C, The relative abundance of taxa identified by LEfSe as
being differentially abundant in cases and controls was compared using the Mann–Whitney test: Proteobacteria, P = <.05; Gammaproteobacteria, P = .04;
Enterobacteriales, P = <.05; Enterobacteriaceae, P = <.05; Erysipelotrichi, P = .01; Erysipelotrichales, P = .01; Erysipelotrichaceae, P = .01; Barnesiella, P = .01;
Alistipes, P = .01; and Rikenellaceae, P = .01.

Intestinal Microbiota and HIV • JID 2015:211 (1 January) • 23

http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiu409/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiu409/-/DC1


between the relative abundance of Barnesiella and TNF-α levels
(P = .01). The reasons why the correlations were identical for
taxa in the same clade but at different levels is because there
is only 1 family in that order or because taxa in that order are
driving the correlation.

Since there were no significant differences in LPS levels or
16S rRNA copy numbers between cases and controls, and

because sCD14 could also be considered a marker of inflamma-
tion, the relationship of these observations to microbial translo-
cation may be questioned. However, the finding of a significant
difference in EndoCAb levels (which are directly related to in-
creased LPS levels) in addition to differences in sCD14 levels
supports the association with microbial translocation.

DISCUSSION

In this study, we found dysbiosis characterized by enrichment
or depletion of specific taxa and increased biomarkers of micro-
bial translocation in subjects with chronic HIV infection who
were receiving suppressive ART and had undetectable HIV
loads (cases), compared with HIV-uninfected controls. In addi-
tion, we found significant correlations between biomarkers of
microbial translocation and systemic inflammation and the rel-
ative abundance of specific bacterial taxa in cases.

Within the past year, 4 studies comparing the gut microbiota
of HIV-infected subjects to that of HIV-uninfected subjects
(using microarray or next-generation sequencing technology)
were published. Vujkovic-Cvijin et al compared the rectal mu-
cosa-associated microbiota of HIV-infected and uninfected
men [25]. Lozupone et al compared the stool microbiota of un-
treated, recently HIV-infected subjects, or chronically HIV-in-
fected subjects receiving short-term or long-term ART to that of
non–HIV-infected controls [45].Dillon et al compared the fecal
and colonic mucosal microbiota of subjects with chronic un-
treated HIV infection with that of HIV-uninfected subjects
[46].Mutlu et al compared the ileal and colonic mucosal micro-
biota of HIV-infected subjects who were receiving highly active
ART (HAART) to that of HIV-uninfected subjects [47]. We
compared the fecal microbiota of subjects with chronic HIV

Table 3. Correlation Between Relative Abundance of Specific
Taxa and Markers of Microbial Translocation and Systemic
Inflammation Among Human Immunodeficiency Virus (HIV)–
Infected Subjects Who Were Receiving Suppressive
Antiretroviral Therapy and Had Undetectable Plasma HIV RNA

Marker Taxon Category Spearman R P Value

Microbial translocation

EndoCAb Erysipelotrichaceae Family −0.35 .04
EndoCAb Erysipelotrichi Class −0.35 .04

sCD14 Enterobacteriaceae Family 0.49 <.01

sCD14 Enterobacteriales Order 0.49 <.01
Systemic inflammation

IL-1β Enterobacteriaceae Family 0.54 <.01

IL-1β Enterobacteriales Order 0.54 <.01
IL-1β Gammaproteobacteria Class 0.47 <.01

IL-1β Erysipelotrichaceae Family 0.36 .03

IL-1β Erysipelotrichi Class 0.36 .03
IFN-γ Enterobacteriaceae Family 0.34 <.05

IFN-γ Enterobacteriales Order 0.34 <.05

TNF-α Barnesiella Genus −0.42 .01

P values of <.05 are considered statistically significant.

Abbreviations: EndoCAb, endotoxin core antibody; IFN-γ, interferon γ; IL-1β,
interleukin 1β; sCD14, soluble CD14; TNF-α, tumor necrosis factor α.

Figure 4. Markers of microbial translocation and systemic inflammation in cases and controls. Levels of markers of microbial translocation (soluble CD14
[sCD14], endotoxin core antibody [EndoCAb], 16S ribosomal RNA [rRNA] gene, and lipopolysaccharide [LPS]) and systemic inflammation (interleukin 6 [IL-6],
interferon γ [IFN-γ], interleukin 1β [IL-1β], tumor necrosis factor α [TNF-α], and high-sensitivity C-reactive protein [hsCRP]) were measured in cases and
controls, as described in “Methods” section, and compared using the Mann–Whitney test. *P = <.01.
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infection who were receiving suppressive ART to that of unin-
fected controls. These studies differed in the sex, duration, and
treatment status of the HIV-infected subjects, matching status
of the HIV-uninfected controls, the nature of the samples stud-
ied, the technology used to characterize the microbiota, and the
computational and statistical methods used to identify differ-
ences in microbial community composition and differentially
abundant taxa. Although these may account for some of the dif-
ferences found among these studies, all the studies, including
ours, found significant differences in the community composi-
tion of the microbiota assessed by beta diversity measures in
HIV-infected subjects, compared with uninfected subjects.

The differences among the studies appear to be in the micro-
biota profiles of treated or untreated subjects with chronic HIV
infection, compared with uninfected controls. Thus, Vujkovic-
Cvijin et al found that the community composition of subjects
with virological suppression who were receiving HAART varied
considerably, with the composition for some patients more sim-
ilar to that of the viremic untreated group, whereas the compo-
sition for others was more similar to that of the HIV-uninfected
group [25]. Similarly, Lozupone et al reported that the micro-
biota of some of the individuals with chronic HIV infection
who were receiving ART clustered with that of HIV-uninfected
subjects, whereas the microbiota for others clustered with that
of untreated individuals with chronic HIV infection [45].
Dillon et al showed a difference in community composition be-
tween untreated HIV-infected subjects, compared with HIV-
uninfected subjects [46]. Mutlu et al found differences between
HIV-infected subjects who were receiving HAART and unin-
fected controls [47]. However, the CD4+ T-cell counts and
viral loads of the HIV-infected subjects on ART varied. [47].
Our study (in which all HIV-infected subjects had virological
suppression) found significant differences in the microbial
community composition of subjects with chronic HIV infection
who were receiving ART, compared with HIV-uninfected
subjects.

In our study, as in that by Vujkovic-Cvijin et al [25] and
Dillon et al [46] there were no significant differences in alpha
diversity measures between subjects with chronic HIV infection
who were receiving ART, compared with HIV-uninfected sub-
jects. Surprisingly, however, Lozupone et al [45] found in-
creased alpha diversity in subjects with untreated chronic
HIV infection, compared with HIV-uninfected subjects or
treated subjects with chronic HIV infection, whereas Mutlu
et al reported decreased alpha diversity in the HIV-infected sub-
jects [47].

Intestinal dysbiosis in our study was characterized by signifi-
cant differences in taxa in 3 of the major phyla in cases, com-
pared with controls. The first was a significant enrichment in
the Proteobacteria phylum, specifically of taxa in the Gammap-
roteobacteria class, including Enterobacteriales and Enterobac-
teriaceae, in cases. Of interest, the Enterobacteriaceae family

includes inflammogenic enteric pathogens, which may be rele-
vant to the increased levels of the proinflammatory cytokine
IFN-γ, which were seen in cases.

In a recent study of the stool microbiota in HIV-infected co-
caine users, we also found a significant increase in the relative
abundance of Proteobacteria in HIV-infected subjects, com-
pared with uninfected subjects [27]. Vujkovic-Cvijin et al
found that taxa in the Proteobacteria phylum, particularly
Enterobacteriaceae, were significantly enriched in the viremic
untreated group, compared with HIV-uninfected controls.
However, no differences in the relative abundance of Proteobac-
teria or Enterobacteriaceae between HIV-uninfected controls
and subjects receiving HAART were reported [25]. Dillon
et al found that the relative abundance of Proteobacteria was
significantly higher in untreated subjects with chronic HIV
infection, compared with uninfected subjects [46]. Mutlu et al
reported enrichment of Enterobacteriaceae in HIV-infected
subjects [47].

We also found a significant enrichment of taxa in the Erysi-
pelotrichaceae family in cases. Taxa in this family were the most
enriched in the untreated HIV-infected subjects in the study by
Vujkovic-Cvijin et al [25]. Lozupone et al also reported enrich-
ment in the Erysipelotrichaceae family in untreated subjects
with chronic HIV infection, compared with HIV-uninfected
individuals [45].

A third differentially abundant taxon in cases was Barnesiella
in the phylum Bacteroidetes. Interestingly, Dillon et al found
that the relative abundance of Barnesiella was lower in HIV-
infected subjects, compared with uninfected subjects [46], and
Mutlu et al reported enrichment of Barnesiellaceae in HIV-
negative controls [47].

We found enrichment of the Alistipes genus and Rikenella-
ceae family in the controls. Vujkovic-Cvijin et al also found
that these taxa were depleted in viremic untreated men, com-
pared with uninfected men [25]. These taxa were also enriched
in HIV-negative subjects in the study by Lozupone et al [45]. In
addition, Dillon et al reported that the relative abundance of the
Alistipes genus was lower in untreated subjects with chronic
HIV infection, compared with uninfected subjects [46], and
Mutlu et al found enrichment of Rikenellaceae in HI- negative
subjects [47]. All studies, including ours, found an association
between dysbiosis and markers of microbial translocation,
immune activation, and/or inflammation, although the bio-
markers and the methods used to measure them varied.

There are a few limitations to our study. The numbers of
cases and controls were small, limiting our ability to control
for potential confounding factors (although the numbers were
similar to those in the studies discussed above); we did not
include untreated HIV-infected individuals or those in whom
ART was not suppressive, and we did not measure markers of
immune activation. Since this was an exploratory study, we did
not correct for multiple comparisons, and the results need to be
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confirmed by other studies. Nevertheless, our data showed that
individuals with chronic HIV infection who were receiving sup-
pressive ART displayed intestinal dysbiosis characterized by a
significant enrichment in inflammogenic taxa and a significant
association with increased microbial translocation and systemic
inflammation, compared with HIV-uninfected controls. Addi-
tional, larger and longitudinal studies including functional
metagenomics and metabolomics approaches to identify specif-
ic metabolic pathways of the microbiome that are impacted by
HIV infection are needed to develop targeted interventions that
reduce immune activation and systemic inflammation in these
patients.
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