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Abstract Aspergillus fumigatus is a saprotrophic filamentous
fungus and also the most prevalent airborne fungal pathogen
of humans. Depending on the host’s immune status, the vari-
ety of diseases caused by A. fumigatus ranges from allergies in
immunocompetent hosts to life-threatening invasive infec-
tions in patients with impaired immunity. In contrast to the
majority of other Aspergillus species, which are in most cases
nonpathogenic, A. fumigatus features an armory of virulence
determinants to establish an infection. For example,
A. fumigatus is able to evade the human complement system
by binding or degrading complement regulators. Furthermore,
the fungus interferes with lung epithelial cells, alveolar mac-
rophages, and neutrophil granulocytes to prevent killing by
these immune cells. This chapter summarizes the different
strategies of 4. fumigatus to manipulate the immune response.
We also discuss the potential impact of recent advances in
immunoproteomics to improve diagnosis and therapy of an
A. fumigatus infection.
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Introduction

Fungal pathogens cause a wide range of diseases ranging from
allergies and superficial infections to life-threatening invasive
mycoses. Often, the outcome of a fungal infection depends on
the immune status of the host organism. In particular, individ-
uals with a compromised immune system represent a group at
high risk to develop fatal fungal infection. The continuous
progress in intensive care, e.g., in chemotherapy and organ or
bone marrow transplantation, contributes to the steadily in-
creasing number of patients with impaired immune status [1].

The genus Aspergillus comprises more than 250 species,
including on the one hand “good guys” that are industrially
used for production of pharmaceuticals, beverages, and food
additives; but on the other hand also, several “bad guys” that
call for toxin-based crop spoilage or being the causative agent
of severe fungal infections. Among the latter group,
Aspergillus fumigatus is the number one airborne fungal path-
ogen of humans. To date, neither reliable diagnostic tools nor
effective treatment options are available resulting in unaccept-
able high mortality rates of patients suffering from invasive
fungal infections [2]. Therefore, the identification of new
diagnostic markers and the development of novel therapeutics
for specific intervention are of great importance. Especially,
the characterization of the pathogen’s strategies to defend
against attacks of host immune cells is interesting to under-
stand pathogenicity and is important for the identification of
potential therapeutic targets.

This article focuses on the interaction of A. fumigatus with
components of the human immune system. In detail, we
discuss the various strategies of this fungus to interfere with
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lung epithelial cells and phagocytes such as macrophages and
neutrophils, and we illustrate how A. fumigatus evades the
human complement (Fig. 1). Finally, we will discuss recent
advances in immunoproteomics and their impact on target
identification and improvement of diagnosis (Fig. 2).

Interaction of 4. fumigatus with lung epithelial cells

Conidia of 4. fumigatus are comparatively small with a diam-
eter of only 2-3 pum. They are propagated easily through the
air and enter the human host via the airway, where they infect
the lung tissue and intrude to the lower respiratory system [3].
Epithelial cells of the lung therefore represent the first contact
barrier where A. fumigatus interacts with host cells. The
alveolus is lined by alveolar epithelial type I and type II cells
and especially type II pneumocytes maintaining the alveolar
space are confronted to inhaled conidia. In contrast to macro-
phages or neutrophils, pulmonary epithelial cells represent
nonprofessional phagocytes. Upon contact, conidia were
shown to strongly adhere to type II pneumocytes of the
A549 cell line, which then start to engulf the fungus.
Endocytosed conidia are able to survive and reside inside
A549 cells [4, 5].

According to the fact that manipulation of host cell apo-
ptosis is an important strategy of many pathogens to establish

Fig.1 Schematic depiction of the complement system
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an infection, it was found that A. fumigatus inhibits apoptosis
in different epithelial cell types [6]. Only recently, it was
shown that the fungal 1,8-dihydroxynaphthalene (DHN)-mel-
anin is responsible for this effect on the epithelial apoptosis
process [7]. DHN-melanin is also essential to prevent
phagolysosomal acidification in alveolar epithelial cells to
survive intracellularly. A current hypothesis is that since
phagocytic activity of epithelial cells is rather low, some
conidia might persist within these cells and thereby represent
the infectious reservoir after impairment of the host’s immune
system [7].

Interestingly, the mechanisms by which A4. fumigatus inter-
fere with nonprofessional phagocytes is largely similar to
professional phagocytic cells, i.e., macrophages and neutro-
phils, as described in detail in the following.

Interaction of A. fumigatus with alveolar macrophages

Invading conidia in the lung tissue encounter the resident
leucocytes which constitute the first line of the host’s immune
defense. Alveolar macrophages are homed just beneath the
alveolar surfactant film and represent 90 % of the resident
leucocytes in the lung [8]. They are credited with a major
contribution to the initial immune response against
Aspergillus infections besides neutrophil granulocytes.
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Fig. 2 Identification of immunoreactive proteins of 4. fumigatus by immunoblot analysis of 2D-electrophoresis maps with patient sera

Alveolar macrophages originate from immigrating blood
monocytes or from precursor cells residing in the lung [8].
Patients with reduced numbers of those phagocytes, e.g., due
to lymphatic or leukemic malignomes or after stem cell or
solid organ transplantation, have increased susceptibility to-
wards aspergillosis [2, 9]. The recognition of conidia by
alveolar macrophages leads to phagocytosis and induces the
expression of inflammatory chemokines and cytokines such
as TNF-q, IL-12, IFN-y, IL-18, IL-6, IL-13, MIP-1, MIP-1«,
MIP-2, G-CSF, and GM-CSF [10-12]. They recruit further
professional phagocytes such as circulating macrophages,
neutrophil granulocytes, and dendritic cells (DCs) to the site
of infection. The interaction of 4. fumigatus with neutrophils
is described in more detail below. Dendritic cells are able to
phagocytose conidia and even hyphae, and their function in
antigen presentation via the major histocompatibility complex
class I (MHC I) is important to initiate the adaptive branch of
the immune system by the activation of T cell and antibody
responses [13, 14].

The fungal surface is composed of «- and (-glucans,
chitins, galactomannans, and other polysaccharides. In partic-
ular, 3-1,3-glucans and galactomannans are highly immuno-
genic molecules and prominent pathogen-associated patterns
(PAMPs) of fungi [15, 16]. However, the rodlet layer com-
posed by the hydrophobic RodA protein and the pigment
DHN-melanin on the surface of resting 4. fumigatus conidia
render the conidia largely inert towards recognition by the
immune system [17]. Swelling and germination of conidia are
accompanied by a subsequent loss of the protective melanin
and hydrophobin layer and thereby lead to an increasing

exposure of immunological surface components and en-
hanced phagocytosis [16, 18]. Pigmentless strains, due to
deletion or mutation of the pksP gene encoding the polyketide
synthase essential for melanin biosynthesis, display a smooth
surface structure and enhanced phagocytosis during co-
incubation with macrophages [19-21]. DHN-melanin has
been shown to be important for correct cell wall assembly
and ascribed a function in the defense against the host’s
immune response [22, 23]. Remarkably, a lack of DHN-
melanin is accompanied with attenuation of virulence [19,
24].

Different pathogen recognition receptors (PRRs),
which are expressed by cells of the innate immune sys-
tem, are responsible for the detection of specific PAMPs
[25]. The DC-specific intracellular adhesion molecule
3-grabbing nonintegrin (DC-SIGN), which is mainly
expressed on DCs, binds fungal galactomannans also on
macrophages and initiates phagocytosis [26]. Toll-like
receptors (TLRs) 2 and 4 have been attributed with
immune recognition and modulation of the immune response
in Aspergillus infections [27-29], although their actual
function in invasive aspergillosis has not been rigorously
elucidated yet. TLR2 was ascribed to sense chitin on the
fungal surface, and TLR4 presumably detects x-glucans
[30, 31]. A contribution of TLR9 to spore detection is
discussed [32]. The main route of fungal recognition is the
specific binding of the C-type lectin dectin-1 to (3-1,3-glucans
which are exposed on the fungal surface [11]. Dectin-1 is
expressed on macrophages, monocytes, neutrophils, DCs,
and a subset of T cells [33].
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After pathogen recognition, phagocytosis is induced.
Within the phagocyte, the conidium-containing phagosome
fuses with lysosomes to form the phagolysosomes. Killing of
the pathogen is observed starting around 6 h after ingestion
[34]. Swelling of the conidium and acidification of the
phagolysosome is prerequisite for efficient elimination [35].
During the fusion events with lysosomes, hydrolytic enzymes
are exchanged. They comprise proteases, most importantly the
cathepsins D, B, H, L, and S [36]. Further enzymes are
hydrolases such as (3-hexosaminidase and [3-glucoronidase,
lipases, and DNases [37]. Upon acidification of the compart-
ment, these hydrolytic enzymes gain their catalytic activity
towards the ingested particle.

A requirement for the biocidal property of the
phagolysosome is the acidification of the compartment. The
vacuolar ATPase (vATPase), a multiprotein membrane com-
plex, has a major contribution in lowering the
intracompartmental pH from pH >6 to pH <4.5 by pumping
H" ions across the membrane in an ATP-dependent reaction
[35]. Treatment of macrophages with the vATPase inhibitor
bafilomycin A resulted in a complete abolishment of acidifi-
cation and confirmed the major role of the vATPase in the
phagolysosomal acidification [38]. Conidia of the
A. fumigatus wild type are localized to a much lower rate in
such acidified compartments. Thywissen et al. [39] found the
conidial pigment DHN-melanin to be a crucial factor for the
inhibition of phagolysosomal acidification. In assays to inves-
tigate phagocytosis and intracellular processing of wild-type
conidia compared to conidia of the pigmentless pksP mutant,
wild-type conidia revealed retarded uptake by macrophages
compared to mutant conidia. The intracellular
phagolysosomal maturation process, especially fusion events
with endosomes and lysosomes, was reported to be similar for
both strains. By contrast, a striking difference in the acidifica-
tion of the phagolysosome was observed. Whereas
phagolysosomes that contained pksP mutant conidia acidified
to pH below 4.5, the wild-type conidia containing
phagolysosomes showed no reduction of pH. Melanin ghosts
showed the same effect of reduced acidification, emphasizing
the role of DHN-melanin in this mechanism [24, 39]. Other
melanins such as DOPA melanin were not able to inhibit
phagolysosomal acidification [40]. A contribution of the
hydrophobin layer could be excluded, because conidia of a
Arod4 mutant strain did not inhibit acidification of the
phagolysosome [17, 24, 39]. Furthermore, DHN-melanin de-
ficiency did not interfere with the formation of rodlet struc-
tures on the conidial surface [39].

Melanized conidia of 4. fumigatus were shown to inhibit
apoptosis by activation of PI 3-kinase/Akt signaling pathway
[41]. The internalization of melanized conidia prevented mac-
rophages from cell death when apoptosis was induced via the
intrinsic pathway with staurosporine or via the extrinsic path-
way with the Fas ligand [41, 42]. Opposed to nonpigmented

@ Springer

conidia or hyphae, a sustained PI 3-kinase/Akt signaling was
observed in macrophages, epithelial cells, and pneumocytes
that resulted in activation of the protein kinase B (PKB) and
sustained levels of antiapoptotic proteins of the Bcl family
such as Bcl-2 and Mcl-1, reduced cytochrome c release from
mitochondria, and consequently reduced apoptosis promoting
activation of effector caspases 3, 6, and 7. PI 3-kinase/Akt
signaling was demonstrated to further enhance activation of
FoxO and NF;B that initiates gene expression and production
of inflammatory cytokines [6, 41-43]. The effect was found to
be unique for different melanins, including DHN-melanin,
DHN-melanin precursors, and DOPA melanin. Volling and
co-workers proposed a two-step strategy comprising first the
inhibition of acidification of the phagolysosome which then,
secondly, resulted in inhibition of apoptosis. The apoptosis
inhibition was further attributed to the reactive oxygen inter-
mediates (ROI) quenching effect of melanins: Enhanced ROI
signaling usually promotes cytochrome c release but is
counteracted by the presence of the pigment on internalized
conidia [41]. In contrast, germlings and hyphae of
A. fumigatus induce apoptosis via the release of the toxin
gliotoxin in a dectin-1 and TLR2-dependent manner to evade
immune responses [44, 45]. It was hypothesized that inhibi-
tion of apoptosis by A4. fumigatus conidia creates a protective
intracellular niche for the fungus to evade fungicidal effects of
immune cells and to escape the disruption of infected cells by
cytotoxic T cells as well as a shuttle for transport to lymph
nodes and spleen [24, 46].

Interaction of A. fumigatus with neutrophil granulocytes

Beside macrophages, neutrophil granulocytes are important
effector cells of the innate immunity. They represent the most
abundant immune cells and belong to the first line of defense
against bacterial and fungal infections. Each day, around 5—
10x10'° neutrophils are produced in the bone marrow [47].
After full differentiation, they are released into the blood-
stream where they have a limited lifespan of about 6-8 h.
However, without external stimuli, neutrophils can circulate
for up to 5 days outside the bone marrow [48]. In the event of
infection, a large number of neutrophils is recruited to the
affected tissue in response to cytokines such as IL-8, IFN-y,
C5a, and leukotriene B4 [49]. Neutrophils are the key effector
cells in the immune response against A. fumigatus.
Accordingly, neutropenic patients face the highest risk to de-
velop an invasive aspergillosis [50]. Depletion of neutrophils in
mice infected with A. fiumigatus conidia induced high mortality
rates and hyphae-induced lesions in the lung. In contrast, in-
fected mice with depletion of macrophages were still able to
prevent conidial germination resulting in 100 % survival [51].
Neutrophils recognize A. fumigatus at least via dectin-1 and
TLRs 2 and 4 [52-54] and possess different mechanisms to
kill the fungus. As professional phagocytes, they ingest



Semin Immunopathol (2015) 37:141-152

145

conidia and germlings very rapidly to kill them by a respira-
tory burst and degranulation [55, 56]. Neutrophils contain
three different types of granules. Primary or azurophilic gran-
ules contain myeloperoxidase (MPO), lysozyme, and antimi-
crobial proteins like cathepsin G, elastase, and proteinase 3.
Secondary or specific granules hold lactoferrin, lysozyme,
lipocalin, and membrane proteins like flavochrome bssg.
Tertiary granules contain gelatinase [57, 58]. Upon activation,
neutrophils secrete cytokines and chemokines, e.g., CXCL1/
2/3, CCL2/3/4, and IL-8 to attract further immune cells [52,
59]. Neutrophils attach to hyphae that are too big to be
phagocytosed. By means of degranulation and oxidative and
non-oxidative killing mechanisms, fungal hyphae are dam-
aged [60]. Oxidative killing is depending on the assembly of
the NADPH oxidase. This enzyme complex produces super-
oxide anions that are further converted to toxic compounds
like H,O,, hydroxyl anions, and hypochlorous acid [61].
Patients suffering from chronic granulomatous deficiency
(CGD), an inherited disorder caused by defects in the
NADPH oxidase subunit gp917"**, are at high risk for inva-
sive Aspergillus infections. Neutrophils from gp917"**-defi-
cient mice or CGD patients have impaired fungicidal activity
in vitro [55, 62]. Co-incubation of 4. fumigatus hyphae with
human neutrophils led to upregulation of genes encoding
catalases and cytochrome c peroxidase [63]. Although previ-
ous studies hypothesized that ROI might be involved in killing
of A. fumigatus, ROI detoxification mutants of A. fumigatus
revealed no difference in virulence in mouse infection models
when compared to the 4. fumigatus wild type [64—66].
Therefore, it seems highly unlikely that ROI play an essential
role in killing of this fungal pathogen.

Neutrophils can also produce reactive nitrogen intermedi-
ates (RNI) against microorganisms [67]. RNI can easily dif-
fuse through membranes, nitrosylate proteins, and damage
membranes and DNA. RNI can react with ROI to form toxic
products like peroxynitrite. RNI also function as signal mol-
ecules in the immune response [67]. A. fumigatus employs
two systems to detoxify RNI: flavohemoglobins (FhpA and
FhpB) and the S-nitrosoglutathione reductase GnoA [68].
However, virulence in a murine model of pulmonary asper-
gillosis was not dependent on the ability of the fungus to
counteract RNI produced by host immune cells [68].

Neutrophils can also use non-oxidative mechanisms to
fight against pathogens. One is the discharge of the granule
content, designated as degranulation. Defensins exert fungi-
static activity and can kill 4. fumigatus extracellularly
[69, 70]. Zarember et al. [56] showed that lactoferrin can
inhibit fungal growth by sequestering free iron ions.
Furthermore, serine proteases like the PMN elastase (ELA)
contribute to microbial killing [71, 72]. In line, ELA knockout
(ELANE) mice exhibited a higher fungal burden indicating
that ELA is involved in fungal clearance in vivo. However, in
a murine model for invasive aspergillosis, ELANE mice

showed survival rates like wild-type mice [73], indicat-
ing that the meaning of ELA, if there is any, is more
complex.

A decade ago, Brinkmann et al. [74] described another
extracellular killing mechanisms of neutrophils, the formation
of neutrophil extracellular traps (NETs). It was shown in vitro
and in mice that neutrophils produce NETs upon contact with
A. fumigatus [75]. NETs consist of DNA fibers decorated with
histones and antimicrobial proteins. NETosis is a specific form
of cell death, at which the cell content is mixed and released
into the surrounding. ROI produced by the NADPH oxidase
complex are required for NETosis, which can also be induced
exogenously by phorbol-12-myristate-13-acetate (PMA),
LPS, and IL-8 [76]. In addition to histones, NETs mainly
contain the proteins elastase, lactoferrin, cathepsin G,
calprotectin, and MPO [77]. The decondensation of chromatin
is regulated by neutrophil elastase and MPO [71]. Also, the
Raf-MEK-ERK-pathway plays a role in the formation of
NETs [78]. Obviously, NETs attach to and attack the pathogen
by antimicrobial proteins. Calprotectin has a major antifungal
effect, but also defensins, cathelicidin LLLL37, and histones
show antifungal activity [79-81]. Pentraxin 3 (PTX3) is a
soluble pattern recognition receptor produced by specific cells
but also stored in granula in neutrophils. It is released also
during formation of NETs and exhibits anti-Aspergillus activ-
ity [79, 82]. Exogenous addition of PTX3 early in infection
restored antifungal resistance and restrained the inflammatory
response to A. fumigatus [83]. Also, genetic deficiency of
PTX3 affects the antifungal capacity of neutrophils and might
contribute to the risk of invasive aspergillosis in hematopoietic
stem cell transplantation patients [84]. Although NETs effec-
tively kill several bacteria and pathogenic fungi such as
C. albicans [74, 80, 81], they only act fungistatically against
A. fumigatus [75, 85].

A. fumigatus evades the human complement system

The human complement system comprises approximately 30
serum-derived or membrane-associated proteins to exert its
manifold effects on host-pathogen interactions and inflamma-
tory events [86]. These effects aim at the maintenance of tissue
homeostasis, resolution of inflammation, and clearance of
pathogens, apoptotic cells, or debris. Moreover, the comple-
ment system provides a platform for the cross-talk between
innate and humoral circuits via the interaction of complement
activation products and surface receptors resulting in
governing both T and B cell responses [87]. The non-
redundant role of the complement system in the onset of
invasive aspergillosis has been well documented in DBA/2N
mouse models [88]. Complement system deficiencies corre-
late with a higher mortality rates in C5 knockout mice chal-
lenged with A. fumigatus [89, 90].
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Complement activation can be triggered by three dis-
tinct pathways: the classical, the alternative, and the lectin
pathway, all leading to proteolytic cleavage of the central
C3 complement factor by C3 convertases and activation
of the terminal pathway. Terminal pathway products in-
clude C3a and C3Db that lead to the formation of terminal
complement complex (TCC) and membrane attack com-
plex (MAC) [87].

The complement machinery is induced by both Aspergillus
conidia and hyphae. Resting conidia mainly activate comple-
ment by the alternative pathway. Conidial germination and
hyphal formation, processes accompanied by changes of the
cell wall composition, and exposure of surface «- and f3-
glucans shift complement activation to the classical pathway.
Complement activation by all three forms of 4. fumigatus
features specific kinetics with slowest initiation by resting
conidia [91].

Opsonization of pathogens by C3 complement fragments is
a key strategy in complement-mediated clearance.
Complement opsonization represents a chemotactic compass
for immune cells and enhances phagocytosis, ROI production,
and killing by alveolar macrophages, monocytes, and neutro-
phils [87]. Opsonization strongly depends on the availability
of putative docking sites for C3 fragments on the fungal
surface. A strong hint supporting this hypothesis was provided
by two findings. Firstly, DHN-melanin serves as an efficient
camouflage tool that reduces the exposure of surface antigens
for C3 binding thus masking the fungal spores from efficient
complement opsonization. DHN-melanin-deficient conidia
bind more C3 fragments on their surface and exhibit reduced
virulence in mice [19, 92]. These findings, together with
reports of DHN-melanin as a scavenger of ROI and as an
inhibitor of phagolysosome acidification in phagocytes, por-
trait DHN-melanin as a primary tool for A. fumigatus to hijack
immune surveillance [46]. Secondly, complement deposition
has been shown to be markedly different between virulent and
non-virulent Aspergilli with A. fumigatus and A. flavus bind-
ing significantly less C3 in comparison to A. glaucus and
A. nidulans [90].

The glucan surface cell wall carbohydrate structures can
bind mannose-binding lectin (MBL), facilitate activation of
the lectin pathway, and lead to C4 deposition in a
concentration-dependent manner. MBL can then back up C3
proteolytic cleavage via C2 bypass mechanism disengaging
the C3 convertase and thus initiating the alternative pathway.
Such a scenario is not a specific hallmark of 4. fumigatus
alone but is also valid for A. flavus, A. niger, and A. terreus
[93]. Crosdale and colleagues [94] highlighted the crucial role
of serum MBL levels in the immune clearance of Aspergilli by
investigating the correlation between the presence of muta-
tions in the MBL gene promoter region that downregulated
serum levels of MBL and the severity of chronic necrotizing
pulmonary aspergillosis [94, 95].
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Aspergillus-driven complement activation can also occur
via the opsonization by PTX3 receptor that interacts either
with ficolin-2 [96] via the lectin pathway or associates with
Clq from the classical pathway [97]. In agreement with these
findings, a recent report linked a single nucleotide gene poly-
morphism in PTX3 in homozygous haplotype donor individ-
uals to an increased risk of invasive aspergillosis in stem cell
recipients of such donor cells [84].

The fine tuning of the regulation of the complement ma-
chinery is achieved by the action of complement inhibitors.
A. fumigatus sabotages complement activities by acquisition
of complement inhibitors such as factor H (FH), factor H-
related protein FHL-1, a splicing product of the FH gene, and
C4 binding protein (C4bp). Factor H-binding sites were
pinpointed to the N-terminal short consensus repeats (SCRs)
1 to 7 and one in the C-terminal SCR 20. FH and C4bp are
soluble proteins promoting cleavage of C4b and C3b and
accelerating disintegration of assembled C3 convertase. As a
functional consequence, complement system is downregulat-
ed [98]. Furthermore, A. fumigatus produces complement
inhibitor (CI) with yet unresolved structure that interferes with
the alternative pathway and C3b-driven phagocytosis and
killing [99].

A. fumigatus evades the complement also via secretion of
extracellular proteases. For example, Alpl, a serine protease
shown to degrade collagen, fibrinogen, and other extracellular
matrix proteins, also targets complement components such as
Clq, C3, C4, C5, MBL, and factor D [100, 101].

Taken together, A. fumigatus has developed a wide variety
of armory to combat complement system activities.
Unraveling the tools of such armory contributes to the eluci-
dation of pathogenesis mechanisms and the development of
therapeutic approaches for invasive aspergillosis by interfer-
ence with the human complement system.

Immunoproteomics to identify A. fumigatus antigens

As described in the previous sections, interaction of
A. fumigatus with the immune system takes place at several
levels during infection of the human host. Next to biochemical
and phenotypic single factor analysis and the application of
other omics methods like transcriptomics, (immuno-) prote-
ome approaches have been applied to investigate Aspergillus
proteins that are likely communicating with host cells and
effector proteins of the innate and adaptive immune system
during infection. In general, proteomic techniques involve a
protein cleanup and the reduction of the sample complexity by
single or multi-dimensional electrophoretic and/or chromato-
graphic separation procedures prior or subsequent to the en-
zymatic protein digestion [102]. The resulting peptide se-
quences are commonly measured by high-resolution tandem
mass spectrometry and finally matched and statistically
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evaluated by sophisticated protein database search algorithms
such as Mascot or Sequest [102].

Besides investigation of the dynamics of the A. fumigatus
(wild-type or mutant) proteome, when cultivated under differ-
ent conditions, e.g., upon confrontation with particular stress-
es [65, 103-106], Aspergillus cell wall and cell membrane
subproteomes are of especial interest in the context of
A. fumigatus pathogenicity. The fungal cell wall and the
cytoplasmic membrane have a crucial impact on the virulence
of the pathogen by constituting the first barriers interacting
with the environment and consequently with the host’s im-
mune defense [107]. Although proteins are only minor com-
ponents of a fungal cell wall which is mainly composed of
polysaccharides, they can play a major role in the interaction
with the host, especially as antigens/allergens, adhesins, en-
zymes, or inmunomodulators. In A. fumigatus, several conid-
ial surface proteins such as the surface layer protein
(hydrophobin) rodlet A, the aspartic protease PEP2, a putative
disulfide isomerase, or an extracellular lipase, have been iden-
tified upon (3-1,3-glucanase treatment of dormant conidia
[108]. The presence of an extracellular lipase on the conidial
surface may induce cell damage and adherence of the spores
within the bronchoalveolar tract during inhalation [108]. In
addition, proteins localized within the cytoplasmic lipid bilay-
er are also crucial for the interaction of the fungus with the
environment and, in particular, with the host’s immune sys-
tem. Ouyang et al. [109] analyzed total membrane prepara-
tions of 4. fumigatus by SDS-PAGE separation, in-gel diges-
tion, and a subsequent 2D-LC-MS/MS analysis. Thereby, the
authors identified 530 membrane-associated proteins of which
17 were integral membrane proteins involved in N-, O-glyco-
sylation, or glycophosphatidylinositol (GPI) anchor biosyn-
thesis. For identification of GPI-anchored proteins, Bruneau
et al. [110] released these proteins in a soluble form from the
membrane fraction prior to proteome analysis by the com-
bined action of the detergent n-octylglucoside and an endog-
enous phospholipase C activity.

In addition to analyzing solitary cultures, it has recently
become attractive to directly investigate the interplay of
Aspergillus with selected host cells by studying the changes
in the individual proteomes and the interactome of co-cultures
by proteomic (and transcriptomic) procedures [63, 111-113].
These strategies are especially suitable to dissect the interre-
lationships between host cells and the pathogen during infec-
tion. A study focusing on the proteome of human umbilical
vein endothelial cells (HUVECs) upon co-incubation with
A. fumigatus was recently performed [114]. By applying a
mass spectrometry label-free proteomic approach, the molec-
ular mechanism by which A. fumigatus can activate human
HUVECs during blood vessel invasion was investigated.
Angioinvasion is a key feature of invasive pulmonary asper-
gillosis (IPA). Endothelial cells act as physiological barriers
that facilitate leukocyte migration and local immune response

against microbial pathogens by secretion of cytokines/
chemokines and other signal molecules. Vascular invasion of
A. fumigatus leads to an activated prothrombic phenotype of
HUVECs by which leukocyte migration, and an effective
immune response is inhibited. A total of 89 proteins were
differentially regulated during interaction of HUVECs with
A. fumigatus germlings, i.e., 57 proteins were downregulated
and 32 were upregulated. Another 409 proteins have been
detected that were exclusive to one experimental condition
(treatment or control). The group of upregulated proteins or
proteins that have been exclusively identified in the interac-
tion of HUVECs with A. fumigatus included particularly
proteins with proangiogenic properties, namely, intercellular
adhesion molecule-1 (ICAM-1), hepatocyte growth factor
(HGF), fibroblast growth factor (FGF), activated leukocyte
cell adhesion molecule (ALCAM), and basignin. As a conse-
quence, it has been suggested that the vascular invasion by
A. fumigatus activates multiple proteins that are involved in
angiogenesis [114].

Another important focus in the field of immunoproteomics
is the identification of Aspergillus proteins that serve as aller-
gens and antigens in different Aspergillus-derived diseases by
provoking a cellular and humoral immune response.
Sensitization is one undesirable effect of the immune system
that might arise when in contact with Aspergillus species
(mostly A4. fumigatus) due to prolonged inhalation and/or
colonization of the lung. In particular, individuals suffering
from cystic fibrosis or asthma are prone to develop an allergic
reaction to Aspergillus, which can manifest itself as allergic
pulmonary aspergillosis (ABPA) and exacerbates the health
status of these patients [115]. ABPA is proposed to arise as a
consequence of an inflammatory response to Aspergillus al-
lergens, and Aspergillus causes bronchial epithelial cell dam-
age that triggers a Th2 hypersensitivity immune response.
Therefore, the clinical picture is generally accompanied with
an elevated total IgE level and Aspergillus-specific elevated
IgE and IgG levels [115]. Such anti-Aspergillus antibody
profiles of ABPA patients (and of A. fumigatus sensitized
asthmatics) have been analyzed in a number of
immunoproteomic studies [116—119]. Gautam et al. [116],
for example, studied the IgE immunoreactivity of
A. fumigatus proteins by 2D gel electrophoresis followed by
immunoblotting of 3-week old culture filtrate proteins with
sera from A. fumigatus-sensitized asthmatics and ABPA pa-
tients. The authors identified five known and 11 novel anti-
gens by MALDI-TOF mass spectrometry, including an extra-
cellular arabinase, a chitosanase, and a catalase. Based on an
enzyme-linked immunosorbent assay (ELISA), Glaser et al.
(2009) showed that 94 % of ABPA patients (n=64) and 46 %
of A. fumigatus-sensitized asthmatics (n=24) had Asp f 34-
specific serum IgE [120]. Next to a better understanding of the
disease, identified allergens can be used as recombinant pro-
teins in novel ABPA-diagnosing assays that are based on the
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identification of anti-Aspergillus IgE and/or IgG antibodies in
sera of patients. Interestingly, for ABPA, so far, only five
recombinant proteins (rAsp fl—f4 and f6) of more than 20
known antigens/allergens are commercially available to proof
an allergic immune response against A. fumigatus [121].

Such immunoproteomic analyses of Aspergillus proteins
with respect to their interaction with patients’ antibodies have
been also extended to cohorts of patients suffering from inva-
sive forms of Aspergillus infections, like IPA. Although the
highest risk group of patients suffering from invasive asper-
gillosis (IA) is strongly immunocompromised, there is a rising
incidence of A in non-immunocompromised but critically ill
patients (up to 5.8 %). Shi et al. (2012) tested the immunore-
activity of 2D gel electrophoresis-separated extracellular pro-
teins of A. fumigatus with sera from such patients with proven
IA [122]. The authors identified 17 different antigens by
application of MALDI-TOF mass spectrometry. The most
intense immunoreactivity could be assigned to the secretory
gliotoxin oxidase GliT (TR). Antibodies specific to TR have
been proposed as a potential biomarker for the serologic
diagnosis of IA in non-neutropenic patients that exhibit low
serum galactomannan sensitivity [123].

Aside from detection of relevant Aspergillus proteins that
have to be expressed during infection to elicit an immune
response and their potential as diagnostic markers, the identi-
fication of vaccine candidates is an important objective in
immunoproteomic approaches [124]. For identification of
protective antibodies, Asif et al. (2010), for example, investi-
gated two infected rabbits developing a protective immune
response against invasive Aspergillosis by application of a 2D
gel electrophoresis immunoblotting approach that has been
combined with an identification of the antigenic proteome by
LC-MS/MS determination [125]. In total, the authors identi-
fied 59 antigens, including proteins related to glycolysis and
other primary metabolic pathways, oxidative stress response,
and protein folding (heat shock proteins) as potential vaccine
candidates.

Conclusions

A. fumigatus has developed a number of immune evasion
mechanisms which interfere at the different levels of the
infection process with the response of the human host. These
include recognition of conidia, modulation of phagocytosis,
intracellular processing, NET formation, and complement
activation. New techniques and recent advances to analyze
changes on the molecular level in both the fungal pathogen
and host cells provide exciting possibilities to pin down es-
sential steps in host pathogen interaction. For example, next
generation sequencing allows expeditious acquisition of ge-
nome information of a multitude of 4. fumigatus clinical and
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environmental isolates. RNAseq and sophisticated LC-MS
analyses enable monitoring interaction-induced changes on
the transcript level including alternative splicing, RNA
editing, and protein modifications on both sides, the pathogen
and the host. Last and not the least, automated analysis of
digitalized and processed images or movies of the interaction
of the pathogen with host cells was recently established [126].
Combined in a systems biology approach [127, 128], all these
data will allow to model the interaction of fungal pathogens
with different immune cells and to identify regulatory circuits
of this interaction with the overall aim to improve diagnosis
and to identify novel targets for the development of tailor-
made antifungal drugs.
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