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Abstract

Behavior, perception and cognition are strongly shaped by the synthesis of information across the 

different sensory modalities. Such multisensory integration often results in performance and 

perceptual benefits that reflect the additional information conferred by having cues from multiple 

senses providing redundant or complementary information. The spatial and temporal relationships 

of these cues provide powerful statistical information about how these cues should be integrated or 

“bound” in order to create a unified perceptual representation. Much recent work has examined the 

temporal factors that are integral in multisensory processing, with many focused on the construct 

of the multisensory temporal binding window – the epoch of time within which stimuli from 

different modalities is likely to be integrated and perceptually bound. Emerging evidence suggests 

that this temporal window is altered in a series of neurodevelopmental disorders, including autism, 

dyslexia and schizophrenia. In addition to their role in sensory processing, these deficits in 

multisensory temporal function may play an important role in the perceptual and cognitive 

weaknesses that characterize these clinical disorders. Within this context, focus on improving the 

acuity of multisensory temporal function may have important implications for the amelioration of 

the “higher-order” deficits that serve as the defining features of these disorders.

 Introduction

We live in a world rich with information about the events and objects around us. This 

information comes in a variety of different forms; forms that we generally ascribe to our 

different senses. Although neuroscience has generally approached the study of sensory 

processes on a modality-by-modality basis, our perceptual view of the world is an integrated 
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and holistic one in which these sensory cues are blended seamlessly into a singular 

perceptual Gestalt. Such a multisensory perspective cries out for an intensive investigation of 

how information from the different senses is combined by the brain to influence our 

behaviors and shape our perceptions, a field that has emerged over the past 25 years and 

which is now growing at an impressive pace.

Rather than simply acknowledging the necessity of merging information from the different 

senses in order to build our perceptual reality, it must also be pointed out that the synthesis 

of multisensory information confers powerful behavioral and perceptual advantages (for 

recent reviews see [1-4]). Indeed, the driving evolutionary forces that undoubtedly led to 

multisensory systems are the powerful adaptive benefits seen when information is available 

from more than a single sense. For example, in animal behavior, the presence of cues from 

multiple senses has been shown to result in improvements in stimulus detection, 

discrimination and localization that manifest as faster and more accurate responses. In a 

similar manner, human studies have revealed multisensory-mediated performance benefits in 

a host of behavioral and perceptual tasks. Several of the more salient of these include the 

speeding of simple reaction times under paired visual-auditory stimulation and increased 

intelligibility of a speech signal when presented in a multisensory (i.e., audiovisual) context 

within a noisy environment [5-13].

A great deal of work has gone into examining the neural correlates of these multisensory-

mediated changes in behavior and perception. These studies have detailed the presence and 

organization of a number of cortical and subcortical structures within which information 

from multiple senses converges, and the neural integration that accompanies this 

convergence in both humans [6, 7, 14-52] and animals [52-82]. In addition, a great deal of 

recent work has gone into describing the modulatory influences that a “non-dominant” 

modality can have on information processing within the “dominant” modality, such as 

examining how visual information can affect the processing of sounds within auditory cortex 

[83, 84]. Indeed, these observations have spurred a debate as to whether or not the entire 

cerebral cortex (and by extension the entire brain) can be considered “multisensory” [85, 

86]. Collectively, these studies have greatly illuminated our understanding of how 

information from the different senses interacts to influence neural and network responses, 

and how these responses are ultimately correlated with behavior and perception.

 A “principled” view into multisensory processing

Along with detailing how neuronal, behavioral and perceptual responses are altered under 

multisensory conditions, prior work has also revealed key operational characteristics 

regarding these multisensory interactions. Perhaps most important among these was the 

general finding that the physical characteristics of the stimuli that were to be combined are 

important determinants of the end product of a multisensory interaction. First studied at the 

level of the individual neuron, these stimulus factors include the characteristics of space, 

time and effectiveness. In regards to space and time, multisensory (e.g., visual-auditory) 

stimuli that are spatially and temporally proximate typically result in the largest 

enhancements in neuronal response [56, 58, 66, 87-90]. In addition, stimuli that are weakly 

effective when presented on their own result in proportionately larger enhancements when 

Wallace and Stevenson Page 2

Neuropsychologia. Author manuscript; available in PMC 2016 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



combined [71, 91, 92]. These basic integrative principles make a great deal of intuitive sense 

in that space and time are powerful statistical indicators of the likelihood that stimuli arise 

from the same event, and in that a highly-salient or effective stimulus is one modality needs 

little amplification. Recent work has added to our understanding of the role that these 

stimulus factors play in multisensory interactions by highlighting their interdependency [58, 

93-97]. Thus, one cannot view space, time and effectiveness as independent entities, since 

manipulations of one, for example spatial location, will also impact the effectiveness of 

those stimuli and the temporal firing patterns associated with them.

Following the description of these principles at the neuronal level, a number of studies have 

followed up on this work in the behavioral and perceptual realms, and has shown that these 

principles often extend into these domains as well. Thus, behavioral and perceptual 

facilitations have been shown to be greatest for stimuli that are close together in space and 

time [90, 98-128], and the proportional benefits of combining stimuli across different 

modalities appear to be greatest when the individual stimuli are weakly effective [18, 21, 22, 

113]. In addition, and much like for the neuronal data described above, recent studies have 

also illustrated the interdependency of these principles in human performance and 

perception [20, 58, 129].

One area of very active research is the applicability of these principles for describing all 

aspects of human performance and perception. Although first driven by studies showing 

exceptions to the spatial, temporal and effectiveness principles described above, more recent 

thinking is converging toward a more dynamic and contextual view of the applicability of 

these principles [130, 131]. In addition to illustrating the flexibility inherent in multisensory 

processes, there are strong suggestions as to the mechanistic underpinnings of such adaptive 

networks and integrative processes, including oscillatory phase resetting and divisive 

normalization [131]. As a more concrete example, in the context of a task in which temporal 

factors are relatively unimportant (e.g., stimulus or target localization), it is expected that 

there would be less (if any) weighting placed on the temporal structure of the stimulus 

complex. Thus, current thinking invokes a flexibly specified set of interactive rules or 

principles tightly related to task performance that ultimately dictate the final product of a 

multisensory stimulus combination.

In the current review, we have chosen to focus on temporal factors, in large measure because 

of the recent accumulation of evidence that has outlined how multisensory temporal function 

changes during typical development, and because of the growing acknowledgment that 

multisensory temporal acuity is altered in a number of neurodevelopmental disabilities – 

three of which, autism, dyslexia and schizophrenia, are highlighted in this review. Although 

this review is framed from the perspective of temporal function for these reasons, we must 

point out that, as alluded to above, both space and spatiotemporal factors are powerful 

players in the construction of our multisensory perceptual gestalt. Indeed, much work has 

focused on describing how these spatial and spatiotemporal factors influence multisensory 

interactions at the neural, behavioral and perceptual levels [20, 58, 89, 90, 97, 116, 117, 128, 

132-138], and any accounting of multisensory function is necessarily incomplete without 

acknowledgement of the important role these factors play as “filters” for multisensory 

systems.
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 The temporal principle expanded: the multisensory temporal binding window

The concept of temporal factors, originally defined on the basis of the temporal tuning 

functions of individual multisensory neurons (fig 1A) [87], has been expanded to capture the 

effects of temporal factors on human psychophysical performance. Although the temporal 

properties of human performance very much resemble their neuronal counterparts (fig 1B) 

[100], when placed in the context of a judgment about the unity of an audiovisual stimulus 

complex (i.e., did they occur at the same time or not), they point to a thresholding process in 

which the observer must make a probabilistic judgment about the nature of the stimulus 

complex. More concretely, in the example shown in Figure 1b, the subject is making 

judgments about the simultaneity of a visual-auditory stimulus pair that is presented at 

varying stimulus onset asynchronies (SOAs) or delays. Note that when the stimuli are 

objectively simultaneous (i.e., an SOA of 0 ms), the subject has a high probability of 

correctly reporting this simultaneity. However, even with delays of a hundred milliseconds 

or more, the subject still reports on a high percentage of trials that the stimuli are 

simultaneous. Such a broad interval within which simultaneity continues to be reported 

suggests a degree of temporal tolerance for stimulus asynchrony, in essence creating a 

“window” of time within which multisensory stimuli are highly likely to be perceptually 

bound or integrated [99, 105, 115, 139-144].

This construct of a multisensory temporal binding window (TBW) is highly adaptive, in that 

it allows multisensory information to be bound even when it originates at differing distances 

from the subject. The biological utility of this is grounded in the substantial differences in 

the propagation times for visual and auditory energy. Consider a visual-auditory event 

happening 1 meter from you vs. 34 meters away. In the first case, the arrival of the visual 

and auditory energies to the eye and ear is nearly simultaneous, whereas in the second 

circumstance the auditory information arrives at the ear approximately 100 ms after the 

visual information impinges on the eye (sound travels at about 340 m/s). Additional 

evidence for the importance of these biological delays can be seen through measures of the 

point of subjective simultaneity (PSS), the exact temporal offset (measured at the sensory 

organ) at which an individual is most likely to perceive two inputs as synchronous. On initial 

thinking, one would expect the PSS to be at 0. However, the PSS in most individuals is 

typically observed when the auditory component of a stimulus pair slightly lags the visual 

stimulus component [for review, see 141].

In recent years a number of salient characteristics about this TBW have been discovered 

(Figure 2). First, the window differs in size for different stimuli, with it being smallest for 

simple audiovisual stimulus pairs such as flashes and beeps, intermediate in size for more 

complex environmental stimuli such as a hammer hitting a nail, and largest for the most 

complex of naturalistic multisensory stimuli – speech [140, 141, 145-147]. Second, the 

TBW exhibits a marked degree of variability from subject-to-subject [148]. Third, the TBW 

continues to mature late into development, with it being broader than for adults well into 

adolescence [101, 120]. Finally, the TBW has been shown to be malleable in multiple ways, 

both adjusting to the temporal statistics of the environment (recalibration [122, 149-153]), 

and in perceptual plasticity studies showing that it can be substantially narrowed with 

feedback training [37, 103, 154, 155].
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Collectively, these studies point to the multisensory TBW as an important component of our 

perceptual view of the world, structured to make strong statistical inferences about the 

likelihood that multisensory stimuli originate from the same object or event. As highlighted 

below, individual differences in this window and alterations in its size are likely to have 

important implications for the construction of our perceptual (and cognitive) representations.

 The neural correlates of multisensory temporal function

As alluded to earlier, much of the foundational work in regards to the neural correlates of 

multisensory function, including its temporal constraints, has come from a midbrain 

structure, the superior colliculus (SC). The primary role of the SC is in the initiation and 

control of gaze (i.e., combined eye and head) movements to a stimulus of interest. Following 

the principles described earlier, these movements are facilitated (i.e., are generally faster and 

more accurate) to multisensory stimuli that are spatially and temporally proximate [109, 

113, 116, 117, 156-160]. However, for perceptual judgments such as the evaluations of 

simultaneity described earlier, it is unlikely that the SC plays a major role. Rather, these 

perceptual (as opposed to sensorimotor) processes appear to be the dominion of cortical 

domains likely to play a central role in stimulus “binding.” One of the central cortical hubs 

for the processing of audiovisual timing relations appears to be the cortex surrounding the 

posterior superior temporal sulcus (pSTS). The pSTS is well positioned for this role in that it 

lay at the junction between occipital (visual) and temporal (auditory) cortex, and it receives 

substantial convergent input from visual and auditory cortical domains. Moreover, the pSTS 

is differentially active during the presentation of synchronous versus asynchronous 

audiovisual stimulus pairs, suggesting an important role in evaluations of audiovisual timing 

[20, 24, 36, 37, 161]. The pSTS has also been shown to signal the perceptual binding of an 

audiovisual stimulus pairing, responding more efficiently to a pairing of identical temporal 

relations that is perceived as a single event when compared to one that is perceived to be two 

distinct events [36]. An additional piece of evidence in support of a central role for the pSTS 

in multisensory temporal function is that following perceptual training that narrows the 

TBW, activity changes as indexed by fMRI are seen in a cortical network centered on the 

pSTS [37]. Finally, numerous studies have shown the pSTS to be an important site for the 

processing of audiovisual speech cues [7, 15, 18, 19, 26, 162, 163], including work that has 

shown that deactivation of the pSTS via transcranial magnetic stimulation (TMS) can 

abolish the McGurk illusion – in which the pairing of discordant visual and auditory speech 

tokens typically results in a novel fused percept [162]. Collectively, these studies point to the 

pSTS as a key node for multisensory convergence and integration, and for the evaluation of 

temporal factors in the perceptual determination of stimulus binding.

 The development of multisensory function

Somewhat surprisingly, although we know a great deal about the characteristics, function 

and behavioral/perceptual correlates of multisensory integration in the adult, our knowledge 

of these processes during development has been less well described. Animal model studies 

have shown that multisensory neurons and their associated integrative properties mature over 

a protracted period of developmental life that extends well into “adolescence” [61, 164-167]. 

In addition, these studies have shown remarkable plasticity in the development of these 

processes, such that changes in the statistical structure (i.e., spatial and temporal stimulus 
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relations) of the early sensory world result in the development of integrative properties that 

match these statistics [53, 168-170].

Much of the work that has examined multisensory function in human development has 

focused on the period soon after birth. These studies have shown a beautiful sequential 

development in the abilities of the infant in their ability to evaluate (and likely bind) 

multisensory relations, with the capacity to evaluate simple features of a multisensory 

stimulus complex (e.g., duration) maturing prior to the ability to evaluate more complex 

features (e.g., rhythm) [171-173]. Examples that are most germane to the temporal 

dimension, the focus of the current review, include the findings that infants begin life with 

much larger temporal binding windows for both audiovisual non-speech and speech stimuli 

(with those for speech being longest [174-176]). In addition, it has been found that the 

window for speech stimuli does not begin to narrow until around 5 years of age [177]. More 

recent work from our group has shown that these developmental processes continue to 

mature well into older ages. Thus, we have shown that the multisensory TBW remains larger 

than for adults well into adolescence (Figure 4) [101, 178]. Intriguingly, this enlarged 

window appears to depend on the nature of the stimuli that are being combined. Thus, 

whereas the window appears larger for the pairing of simple low-level visual and auditory 

stimuli (i.e., flashes and beeps), it is of normal size in these children for more complex 

speech-related stimuli.

Although far from providing a comprehensive characterization of how multisensory 

processes develop in the period leading up to adulthood, these studies have illustrated the 

long developmental interval over which these processes mature, and the marked plasticity 

that characterizes the maturation of multisensory function. With this as a backdrop, it should 

come as little surprise to see that multisensory abilities are frequently altered in the context 

of developmental disabilities.

 Multisensory integration in developmental disabilities

As we have seen, the ability of individuals to perceptually bind sensory information allows 

for significant behavioral benefits and serves to create a coherent and unified perception of 

the external world. If these processes develop in an atypical manner then, it should come as 

little surprise that detrimental behavioral, perceptual and cognitive consequences are the 

result. Here, we will discuss such atypical multisensory function in the context of three 

developmental disabilities; autism spectrum disorders, dyslexia, and schizophrenia. In each 

case, we will highlight the current behavioral and perceptual evidence for atypical 

multisensory temporal processing, describe the evidence for the possible neural correlates of 

these dysfunctions, and outline areas in which further work is needed..

 Autism and emerging evidence for sensory dysfunction

Autism spectrum disorders (ASD) make up a constellation of neurodevelopmental 

disabilities characterized by deficits in social communicative skills and by the presence of 

restricted interests and/or repetitive behaviors. The most recent evidence suggests that the 

incidence of ASD may be as high as 1 child in 88 [179], making it a substantial public health 

problem with large societal and economic costs. Although initially characterized and 
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diagnosed on the basis of deficits in a “triad” of domains – language and communication, 

social reciprocity and restricted/repetitive interests – the presence of sensory deficits are now 

widely acknowledged, warranting their inclusion in the recent revision of the DSM [180].

The challenges in describing and defining sensory dysfunction in the context of ASD have 

arisen in part because of the enormous heterogeneity in these changes – ranging from 

striking hyporesponsivity and underreactivity to sensory stimuli to hyperresponsivity and 

between sensory aversions to sensory-seeking behaviors [180] . Despite this phenotypic 

variability, the fact that upwards of 90% of children with autism have some form of sensory 

alteration suggest it to be a core component of autism.

One of the great challenges with assessing the nature of these sensory changes has been that 

the overwhelming majority of the data has come from anecdotal evidence, caregiver reports, 

or self-report survey measures, limiting the ability to have a comprehensive and empirically 

grounded picture of the nature of these changes. This is currently changing as a number of 

studies are beginning to provide a more objective and systematic view into sensory function 

in autism. This work has served to bolster the more subjective reports, reinforcing the 

presence of processing deficits in a number of sensory modalities, including vision 

[181-194], audition [184, 195-206], and touch [207-209].

However, and seemingly at odds with this evidence, a number of these studies have also 

revealed the presence of normal or even enhanced sensory function in certain children and in 

certain domains [210-230]. Although initially enigmatic, these normal or improved abilities 

appear to be restricted to tasks that tap into low-level sensory function or require extensive 

local (as opposed to global) processing, suggesting that early sensory processing and the 

neural architecture that subserves it may be preserved (or even enhanced) in the autistic 

brain. This finding fits within the hypothetical framework that in autism local cortical 

organization and connectivity are preserved, but processes that rely upon communication 

across brain networks are impaired (see model section below for more detail). As an elegant 

example of this, Bertone and colleagues found that in a visual grating orientation task in 

which the gratings were specified by luminance, children with autism outperformed 

typically developing children [223]. In contrast, when the gratings were specified by 

changes in texture rather than luminance, the children with autism performed more poorly. 

Whereas the neural mechanisms for determining orientation from luminance are believed to 

be in primary visual cortex (V1), the mechanism for deriving orientation from texture are 

believed to take place at later processing stages within the visual hierarchy. This example 

highlights evidence in support of but one of the many neurobiologically-inspired models for 

describing autism and the associated changes in sensory function.

 Neurobiological models of autism

A multitude of brain-based theories of autism have been put forth, each with varying degrees 

of supporting evidence. Several of the more prominent of these, described briefly in this 

section, have been used to explain differences in sensory function in ASD (along with the 

more widely established changes in social communicative function).
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The concept of weak central coherence is closely related to the observations described 

above, in that it suggests that communication across brain networks is preferentially 

impaired in autism [231-233]. In its simplest form, the concept suggests strong deficits in 

holistic or “Gestalt” processing, in which individuals with autism have striking difficulties in 

the processing of global features, but in which the processing of local features is relatively 

intact or even enhanced. One of the hallmark tests used to differentiate local vs. global 

processing is the so-called “embedded figures” test, in which participants are asked to report 

on the number of simple shapes (e.g., triangles) contained within a larger image (e.g., the 

drawing of a clock). Numerous studies have shown that individuals with ASD outperform 

those who are typically-developed, but disagree on the nature of the global deficits seen 

using this task [234-237]. In many respects, weak central coherence can be subsumed within 

ideas of autism as a functional disconnection syndrome or a connectopathy, in which the 

core deficits are founded in weaknesses in connectivity across brain networks and that have 

been seen in both structural and functional connectivity studies ([238, 239][240, 241]. 

Although framed at a different level, these changes in network function can also be seen as a 

result of changes in the excitatory/inhibitory balance, another prevailing model concerning 

the pathophysiology in autism [242]. In this model, the core deficit in autism is the carefully 

balanced ratio of excitation and inhibition within and across brain networks, which if 

disrupted can have dramatic effects on network communication and the associated functional 

correlates. Another emerging model in autism suggests an important role for increases in 

noise or degraded signal-to-noise ratio in the etiology of autism [243-246]. The presence of 

increased noise (which could come from a number of sources) would basically degrade the 

quality of information processing, with increasing effects as one ascends up through an 

information processing hierarchy and thus taps greater and greater integrative abilities (since 

the noise would be cumulative). Finally, the temporal binding deficit hypothesis posits that 

timing-related deficits as a core feature of autism [247]. Indeed, temporal integration is a 

core feature for processing within all sensory systems, and disruptions in timing–related 

circuits could give rise to supramodal or multisensory processing deficits. Although these 

theories have been espoused by different groups at different times, there are striking 

similarities among them that suggest marked commonalities and shared mechanistic 

relations. As just one example, the temporal deficit described above could be the result of 

alterations in connectivity, excitatory/inhibitory balance and/or noisy sensory and perceptual 

encoding.

 Multisensory contributions to autism

The prevalence of observations highlighting deficits in multiple sensory systems, coupled 

with evidence that integrative functions across brain networks may be preferentially 

impacted, has led to an examination of the role that multisensory dysfunction may play in 

autism [248]. Although as highlighted above there is now clear evidence for changes in 

function within the individual sensory systems, this work is predicated on the view that these 

unisensory deficits may not completely capture the nature of the changes in processes that 

index integration across the different sensory systems. In recent years, a number of labs, 

including our own, have attempted to provide a better view into the nature of these changes 

in multisensory function in those with autism.
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To date, the picture that has been generated by these studies has been a complex and 

confusing one. Thus, although a number of studies have reported changes in multisensory 

function that extend beyond those predicted on the basis of changes in unisensory function, 

others have found either normal multisensory abilities, or deficits that can be completely 

explained based on unisensory performance. One of the best illustrations of this complexity 

is in work that has explored the susceptibility of individuals with autism to the McGurk 

effect – the perceptual illusion that indexes the synthesis of visual and auditory speech 

signals [249]. Whereas some groups have found weaknesses in this perceptual fusion 

[250-256], others have found normal McGurk percepts [257, 258] or changes in McGurk 

reports that are accountable by changes in responsiveness to the visual or auditory speech 

tokens [259]. The likely explanations for the substantial disparities across studies include 

differences in the composition of the ASD cohort (with age and severity of symptoms being 

significant factors) and differences in how the specific tasks are structured. Thus, even for 

the McGurk effect, different stimuli and response modes have been used to assay the 

illusion.

 Changes in multisensory temporal function in autism

Despite this confusion, one of the more robust findings in autism is poorer multisensory 

temporal acuity – a finding that typically manifests as a broadening of their multisensory 

TBW [146, 147, 196, 260, 261]. In addition to their concordance with the general finding of 

sensory changes in children with autism, these results are also in agreement with a 

substantial body of evidence pointing to deficits in timing or temporally-based processes in 

autism. Indeed, these deficits have been encapsulated within one of the neurobiologically-

inspired theories of autism described earlier - namely the temporal binding deficit hypothesis 

[247].

Changes in multisensory temporal function in autism have been found using a number of 

different tasks, including simultaneity judgments [147], temporal order judgments [146, 

196], the perception of the sound-induced flash illusion [260], and preferential looking tasks 

[261] (Figure 5). In each of these studies, the basic finding is that individuals with ASD 

perceive paired visual-auditory stimuli as originating from the same event over longer time 

intervals than for control groups (i.e., they report simultaneity even when the stimuli are 

substantially asynchronous). One interesting, and to date unresolved, difference between 

these studies is whether the TBW is extended for all types of visual-auditory stimuli, or only 

for specific stimulus types more closely related to the well-established domains of weakness 

(e.g., speech). Thus, whereas much work supports differences only for speech-related stimuli 

[147, 261], other studies suggest more generalized temporal deficits that extend to pairs of 

very simple stimuli (i.e., flashes and beeps) [146]. Although future work will need to resolve 

these differences, it is important to point out here that although there are likely to be 

commonalities in the brain networks supporting multisensory (or at least audiovisual) 

temporal function, there are also likely to be separate mechanisms governing the integration 

of low- vs. higher-level audiovisual stimuli. For example, whereas the integration of lower-

level flashes and beeps (which can be considered to represent an “arbitrary” pairing) are 

likely to not involve brain regions interested in contextual or semantic congruence (another 

important facet of multisensory binding), the integration of higher-level stimuli such as 
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object or speech cues will also entail activation in network components performing such 

contextual computations.

Why would an enlarged TBW in autism necessarily be a bad thing? One reason is that the 

temporal fidelity or tuning of multisensory systems decides on which stimuli should be 

bound and which should not. The binding of stimuli over longer temporal intervals is likely 

to result in the creation of poor or “fuzzy” multisensory perceptual representations in which 

there is a great deal of ambiguity about stimulus identity. Typically, the temporal 

relationship between two sensory inputs is an important cue as to whether those inputs 

should be bound. When the perception of this temporal relationship is less acute, subjective 

temporal synchrony loses its reliability as a cue to bind. The end result of losing such a 

salient cue and important piece of information is that the individual shows weaker binding 

overall. In support of this idea is recent work from our laboratory and that has illustrated a 

strong relationship between the multisensory TBW and the strength of perceptual binding 

[147, 148]. In this study, the width of the TBW was found to be strongly negatively 

correlated with perceptual fusions as indexed by the McGurk effect (Figure 5). This finding 

lends strong support to the linkage between multisensory temporal function and the creation 

of perceptual representations, an area of inquiry that we believe will be extremely 

informative moving forward.

 Multisensory temporal function and the creation of veridical perceptual and cognitive 
representations

In our view, the importance of the worked cited above extends well beyond the links that 

have currently been established. Sensory, and by extension multisensory, processes form the 

building blocks upon which perceptual and cognitive representations are created. These 

input streams are crucial not only for the “maps” that form the cornerstone of early 

subcortical and cortical sensory representations, but also for so-called “higher-order” 

processes that are dependent on the integrity of the information within the incoming sensory 

streams. Such a framework predicts that changes in sensory and multisensory processes will 

have cascading effects upon the information processing hierarchy, ultimately impacting 

cognitive domains such as attention, executive function, language and communication and 

social interactions [147, 262-266].

Focusing on the social and communicative pieces because of their relationship to autism, it 

must be acknowledged that both are not only highly dependent upon sensory information, 

but also are dependent upon the integration of information across the different sensory 

modalities [266]. Language and communicative function are highly multisensory, depending 

not only upon the auditory channel but also upon the associated visual cues such as 

articulatory gestures that provide vital information for the comprehension of the speech 

signal (particularly in noisy environments – see [5-13]). In a similar fashion, the 

interpretation of social cues is keenly dependent upon multisensory processes. Inflections of 

the voice, facial gestures, and touch convey important social information that must be 

properly integrated in order to fully understand the content of the social setting.

Although intuitively appealing, much work needs to be done in order to establish these 

critical links between sensory and multisensory function and higher-order abilities. Indeed, 
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ongoing work in our laboratory is using large-scale correlational matrices in order to identify 

important associations between a battery of sensory and multisensory tasks that we now 

routinely use, and a host of measures of cognitive abilities. In an associated manner, we have 

recently examined multisensory speech perception in a cohort of ASD and typically-

developing (TD) children between the ages of 8 and 17 [147]. Consistent with our prior 

work, ASD children showed an increased width to their multisensory TBW, as well as 

differences in the degree to which they fused concordant audiovisual speech stimuli. 

Children with ASD also exhibited a strong relationship between the strength of their 

perceptual binding on concordant audiovisual trials and the communication subscore of the 

ADOS, with lower (i.e., more typical) scores being associated with greater binding [267] 

(Figure 5). Thus, the temporal acuity of individuals’ multisensory binding is directly 

correlated with their abilities to integrate audiovisual speech, and the correlation between 

multisensory temporal processing and ADOS communication scores suggests that this 

relationship may extend into clinical manifestations of ASD. Although this work suggests 

important links between some of the key diagnostic features of autism and multisensory 

function, much more needs to be done in order to fully elucidate the nature of these 

relationships.

In addition to the recent data linking multisensory temporal acuity, speech integration and 

ADOS communication scores in the ASD populations, ongoing research has begun to 

examine these relationships to autistic-like traits in the general population (referred to as the 

broader or extended phenotype). Autistic traits are found to varying degrees in the 

population at large, and can be indexed through scales such as the Autism-spectrum 

Quotient [ASQ; 268] or the Broad Autism Phenotype Questionnaire [269]. These traits can 

then be correlated with any number of perceptual measures. For example, a recent study by 

Donohue and colleagues [270] showed that the point of subjective simultaneity (PSS) varies 

relative to the (non-clinical) level of autistic traits an individual exhibits. The PSS, that point 

in time in which an individual perceives a visual and auditory event to be absolutely 

synchronous, tends to be observed when the auditory stimulus component slightly lags the 

visual component, reflecting the statistics of the natural environment (i.e. auditory 

information travels more slowly when compared with visual information). Individuals 

showing greater levels of autistic traits however, tend to have PSS measurements closer to 

absolute synchrony, reflecting a decrease in adaptation to the statistics in the external 

environment.

 The neurobiological substrate for an extended multisensory TBW in ASD

As described earlier, the cortex of the posterior superior temporal sulcus (pSTS) has been 

implicated as a major node in the computation of multisensory temporal relations. Hence, 

with the wealth of evidence suggestive of alterations in multisensory temporal function with 

autism, a logical biological basis for these differences would be changes in the structure 

and/or function of pSTS. Indeed, some of the most characteristic structural alterations in the 

brains of those with autism are differences in gray and white matter associated with the 

pSTS [271-275]. Furthermore, a number of functional studies (i.e., fMRI) have pointed to 

differences in the activation patterns within pSTS in autism, as has work looking at both 

functional and structural connectivity of the pSTS [276-281]. Finally, our lab has shown that 
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training that is focused on improving multisensory temporal acuity results in changes in 

activation and connectivity in a network centered on the pSTS [37]. Collectively, these 

studies suggest that changes in pSTS in individuals with autism may represent the neural 

bases for altered multisensory temporal function, and may be a key node in networks 

responsible for the changes in social and communicative function.

 Multisensory temporal contributions to developmental dyslexia

Although autism represents the clinical condition in which multisensory function has been 

best characterized, evidence suggests that multisensory deficits, and specifically those in the 

temporal domain, are not unique to autism. Both sensory and multisensory changes have 

been found to accompany dyslexia, a reading disability in which affected individuals have 

profound reading difficulties in the background of normal or even above-normal 

intelligence. Like with autism, numerous neurobiological theories have been espoused for 

dyslexia, with most being centered on the substantial differences in phonological processing 

seen in these individuals. Although many of these theories are centered on changes in brain 

structures responsible for the processing of phonology and phonological relations (e.g., see 

[282-286]), others have suggested that these phonological deficits may be a result of 

processing difficulties at earlier stages. One of the most well-developed of these views 

centers on the magnocellular layers of the thalamus [287, 288]. In this view, selective 

deficits in the magnocellular visual stream, which subserves the processing of motion, play a 

key role in dyslexia. Supporting evidence for this theory comes from reports of abnormal 

eye movements in dyslexia, and from altered activation patterns in areas of the cerebral 

cortex specialized for processing stimulus motion [289].

The evidence for changes in both visual and auditory function in dyslexia is suggestive that 

it may be fruitful to consider the disorder in a more pansensory or multisensory framework. 

Indeed, some of the original clinical descriptions of dyslexia from the neurologist Samuel 

Orton are rife with multisensory references [290], and to date the most widely adopted 

intervention approach, the Orton-Gillingham method, is founded on multisensory principles 

[291]. In addition, several early studies of reading disabled and reading delayed individuals 

found changes in cross-modal (visual-auditory) temporal function, consistent with a 

multisensory contribution to reading dysfunction [292, 293]. In order to attribute a specific 

multisensory contribution to the disorder, however, it is first necessary to show that the 

nature of the multisensory changes cannot be ascribed simply to changes in unisensory 

function. Stated a bit differently, it would not be terribly surprising (or interesting) to see 

multisensory changes accompanying changes in visual (and/or auditory) function. Of 

interest is whether these changes go beyond those that can be predicted based on unisensory 

differences.

In an effort to examine specific multisensory alterations in dyslexia, we adopted a 

multisensory version of the familiar and frequently employed visual temporal order 

judgment (TOJ) task. Prior work in typical subjects had found that the introduction of a pair 

of task-irrelevant sounds during performance of the visual TOJ task could improve 

performance, most notably when the second sound lagged the appearance of the second light 

[294]. Taking advantage of this task, we were able to show striking differences between 
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dyslexic and typical readers – specifically in the time window within which the second 

auditory stimulus could enhance visual performance (Figure 6) [142]. Dyslexic readers 

received benefits from this sound over intervals more than twice as long as typical readers, 

suggesting that they are “binding” visual and auditory stimuli over unusually long periods of 

time. We speculate that such an extended TBW will present substantial difficulties for the 

construction of strong reading representations, in that it will present greater ambiguity as to 

which auditory elements of the written word (i.e., phonemes) belong with which visual 

elements (i.e., graphemes). In support of this, EEG studies have shown that as readers 

progress to fluency, letters and speech-sounds are combined early and automatically in the 

auditory association cortex, and that this processing is strongly dependent on the relative 

timing of the paired stimuli [295, 296]. Furthermore, it was found that for dyslexic readers, 

this progression to automaticity failed to take place [297].

Additional evidence that sits outside of the domain of temporal function has been gathered 

in support of multisensory alterations in dyslexia. For example, deficits in spatial attention to 

both visual and auditory stimuli have been linked to phonological skills in dyslexia [298]. In 

addition, Blau and colleagues have shown using fMRI that dyslexic readers underactivate 

regions of the superior temporal cortex when binding the auditory and visual components of 

a speech signal [299]. As highlighted earlier, the cortex surrounding the pSTS is a critical 

node for the convergence of auditory and visual information, and appears to play a key role 

in the temporal binding of these signals. Indeed, the pSTS and its associated gyrus (the 

superior temporal gyrus) have been implicated as key regions of difference between typical 

and dyslexic readers (e.g., see [300-304]). Overall, these studies point to an important role 

for multisensory function in dyslexia, but much more work needs to be done to better 

understand how these changes ultimately result in poor reading performance [305].

 Evidence for multisensory abnormalities in schizophrenia

Schizophrenia is a complex psychiatric disorder best characterized by changes in thought 

and emotional reactivity. Frequently accompanying schizophrenia are delusions and 

hallucinations, with the latter resulting in research into the nature of sensory (i.e., auditory) 

processing differences and their contributions to the cognitive changes seen in schizophrenia 

[306-312]. Although these studies have indeed highlighted changes in auditory and visual 

processes and cortical organization in schizophrenia, no clear picture as to how sensory 

dysfunction contributes to the overall schizophrenia phenotype has emerged. Nonetheless, as 

for autism and dyslexia, the presence of these sensory changes across multiple modalities 

begs for an examination of multisensory function.

Clinical reports have long suggested changes in multisensory function in schizophrenia, 

most notably seen in the ability to match stimuli across the different sensory modalities (i.e, 

cross-modal matching, see [313]). More empirically directed work subsequently found there 

to be deficits in the integration of audiovisual stimuli in a schizophrenia cohort, and that this 

deficit appeared to be restricted to speech-related audiovisual stimuli and was amplified 

under noisy conditions [314-318]. A subset of these studies also revealed differences in 

multisensory performance specifically when the tasks indexed the emotional valence of the 

auditory (voice) and visual (face) stimuli. Other work has suggested the presence of deficits 
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in lower-level multisensory integration, specifically in demonstrating reduced facilitation of 

reaction times on a visual-auditory target detection task [319]. In a recent EEG study 

comparing between those with schizophrenia and controls, it was found that the neural 

signatures associated with typical audiovisual integration were absent or comprised in the 

schizophrenic patients [320].

One crucial issue as it relates to the establishment of specific multisensory deficits in 

schizophrenia (or in any other clinical condition) is to show that changes in performance 

and/or perception are either unique to the multisensory conditions, or cannot be predicted 

based on the changes seen in unisensory function. For this reason, it is essential that 

measures of multisensory function are contrasted against unisensory measures. Although 

such unisensory-multisensory contrasts are becoming increasingly common, some of the 

earlier studies failed to test for unisensory changes, making it difficult to interpret the 

differences in multisensory performance.

Numerous prior studies have suggested that in addition to sensory-based problems, 

individuals with schizophrenia have alterations in temporal perception [312, 321-323]. 

Indeed, prior work has merged these areas of inquiry, and has shown changes in both 

unisensory and multisensory temporal perception in schizophrenia, which manifest as a 

lessened acuity in judging the simultaneity between visual, auditory and combined visual-

auditory stimulus pairs [322, 324]. In an effort to follow up on this work with an emphasis 

on the TBW and on the specificity of these effects for multisensory integration, we have 

recently embarked on a study designed to detail the nature of these changes and their 

relationships to the constellation of clinical symptoms. Although preliminary, this work is 

suggestive of changes in multisensory temporal function that we believe may be important 

factors in the schizophrenia phenotype.

 Training as a therapeutic tool to engage unisensory and multisensory plasticity

As alluded to in the prior section, ongoing work in our laboratory has focused on using 

approaches grounded in perceptual plasticity to train sensory and multisensory systems. In 

addition to its application for those wearing cochlear implants, we believe that such methods 

also hold promise for clinical conditions such as autism and schizophrenia, most notably in 

their possible utility for improving sensory and multisensory temporal acuity. As highlighted 

in an earlier section, we have successfully trained individuals to narrow the width of their 

TBW [103, 154], with these changes accompanied by changes in a brain network centered 

on the pSTS (Figure 7) [37]. Most encouraging in these normative studies was the finding 

that those who benefited the most from training (i.e., showed the largest changes in the size 

of their TBW) were those for whom the TBW was the largest prior to training [103, 154]. 

Hence, our findings of enlarged multisensory TBW in autism, dyslexia and schizophrenia 

suggest that these individuals may be highly susceptible to perceptual training methods.

In preliminary work in autism, we have shown this to be the case, with several days of 

training resulting in a significant narrowing of the TBW. Although very exciting, this work 

needs to be extended to show that this training results in changes beyond the trained task and 

domain. We are encouraged by our results in our typical cohort, which have shown that 

training using low-level stimuli (i.e., flashes and beeps) on one task (i.e., simultaneity 
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judgment) can result in changes in the TBW for the processing of higher-level (i.e., speech) 

stimuli in the context of a different task (i.e., perceptual fusions as indexed by the McGurk 

effect). The presence of such generalization is extraordinarily exciting, but must now be 

extended to see if these training regimens can engender meaningful change in measures of 

real world function – such as improvements in social skills and communication. Although 

still in their early stages, we feel that these perceptual plasticity-based approaches hold great 

promise as potential tools that can be incorporated into behaviorally-based remediation 

methods.

 Concluding remarks

Sensory and multisensory dysfunction accompanies many developmental disabilities. 

Although widely acknowledged, the presence of these deficits is often overlooked from the 

perspective of how they can inform and contribute to the characteristics that are considered 

defining for the disorder. Using autism as an example, it is only with the recent update to the 

DSM-5 that sensory problems are considered a core feature of the disorder. Even with this 

important acknowledgment, little empirical evidence exists to better characterize the nature 

of these sensory disturbances, and perhaps more importantly, to relate these changes to 

higher cognitive abilities. This landscape is changing, and is beginning to reveal the 

importance of a more integrated and holistic view into these interactions and 

interrelationships.

The current review focuses on but one facet of these sensory changes – multisensory 

temporal processes – and on but a few of the clinical conditions in which a picture is 

beginning to emerge. The presented evidence illustrates that both unisensory (i.e., within 

modality) and multisensory (i.e., across modality) processes are frequently affected in 

autism, dyslexia and schizophrenia. There is surprising commonality in the way in which 

multisensory function is altered in these three disorders, with the principal finding being an 

enlargement in the width of the multisensory temporal binding window – that epoch of time 

within which stimuli from different modalities interact and influence one another's 

processing. How such an enlarged time window ultimately impacts the perceptual and 

cognitive features that define each of these conditions, particularly given the striking 

phenotypic differences between them, remains to be determined. Nonetheless, these results 

bring into focus the critical importance of sensory and multisensory function, and the strong 

need to employ a battery of tasks designed to index various aspects of (multi)sensory 

function, and to relate performance on these tasks to cognitive and perceptual abilities in 

order to establish sensory-perceptual-cognitive links. In conjunction with brain-based 

physiological measures, such as EEG and MRI, and the associated connectivity and network 

analyses, these approaches will undoubtedly reveal key pathophysiological features for each 

of these clinical conditions.

Finally, in addition to providing a more integrated and detailed view into these behavioral, 

perceptual and neurobiological characteristics, the current work holds great promise from an 

interventional perspective. We predicate this concept on the view that (multi)sensory 

function forms the building blocks for higher-order representations. Thus, training methods 
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that improve (multi)sensory function will also be likely to have effects that cascade beyond 

the trained tasks and domains.
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Highlights (NSY-D-14-00152)

• The review focuses on altered multisensory function in developmental 

disabilities

• Multisensory temporal acuity is altered in autism, dyslexia and 

schizophrenia

• The construct of the multisensory temporal binding window is critical in 

perception

• Perceptual training may have utility in improving multisensory function
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Figure 1. 
Representative multisensory temporal “filters” for neurons and perception. Panel on the left 

(A) shows the temporal tuning function for a neuron in the cat superior colliculus in 

response to paired audiovisual stimuli. Plotted is the gain in neuronal response (i.e., 

multisensory interactive gain) as a function of the stimulus onset asynchrony between the 

visual and auditory stimuli. Negative values represent conditions in which the auditory 

stimulus precedes the visual stimulus. Panel on the right (B) shows the responses of a 

representative human subject for a simultaneity judgment task. Plotted is the percentage of 

reports of simultaneity as a function of stimulus onset asynchrony. Note the similarities in 

the neuronal and psychophysical distributions.
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Figure 2. 
Methods of characterizing multisensory temporal function in human subjects. A. Individual 

subjects’ points of subjective simultaneity (PSS) determined using three different temporal 

tasks: a two-alternative forced-choice simultaneity judgment (SJ2; “same time different 

time?”), a three-alternative forced-choice simultaneity judgment (SJ3; “audio first, same 

time, or visual first?”), and a temporal order judgment (TOJ; “Which came first?”). Note that 

with all three tasks, individuals PSS values fell in the visual-leading range. Adapted from 

van Eijk et al, 2008. B. The size of the multisensory temporal binding window (TBW) is 
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highly variable between subjects, but within each subject the size of the left (auditory 

leading) and right (visual leading) windows are strongly correlated. Adapted from 

Stevenson, Zemtsov and Wallace, 2012. C. The width of the TBW is very dependent upon 

the type of stimuli presented, with narrower windows (high temporal acuity) being seen for 

simple (i.e., flashes and beeps) stimuli, and the widest windows being observed for speech 

stimuli. Adapted from Stevenson and Wallace, 2013. D. Perceptual learning paradigms have 

been shown to reliably increase individual's multisensory temporal acuity, as indexed by a 

narrowing of the TBW. Adapted from Schlesinger et al., In Press.
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Figure 3. 
The cortex surrounding the posterior superior temporal sulcus (pSTS) is integrally involved 

in the integration of visual and auditory information. A. The pSTS as defined as the 

conjunction of brain regions functionally responsive to intact auditory stimuli over their 

scrambled equivalents AND intact visual stimuli over their scrambled equivalents. The pSTS 

is located directly between auditory-only and visually-only responsive regions, making it a 

logical site for audiovisual convergence and integration. Adapted From James et al, 2012. B. 

Subregions of pSTS appear to be engaged in different multisensory processes. The subregion 

of pSTS defined as responding more to synchronous as opposed to asynchronous stimuli 

does not respond differentially according to the individual's perceptual reports (pink and 

light blue bars). In contrast, the subregion of pSTS defined as a conjunction of auditory and 

visual responsive regions (see Figure 3A) responds differentially according to the 

individual's perceptual reports (pink and light blue bars), even when the stimuli are identical. 

These data suggest that this may be the region of perceptual “binding” for the auditory and 

visual stimuli. Adapted from Stevenson et al, 2011. C. When given perceptual feedback 

training to improve multisensory temporal processing, the neural analogs of this change are 

centered about pSTS. The BOLD responses from these regions show more efficient 

processing of synchronous (and thus likely perceptually bound) stimuli. Adapted from 

Powers et al, 2012. D. When TMS is applied to pSTS during presentation of stimulus pairs 

that typically result in the McGurk illusion, individuals’ ability to perceptually bind the 
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auditory and visual components is impaired, resulting in decreases in perception of the 

illusion. Adapted from Beauchamp et al, 2010.
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Figure 4. 
The size of the multisensory temporal binding window (TBW) is smaller in adults than in 

children and adolescents. Bar graph displays mean window size for children (ages 6-11, 

left), adolescents (ages 12-17, middle) and adults (ages 18-23, right) (n = 15 participants/ 

group). * = p < .05. Error bars indicate ±1 standard error of the mean (SEM). Adapted from 

Hillock-Dunn and Wallace, 2012.
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Figure 5. 
Differences in the multisensory temporal binding window are a characteristic feature of 

autism that relate to other domains of deficit. A. Temporal binding windows (TBW) 

measured in individuals with and without ASD show differences across stimulus type. A 

main effect of complexity was seen in both groups, with more complex stimuli associated 

with wider TBWs. An interaction effect showed that this effect of complexity was greater in 

individuals with ASD, and most notably, that a difference specific to the processing of 

audiovisual speech stimuli between ASD and TD groups was observed. Adapted from 

Stevenson et al., J Neurosci. 2014. B. In individuals with ASD, the ability to perceive the 

McGurk Effect is negatively correlated with the width of their TBW. That is, as individuals’ 

multisensory temporal acuity decreased (wider TBWs), so too did their ability to 

perceptually bind audiovisual speech in order to perceive the McGurk Effect. This 

relationship was seen when the TBW was measured using simple (i.e., flashbeep), complex 

non-speech (i.e., tools) and speech stimuli, suggesting that this relationship is based, at least 

in part, on low-level multisensory temporal processing. Adapted from Stevenson et al., J 

Neurosci. 2014. C. Individuals who showed more atypical auditory processing, as measured 

via the auditory processing score of the Sensory Processing Caregiver Questionnaire (SP), 

showed lower rates of McGurk perceptions (r = 0.51, p < 0.05). Similarly, individuals who 

showed atypical attention, as measured with via the inattention score of the SP, showed 

weaker McGurk perceptions (r = 0.61, p = 0.01). Adapted from Woynaroski et al., J. Autism 

Devel Disabil. 2014. D. Individuals that showed greater difficulties with communication, as 

measured by the Autism Diagnostic Observation Schedule's (ADOS) communication 

domain score, were less likely to accurately perceive congruent audiovisual speech (r = 

−0.58, p < 0.05). A similar trend was seen with the ADOS reciprocal social interaction 
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domain score, but failed to reach significance (r = −0.29, p > 0.05), likely a result of the 

relatively small sample size. Adapted from Woynaroski et al., J. Autism Devel Disabil. 2014.
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Figure 6. 
Alterations in multisensory temporal function in developmental dyslexia. A. Typical readers 

show a pattern of benefits on a visual temporal order judgment (TOJ) task in which an 

accessory auditory stimulus can facilitate task performance, but only when presented with a 

specific temporal structure relative to the visual stimuli. Specifically, only when the second 

auditory stimulus is delayed by between 100-250 ms are accuracy improvements seen. B. In 

contrast, for dyslexic readers both the magnitude and the temporal pattern of benefits differ 

substantially. Most importantly, performance improvements are now seen at all tested delays, 

suggesting an enlargement in the audiovisual temporal binding window. Adapted from 

Hairston et al., 2005.
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Figure 7. 
Training on a multisensory temporal task results in activation changes in a network of areas 

centered on the pSTS. A. Red and yellow colors represent two ROIs in the pSTS that 

showed activation during visual and auditory conditions and that were altered following 

perceptual training. B-D. Mean percent signal change for all voxels in the posterior pSTS 

ROI (yellow box, B), the anterior pSTS ROI (red box, D) and for the two combined (orange 

box, C). Note that significant decreases in the BOLD response were found following training 

for stimulus onset asynchronies (SOAs) that represent the easiest conditions (i.e., SOA 0 and 
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SOA 300). In contrast, little changes was seen for the intermediate SOA that defined the 

borders of each individual's TBW (SOA RWS). E-G. Mean percent signal changes as a 

function of accuracy for SOA 300 and SOA RWS trials for the posterior (E), anterior (G) 

and combined ROIs (F). Adapted from Powers, Hevey and Wallace, 2012.
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