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Kidney disease afflicts 33 million in the United States and chronic kidney disease (CKD) 

accounts for over $60 billion in Medicare costs.1,2 Hypertension afflicts 75 million in the US 

and significant portions of those patients develop CKD and progress to end stage renal 

disease (ESRD).1-5 Interestingly, resistant hypertension which is defined as uncontrolled 

hypertension despite three anti-hypertensive medication classes increases the risk for 

cardiovascular diseases and ESRD.6 These recent findings in the Antihypertensive and Lipid 

Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) highlights the fact that 

current treatments only slow the loss of kidney function, or have no benefit at all.5,6 New 

therapeutic approaches are urgently needed.

Development of drugs to increase a novel class of fatty acids, epoxyeicosatrienoic acids 

(EETs), represents a unique approach to treat hypertension and kidney disease. EETs are 

generated from the substrate arachidonic acid by cytochrome P450 (CYP) epoxygenase 

enzymes.7,8 There are four regioisomeric EETs formed, 5,6-EET; 8,9-EET; 11,12-EET; and 

14,15-EET. These regioisomeric EETs are further metabolized to less active or inactive 

diols by the soluble epoxide hydrolase (sEH; Ephx2) enzyme. For clarity, EETs will be used 

as a general term and regioisomers mentioned when actions can be attributed to a specific 

regioisomeric EET. In the majority of circumstances, the primary EETs evaluated for 

cardiovascular and renal function have been 11,12-EET and 14,15-EET.7 Once formed 

EETs act in an autocrine or paracrine manner to elicit biological responses. Vascular 

endothelial and renal epithelial cells are major sites for EET production.7,8 This localized 

EET generation aligns with the biological actions and contribution of EETs to 

cardiovascular and renal function. Prominent biological actions of EETs include their role as 

endothelial derived hyperpolarizing factors (EDHFs) and regulation of tubular sodium 

reabsorption by inhibiting epithelial sodium channel (ENaC) in the kidney.8-11 These actions 

position EETs to increase blood flow to organs, decrease peripheral vascular resistance, and 

enhance sodium excretion. EETs also have anti-inflammatory actions that are beneficial in 

cardiovascular and renal diseases.7,12 The focus of this brief review is to discuss changes in 

EETs that contribute to hypertension and kidney injury and to discuss EET-based 

therapeutics being developed to combat cardiovascular and renal diseases.
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Kidney Renal Disease

The link between decreased EETs and hypertension, especially salt-sensitive hypertension, 

has been strongly established.8,11,13-16 Decreased renal epoxygenase activity and decreased 

renal EET levels have been associated with angiotensin-dependent hypertension, salt-

sensitive hypertension, and Lyon hypertensive rats.14-18 Transgenic rats overexpressing both 

human renin and angiotensinogen genes (dTGR) develop hypertension and renal failure that 

is associated with decreased kidney epoxygenase enzymatic activity and CYP2C11 and 

CYP2C23 protein levels.17 Likewise, we have found that an inability to increase renal 

cortical and vascular rat CYP2C11 and CYP2C23 or mouse Cyp2c44 protein expression 

contributes to salt-sensitive hypertension.14,18 These CYP2C enzymes are primarily 

responsible for 11,12-EET and 14,15-EET formation in the rat and mouse kidneys.19 Rat 

CYP2C23 and mouse Cyp2c44 are the predominant kidney epoxygenases which are up 

regulated by a high K+ (2.5%) or high Na+ (8%) salt diet.8,20 Another potential epoxygenase 

is the CYP2J5 protein that is abundantly expressed in the mouse kidney.21 However, the 

ability of CYP2J5 to generate EETs is questionable and Cyp2j5 (-/-) mice have 

demonstrated that CYP2J5 appears to contribute to blood pressure control by regulating 

estrogen rather than EET synthesis.21 On the other hand, genetic manipulation of CYP2C 

epoxygenase expression has provided additional support to the concept that CYP2C-derived 

EETs are essential in renal sodium handling and blood pressure regulation. Cyp2c44(-/-) 

mice develop hypertension when fed a high K+ or high Na+ salt diet.8,11,22 Similarly, 

Cyp4a10(-/-) mice have decreased renal Cyp2c44 epoxygenase activity in response to high 

Na+ salt and develop salt-sensitive hypertension.23 Differences in renal EET generation and 

blood pressure in response to dietary NaCl intake between the Cyp2c44 (-/-) mice and 

Cyp4a10(-/-) mice provide additional evidence for a critical contribution for EETs in blood 

pressure regulation. Interestingly, Cyp4a10 (-/-) mice have decreased urinary EET levels and 

an elevated blood pressure on a normal salt (0.3% NaCl) diet.23 Lowering dietary salt to 

0.05% NaCl lowers blood pressure in Cyp4a10 (-/-) mice.23 In contrast, Cyp2c44 (-/-) mice 

do not have decreased urinary EET levels or elevated blood pressures on a normal salt 

diet.11 Both Cyp2c44 (-/-) and Cyp4a10 (-/-) mice demonstrate salt-sensitive hypertension in 

response to 8% NaCl feeding which is associated with an inability to increase renal EET 

generation. The fact that amiloride lowers blood pressure in Cyp2c44 (-/-) and Cyp4a10 (-/-) 

mice fed a high salt diet suggests a significant contribution for ENaC.11,22,23

A major cellular mechanism responsible for salt-sensitive hypertension that results from 

decreased renal EET levels appears to be increased ENaC activity (Figure 1).8,11,22 Actions 

of 11,12-EET on basolateral inwardly rectifying K+ channels and apical ENaC channels on 

the cortical collecting duct (CCD) epithelium can explain the salt-sensitive blood pressure 

regulation in response to high K+ or Na+ salt diets. Hypertensive Cyp2c44(-/-) mice show a 

hyperactive ENaC and reduction in ERK1/2 and ENaC subunit phosphorylation.8,11 In 

regards to EET regiosomeric actions on ENaC, 11,12-EET inhibits ENaC to a greater extent 

than 14,15-EET and 8,9-EET had no effect on ENaC activity.11 11,12-EET can inhibit 

basolateral inwardly rectifying K+ channels that results in cell membrane depolarization to 

reduce the driving force for Na+ entry across the apical membrane.20,24 Another renal 

epithelial cell action attributed to 11,12-EET is stimulation of apical large-conductance 
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Ca2+-activated K+ epithelial channels that could contribute to renal K+ secretion in response 

to high K+ intake.8,25,26 Interestingly, 11,12-EET is the major product of the mouse 

Cyp2c44 and is generated in the CCD and increases in response to a high K+ or Na+ salt 

diet.11,20 The inability of Cyp2c44 -/- mice to increase 11,12-EET in response to either a 

high Na+ or K+ diet and the lack of actions on K+ channels and ENaC in the CCD results in 

salt-sensitive hypertension. Taken together these findings clearly demonstrate a critical role 

for renal CYP2C enzymes in fluid and electrolyte homeostasis and blood pressure control.

Vascular Endothelial Dysfunction

EETs also contribute importantly to endothelial function in the pathology of hypertension 

and cardiovascular diseases (Figure 1).7,8 Numerous studies have shown that EETs are an 

EDHF and are critical for proper regulation of resistance arteries and arterioles.7,9,10,27 

EETs activate vascular smooth muscle cell large-conductance calcium-activated K+ 

channels (KCa) through a cAMP and protein kinase A dependent mechanism.28,29 Vascular 

expression of epoxygenase enzymes and generation of EETs is decreased in cardiovascular 

diseases.7,14,18,30 Decreased renal microvessel CYP2C11, CYP2C23, and CYP2J expression 

in the obese Zucker rat and in rats fed a high fat diet is thought to contribute to increased 

blood pressure.30 Vascular EET levels are further reduced by increased sEH expression in 

obese Zucker rats and this has been demonstrated to contribute to endothelial dysfunction.30 

Likewise, endothelial dysfunction and inflammation are associated with decreased plasma 

EET levels and increased sEH activity in humans with atherosclerotic disease.31-34 Reactive 

oxygen species that are elevated in hypertension can also reduce EET bioavailability and 

vasodilation in human coronary arterioles.35,36 Thus, decreased vascular EET levels 

significantly contribute to the progression of cardiovascular disease and organ damage in 

hypertension.

Inflammation

Inflammation is considered a major player in hypertension and the associated progression of 

kidney disease. Kidney specific elevations in T-cells have also been implicated in numerous 

animal models of hypertension.37-39 Recent studies have implicated kidney selective 

increases in tumor necrosis factor-α (TNF-α) in the development of angiotensin II-

dependent hypertension and associated kidney disease.37 Likewise, a contribution for 

increased sEH activity and decreased EET levels has been demonstrated for the 

inflammation and renal injury associated with hypertension.7,18,22 On the flip side, 

increasing EET levels by genetic disruption of Ephx2 decreased inflammation and 

attenuated the progression of renal damage associated with salt-sensitive hypertension.40 

Interestingly, expression of human CYP2C8 or CYP2J2 to increase mouse endothelial cell 

EET generation decreased blood pressure, enhanced vasodilatory responses, and decreased 

renal injury in angiotensin high salt hypertension.41 These CYP2C8 and CYP2J2 transgenic 

miceor Ephx2 -/- mice also exhibited decreased vascular nuclear factor (NF)-κB signaling 

and inflammation in response to endotoxin.42 This is in agreement with the increasing 

amount of published data that EETs decrease vascular inflammation through inhibition of 

phospho-IKK-derived NF-κB activation.7,12,40,42 Therefore, evidence indicates that 

decreased EETs or increased sEH activity contribute to the vascular inflammation and 
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pathogenesis of renal injury in hypertension and that increasing EET bioavailability can 

counteract disease progression.

Human Polymorphisms

There is also evidence in humans that decreased EET levels contribute to hypertension. 

Human CYP2C8 and CYP2C9 are the major epoxygenases whereas CYP2J2 has both 

epoxygenase and ω-1 hydroxylase activity.43 A number of CYP2C8 and CYP2C9 gene 

variants (2C8*2, 2C8*3, 2C9*2, and 2C9*3) demonstrate reduced arachidonic acid 

epoxidation rates.31,43 Analysis of Caucasian and African American cohorts failed to 

demonstrate an association between these variants and hypertension.44 On the other hand, 

the frequency of the CYP2C9*3 allele was lower in a subset of Chinese women with 

hypertension.45 A common polymorphism in the CYP2J2 gene, CYP2J2*7allele reduces 

CYP2J2 transcription, reduces plasma EET levels, and has been demonstrated to be 

associated with increased risk for essential hypertension in a Russian population.46 

However, other studies have that the found CYP2J2*7allele associates with lower risk or no 

modification in the risk of developing hypertension.47 Although polymorphisms of the sEH 

gene EPHX2 have demonstrated associations to cardiovascular diseases, a majority of the 

studies have reported no association between EPHX2 variants and essential hypertension.31 

Differences in the results of these genetic association studies could be attributed to factors 

including ethnicity of the population studied, small cohorts, gender effects, and 

environmental factors.

Despite the discrepancies in the genetic population studies there is more convincing 

evidence linking decreased EETs to hypertension when evaluating EET bio availablility and 

vascular responses. Genetic variations in EPHX2 have been demonstrated to affect the 

magnitude of human forearm vasodilator responses.48 There is a reduction in the forearm 

vasodilator response in Caucasian Americans that have the Arg55 variant allele which 

increases sEH activity and would be expected to decrease EET availability.48 Whereas, 

African Americans that that have the Gln287 variant allele that decreases sEH activity 

exhibit enhanced forearm bradykinin-mediated vasodilator responses.48 Healthy human 

volunteers exhibit slightly reduced basal forearm blood flow in the presence of the CYP 

inhibitor fluconazole whereas it did not alter radial artery blood flow in hypertensive 

patients in the presence or absence of nitric oxide inhibition.49 In addition, fluconazole 

decreased local plasma EET levels in control but not hypertensive individuals.49 Humans 

with hypertension also demonstrated decreased flow-mediated dilation an indicator of 

endothelial dysfunction that was associated with a reduced EET levels.50 These findings 

demonstrate that hypertensive patients where EET levels are genetically or pharmacological 

manipulated have vasodilator responses that differ from those of healthy volunteers. Thus in 

addition to nitric oxide, EET levels contribute importantly to endothelial function in 

hypertensive patients.

Overall, these experimental findings in rodents and humans have generated interest in 

developing pharmacological means to increase EETs that could potentially lower blood 

pressure and protect the kidney in hypertension.
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Therapeutic Approaches – Hypertension and Kidney Diseases

Over the past decade epoxyeicosatrienoic acid and soluble epoxide hydrolase (sEH) enzyme 

based drugs have been developed with anti-hypertensive and kidney protective properties 

that will be particularly beneficial for hypertensive patients that develop chronic kidney 

disease (Figure 2).51,52 Carbamate urea sEH inhibitors were developed and demonstrated to 

lower blood pressure and decrease renal injury in animal models of hypertension.15,18,51 

Further development of sEH inhibitors progressed rapidly and has resulted in clinical trials 

for hypertension, diabetes, and more recently, chronic obstructive pulmonary disease.51,53 

This development of sEH inhibitors has been extensively chronicled in a number of 

excellent review articles.51,54,55

More recent developments with sEH inhibitors are keeping enthusiasm for their potential 

use in hypertension and chronic kidney disease at a high level. In a recent controlled clinical 

trial with peripheral arterial disease participants that were fed flaxseed containing α-

linolenic acid for six months had decreased blood pressure.56 α-Linolenic acid was 

demonstrated in an inhibitor screening assay to decrease sEH activity and the anti-

hypertensive effects of flaxseed feeding were associated with a decrease in plasma sEH-

derived oxylipins.56 As for chronic kidney disease a recently published study demonstrated 

that Ephx2 deficiency or sEH inhibition in mice decreased renal inflammation and fibrosis 

associated with unilateral ureteral obstruction.57 The anti-inflammatory and fibroprotective 

effects in unilateral ureteral obstruction kidneys was via PPAR activation and down 

regulation of NF-κB, TGFβ1/Smad3 inflammatory signaling.57 Another of the more recent 

findings is that dietary fatty acid composition can enhance the effectiveness of sEH 

inhibitors in cardiovascular diseases.58 Fish oil or ω-3 polyunsaturated fatty acid diet rich in 

eicosapentaenoic acid (EPA) and docosaheaenoic acid (DHA) coupled with sEH inhibitors 

lowers blood pressure and provides superior anti-inflammatory effects in angiotensin II-

dependent hypertension.58 EPA-derived epoxyeicosatetraenoic acids (EEQs) and DHA-

derived epoxydocosapentaenoic acids (EDPs)are of particular interest because these 

epoxygenase metabolites of ω-3 polyunsaturated fatty acid have been demonstrated to 

protect from coronary heart disease and a trial fibrillation.34,59,60 These newer findings 

suggest that other fatty acid epoxides could be beneficial and that sEH inhibitors still have 

promise for hypertension and kidney disease.

Significant recent advancements in the development of robust EET analogs that mimic the 

actions of endogenous EETs position them as a potential therapeutic for renal and 

cardiovascular diseases. First generation EET analogs were methyl esters and sulfonimide 

substitutions of the carboxylic acid which obviated esterification and resisted β-oxidation.61 

The next generation of EET analogs removed the 1,4-diene responsible for autoxidation and 

replaced the labile epoxide with bio-isosteres that resist metabolism (Figure 2).61,62 Studies 

of the second generation of EET analogs assessing vascular inflammation and dilation 

resulted in the following structural requirements: an acidic carboxyl group, Δ8 olefin bond, 

20-carbon chain length, and a cis epoxide.61,62

EET analogs have substantial promise for the treatment of kidney and cardiovascular 

diseases. One such EET analog that has been successfully used in vivo in rodents is the 
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aspartic amide of 11-nonyloxy-undec-8(Z)-enoic acid, NUDSA.63,64 NUDSA has been 

found to decrease blood pressure, improve metabolic status in metabolic syndrome, and 

provide cardio-protection in ischemic injury.63-65 Overall, the effects of NUDSA are linked 

to its ability to reduce inflammation and cell death, supporting the notion that EET analogs 

could be beneficial in renal pathologies. In support of this notion orally active EET analogs, 

EET-A and EET-B were found to protect the kidneys from cisplatin-induced 

nephrotoxicity.66 Attenuated nephrotoxicity correlated with reduced inflammation, oxidative 

stress, and decreased apoptosis through a reduction in Bcl-2 protein mediated proapoptotic 

signaling, reduced renal capase12 expression, and reduced renal caspase-3 activity.66 EET-

A and EET-B have been shown to dramatically decrease blood pressure and prevent 

hypertensive renal injury.22,67 EET-A lowers blood pressure in angiotensin dependent 

hypertension and in Cyp2c44-/- mice with salt-sensitive hypertension.22 Additional findings 

demonstrated that EET-A inhibits ENaC activity in cultured CCD cells and reduced kidney 

expression of ENaC subunits in angiotensin II hypertension.22 Interestingly, kidney 

protection in Dahl SS rats independent of blood pressure lowering was demonstrated 

following two weeks of EET-B treatment. EET-B decreased renal injury by reducing 

oxidative stress, endoplasmic reticulum stress, and macrophage infiltration.67 Thereare two 

potential explanations for the lack of blood pressure by EET-B in the Dahl SS rats. First, 

EET-B does not inhibit ENaC in the same manner as EET-A.67 Although EET-B treated 

Dahl SS rats had decreased macrophage infiltration, EET-B failed to lower kidney T cell 

levels which is known to be a major contributor to the elevated blood pressure in this animal 

model of salt-sensitive hypertension.38,39,67 Taken together, these diverse biological actions 

and development of oral EET analogs demonstrate their therapeutic potential for 

hypertension and CKD.

Perspectives

It is now established that a reduction in EETs can contribute to hypertension and the 

associated renal injury and that approaches to increase EETs have therapeutic potential. As 

with every therapeutic approach there is always a down side that is of concern. In the case of 

EETs, that concern has been their angiogenic and tumorigenic actions.51,68,69 Although 

initial studies demonstrated that EETs or sEH inhibition enhanced angiogenesis, 

tumorigensis, and resulted in metastasis; recent studies have shown that sEH inhibition or 

Ephx2 gene deficiency inhibits inflammatory bowel tumor development and supports the 

notion that EETs can inhibit cancer by blocking inflammation.70,71 Interestingly dual 

inhibition of COX-2 and sEH synergistically inhibits primary tumor growth and metastasis 

by suppressing tumor angiogenesis.72 EET analogs also failed to increase cultured tumor 

cell proliferation and did not interfere with the ability of cisplatin to kill tumor cells.66 

Although these findings do not eliminate the concern for unwanted tumorigenesis with EET 

based therapies, this concern appears to be considerably less than originally thought.

Other considerations for blood pressure regulation and hypertension are differences in sEH 

and EET levels between males and females and central nervous system effects. Cerebral 

vascular sEH expression is higher in male mice and females have increased EET-mediated 

protection from ischemic injury when compared to males.73,74 Furthermore, sEH inhibition 

abolishes sex-specific differences in endothelial cell survival and ischemic brain injury.73,74 
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Brain sEH inhibition via intracerbroventricular deliver of AUDA increases blood pressure 

and heart rate in spontaneously hypertensive rats (SHR).75 In contrast, neuronal specific 

expression of sEH to increase activity 3-fold failed to increase arterial blood pressure in 

mice.76 Sex differences have also been found with regards to blood pressure regulation. 

Basal blood pressure in Ephx2 -/- mice was lower in males but not females when compared 

to wild-type mice.77 This decrease basal blood pressure in male Ephx2 -/- mice has not been 

observed when other colonies on various genetic backgrounds were generated.51,78 More 

recently, renal vascular EET levels were higher in female SHR compared to males.79 In this 

study ten-day treatment with the sEH inhibitor AUDA increased EET levels but did not 

lower blood pressure in either male or female SHR.79 This finding is consistent with 

previous studies that have found variable effects of sEH inhibition on blood pressure in the 

SHR.51 These experimental findings highlight the need to consider brain actions of EETs 

and sex-specific actions of EETs when evaluating sEH inhibitors and EET analogs for 

hypertension and CKD.

The further development of EET analogs will be greatly enhanced if protein targets and 

receptors for EETs can be identified. Although the identity of EET binding sites/receptors 

remain elusive, EETs activate renal and coronary vascular smooth muscle cell KCa channels 

through G protein (Gαs) – dependent mechanism.9,10,27,28,80,81 Other investigations provide 

evidence that cAMP and protein kinase A (PKA) are key signaling molecules required for 

KCa channel activation.27-29 Likewise, endothelial cell action of 11,12-EET are PKA 

dependent and require the Gs protein.82 There are also differences in potency and activity 

when comparing 11,12-EET and 14,15-EET in various vascular tissues.7,9,10 11,12-EET is 

more potent than 14,15-EET in renal arterioles whereas rat mesenteric resistance arteries 

respond similarly to 11,12-EET and 14,15-EET.7 In addition, mesenteric resistance artery 

flow-induced dilation was inhibited bythe 14,15-EET antagonist, 14,15-DHE5ZE, but 

unchanged by the 11,12-EET antagonist, 11,12,20-THE8ZE.83 These findings suggest 

unique biological activities and the potential for multiple vascular EET binding sites/

receptors.

Recent studies on the contribution of EETs to inflammation, kidney function, and blood 

pressure regulation in hypertension have shed light on their potential as a target for 

therapeutic intervention. Thus, there is a bright future for sEH inhibitors and EET analogs as 

novel therapies to effectively treat hypertension and stop the progression of CKD to renal 

failure.
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Figure 1. Cytochrome P450 epoxygenase metabolites, hypertension, and chronic kidney disease 
(CKD)
Decreased epoxyeicosatrienoic acids (EETS) contribute to enhanced epithelial sodium 

channel (ENaC) activity, endothelial dysfunction, and decreased renal blood flow (RBF). 

These changes in kidney and vascular function contribute to hypertension and CKD.
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Figure 2. Therapeutic manipulation of epoxygenase metabolites
Arachidonic acid is converted to epoxyeicosatrienoic acids (EETs) by cytochrome P450 

(CYP2C) epoxygenase enzymes. EETs primary metabolic fate is conversion to 

dihydroxyeicosatrienoic acids (DHETs) by the soluble epoxide hydrolase (sEH) enzyme. 

EET analogs and sEH inhibitors are two therapeutic approaches being tested to combat 

hypertension and kidney injury. EET-B has three structural attributes: (1) an acidic or 

hydrogen bonding replacement (green) for the C(1)-carboxylate to avoid esterification and 

β-oxidation; (2) a cis-Δ8,9 -olefin or equivalent (red); (3) an epoxide isostere (mimetic) 

(blue) to obviate sEH metabolism.
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