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Abstract

The fitness landscape – the mapping between genotypes and fitness – determines properties of the 

process of adaptation. Several small genotypic fitness landscapes have recently been built by 

selecting a handful of beneficial mutations and measuring fitness of all combinations of these 

mutations. Here we generate several testable predictions for the properties of these small 

genotypic landscapes under Fisher’s geometric model of adaptation. When the ancestral strain is 

far from the fitness optimum, we analytically compute the fitness effect of selected mutations and 

their epistatic interactions. Epistasis may be negative or positive on average depending on the 

distance of the ancestral genotype to the optimum and whether mutations were independently 

selected, or co-selected in an adaptive walk. Simulations show that genotypic landscapes built 

from Fisher’s model are very close to an additive landscape when the ancestral strain is far from 

the optimum. However, when it is close to the optimum, a large diversity of landscape with 

substantial roughness and sign epistasis emerged. Strikingly, small genotypic landscapes built 

from several replicate adaptive walks on the same underlying landscape were highly variable, 

suggesting that several realizations of small genotypic landscapes are needed to gain information 

about the underlying architecture of the fitness landscape.
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Introduction

Sewall Wright (1932) introduced the metaphor of “fitness landscapes” to think about 

evolutionary processes. A fitness landscape is defined by a set of genotypes, the mutational 
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distance between them and their associated fitness. Populations are abstracted into groups of 

particles that navigate on this landscape (Orr 2005). In this regard, the process of adaptation 

by natural selection depends on the structure of the fitness landscape. Many fundamental 

features of adaptation depend on whether the landscape is smooth or rugged, and on the 

level of epistasis between genotypes on the landscape (note that these two properties are 

related, Weinreich et al. 2005, Poelwijk et al. 2011). For examples, levels and type of 

epistasis determine the probability of speciation (Gavrilets 2004, Chevin et al. 2014) and the 

benefits of sexual reproduction (Kondrashov and Kondrashov 2001; de Visser et al. 2009; 

Otto 2009; Watson et al. 2011). The ruggedness of the landscape determines the 

repeatability and predictability of adaptation (Kaufmann 1993; Colegrave and Buckling 

2005; Chevin et al. 2010; Salverda et al. 2011).

It is now possible to explore the fitness landscapes of microbial species using several 

experimental methods. A common type of experiment consists in isolating a number of 

mutants and measuring the fitness of genotypes with either a single mutation or various 

combinations of mutations. The most fascinating of these experiments are perhaps those 

considering a small number (L) of mutations and reconstructing all possible genotypes (2L 

genotypes) from the wild type to the evolved (reviewed in Weinreich et al. 2013; Lee et al. 

1997, de Visser et al. 1997, Whitlock and Bourguet 2000, Lunzer et al. 2005, Weinreich et 

al. 2006, O’Maille et al. 2008, Lozovsky et al. 2009, da Silva et al. 2010, Chou et al. 2011, 

Khan et al. 2011). The properties of these reconstructed fitness landscapes determine 

whether adaptation was constrained to follow the particular sequence of mutations that 

indeed evolved in the experiment, or whether mutations could have evolved in any order 

with similar probabilities.

The experimental data can be interpreted in the light of various theoretical fitness landscape 

models. Many models directly define the mapping between individual genotypes and fitness 

(“discrete” fitness landscape models). The simplest is the additive model, whereby the log-

fitness is the sum of additive contributions by individual loci. This model results in no 

epistasis and a very smooth landscape. At the opposite extreme, the “House of Cards” model 

(Kingman 1978) assumes that the fitness of each genotype is drawn independently of other 

genotypes in some distribution. This model results in a highly epistatic and rugged 

landscape. In between these two extremes, two models where the roughness is a tunable 

parameter have been designed. The “Rough Mount Fuji” model assumes that log-fitness of a 

genotype is the sum of additive contributions from mutations and a House of Cards random 

component (Franke et al. 2011, Szendro et al. 2013). Kauffman’s NK model assumes that 

fitness results from the sum of contribution of N loci, and the contribution of each locus is 

determined by the allelic status of this locus and K interacting loci (often its neighbors) 

(Kauffman and Levin 1987, Draghi and Plotkin 2013). The contributions of these sets of loci 

are themselves drawn independently in some distribution. The NK model encompasses all 

scenarios from the additive model (when K = 0) to the full House of Cards model (when K = 

N). In the House of Cards, Rough Mount Fuji and NK models, epistasis is a linear 

combination of the random components of the fitness landscape.

A very different family of fitness landscape models specifies fitness by mapping genotypes 

to a set of phenotypes that are themselves under selection. The most famous of these is 
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Fisher’s geometric model (Fisher 1930). In Fisher’s model, individuals are characterized by 

a number of continuous phenotypes that are under stabilizing selection towards a single 

fitness peak in the multivariate phenotypic space. Mutations fuel the process of adaptation 

by generating new genotypes with different phenotypic values. One fundamental difference 

with the discrete models described above and phenotypic models is that in the latter, 

epistasis emerges from the non-linearity of the phenotype to fitness map, and not from 

random components.

In spite of the diversity of fitness landscape models, relatively little work has attempted to 

confront directly these models with experimental data. The “Rough Mount Fuji” model is 

able to reproduce a diversity of patterns observed in experimental fitness landscapes 

(Szendro et al. 2013). The NK model has been used to interpret landscapes of RNA or 

protein folding, and in particular to interpret the levels of autocorrelation of the landscape 

(Fontana et al. 1993, Rowe et al. 2010). Fisher’s model has been increasingly popular to 

interpret experimental data, perhaps because it is sufficiently simple to allow mathematical 

analysis and very fast simulations. Fisher’s model successfully predicts the distribution of 

selection coefficient of random mutations (Martin and Lenormand 2006), levels of epistasis 

(Martin et al. 2007, Gros et al. 2009, Rokyta et al. 2011), levels of dominance (Manna et al. 

2011), the drift load (Tenaillon et al. 2007, Gros and Tenaillon 2009), and the dynamics of 

mean fitness in experimental lines (Perfeito et al 2014). Moreover, it has been shown 

recently that Fisher’s model emerges under a set of relatively general “first principles” that 

describe the underlying metabolic network and developmental process of an organism 

(Martin 2014). Fisher’s model has been used predominantly to interpret results on fitness 

effects of single mutations or pairs of mutations, and these mutations were often considered 

as newly arising random mutations and thus not filtered by selection. But so far no 

predictions have been developed for the properties of experimental genotypic landscapes 

under Fisher’s model. Generating such predictions raises several challenges. First, the 

phenotypic layer between genotypes and fitness makes it is less straightforward to generate 

prediction for the properties of genotypic landscapes under Fisher’s model than under 

genotypic models. Second, most experiments use mutations that arise under the action of 

natural selection, either naturally or in experiment (Lee et al. 1997, Sanjuan et al. 2004, 

Rokyta et al. 2011, O’Maille et al. 2008, Lozovsky et al. 2009, Chou et al. 2011, Khan et al. 

2011). This raises a theoretical challenge because selected mutations are a non-random 

sample of all mutations. For example, selection has been shown to bias the prevalence and 

type of epistasis among mutations (Draghi and Plotkin 2013). Some experiments have used 

random mutations (de Visser et al. 1997, Whitlock and Bourguet 2000, Sanjuan et al. 2004) 

and there is a recent interest in high-throughput random mutations approaches (e.g., 

Costanzo et al. 2010, Hietpas et al. 2011, Firnberg et al 2014), but even protocols designed 

to identify “random” mutations often involve selection at some stage (Bataillon and Bailey 

2014). Third, the precise protocol used to isolate mutations potentially impacts the 

reconstructed genotypic landscape. In some experiments, each of the mutations was selected 

independently in distinct populations (Sanjuan et al. 2004, Rokyta et al. 2011). In others, all 

mutations arose sequentially in the same population (Lee et al. 1997, O’Maille et al. 2008, 

Lozovsky et al. 2009, Chou et al. 2011, Khan et al. 2011). The properties of selected 
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mutations potentially depends on the genetic background in which they arise (because of 

epistasis), thus on the details of the protocol used to isolate them.

Here we combine a new analytical approximation and simulations to address these 

challenges and generate predictions for the properties of genotypic landscapes under 

Fisher’s model. We focus on selected mutations and we contrast several protocols 

(independently selected vs. co-selected mutations). We analyze the properties of selected 

mutations at several scales. We begin by introducing Fisher’s fitness landscape model and 

derive new analytical results on the properties and fitness effect of single selected mutations. 

In a second step, we derive predictions for the distribution of the coefficient of epistasis and 

the fraction of sign epistasis among two mutations. Last, we explore the properties of 

genotypic landscapes that include a larger number of mutations.

1. Model and methods

1.1 Fisher’s geometric model

We use Fisher’s fitness landscape model to define the relationship between genotypes, 

phenotypes, and fitness. We assume Gaussian stabilizing selection on a set of phenotypes. In 

mathematical terms, setting the optima at 0 for all phenotypes without loss of generality, the 

fitness of an individual with phenotype vector z is:

(1)

where S is a matrix representing the variance-covariance structure of selection. The diagonal 

elements determine the strength of direct stabilizing selection on each of the phenotypes, 

and the off-diagonal elements represent correlative selection between phenotypes. Mutations 

are assumed to affect all phenotypes to the same extent (universal pleiotropy). Specifically, 

the effects of each new mutation on the set of phenotypes are randomly drawn in a 

multivariate normal distribution with variance-covariance matrix M. Thus, each new 

mutation is unique and the pool of available mutations is infinite. We discuss later on the 

consequences of relaxing this assumption.

Since both S and M are positive semi-definite matrices, it is always possible to find a linear 

transformation of the phenotypic space, ensuring that in the transformed space all 

phenotypes are independent for selection (S becomes a diagonal matrix) and all phenotypes 

are independent and have equal variance by mutation (M becomes proportional to the 

identity matrix) (Waxman and Welch 2005, Martin and Lenormand 2006). The fitness 

function in the transformed space simplifies into  where the λi are 

the eigenvalues of S.M. The dimension of the phenotype vector and the matrix,, represents 

the “complexity” of the organism in a phenotype space where selection acts independently 

along axes. For simplicity, we now assume an isotropic landscape, that is λ1 = ⋯ = λn = 1.

1.2 Effect of selected mutations on phenotypes and fitness

An approximation—We assume that the ancestral strain in which mutations arise is 

located far from the optimum relative to the size of mutations, and we develop a novel 
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approximation to describe the properties of selected mutations arising in this ancestral strain. 

This approximation is suitable to understand and interpret many situations relevant to 

experimental evolution, where the ancestral strain is grown in a novel environment to which 

it is initially poorly adapted. We set the ancestral strain at position 

 in the phenotypic space, where W0 is the fitness of the ancestral 

strain. This assumption is made without loss of generality because of the isotropy of the 

landscape.

The distribution of phenotypic effects of random mutations {dz1,dz2,…,dzn} follows a 

multivariate normal distribution  denotes the normal distribution and 

In is the identity matrix of dimension n).  is the mutational variance which quantifies 

the size of mutations in the phenotypic space. To understand how selection biases this 

distribution, we assume that the ancestral strain is sufficiently far from the optimum relative 

to the size of mutations that selection acts mainly along the first phenotypic axis that links 

the ancestral strain to the optimum (“main axis of selection”), and that all phenotypic 

changes along orthogonal directions cause negligible fitness changes. Thus, the phenotypic 

effects of mutations along axes 2 to n, {dz2,dz3,… dzn} are distributed according to 

 just as random mutations. To determine how selection impacts the 

distribution of phenotype effects of mutations along the main axis of selection, we assume 

that the population size N is large and the input of new mutations is small (i.e., Nμ << 1, 

where μ is the mutation rate), such that adaptation proceeds under a “strong selection – weak 

mutation” (SSWM) regime (Kimura 1983, Gillespie 1991). In this regime, there is no 

standing genetic variation, such that adaptation over this landscape is only enabled by new 

mutations arising within a genetically homogenous population. Deleterious mutations have a 

negligible probability to fix in the population, and the next beneficial mutation to invade is 

the realization of a random drawing among the pool of beneficial mutations where each 

beneficial mutation has a probability proportional to its selection coefficient to be chosen 

(Patwa and Wahl 2008). Because the selection coefficient of a mutation is linearly related to 

the phenotypic effect on the main axis (s = −2z0,1 dz1, Appendix), under the SSWM regime 

the scaled phenotypic effect along the first phenotype  is distributed according to 

a χ2 distribution. χi denotes chi distribution with i the degrees of freedom: this is the 

distribution of the norm of vectors of dimension i drawn in a standard normal distribution, 

which must not be confused with the chi squared distribution, which is the distribution of the 

squared norm.

The geometry of selected mutations—It is more intuitive to translate these algebraic 

results in geometrical terms. A mutation and its fitness effect is characterized by its norms ||

dz|| and its angle with the main axis of selection θ (see fig 1). We found that selected 

mutations are slightly larger than random mutations. In mathematical terms, the norm of 

selected mutations (the size of the mutation in the phenotypic space) scaled by the 

mutational standard deviation σmut is distributed according to a χn+1, while that of random 

mutations is a χn. Of course, the norm of mutations is larger in a more complex space 

because mutations modify the phenotype in many dimensions. Thus, to compare properties 
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of selected mutations and genotypic landscapes across several complexities of the 

phenotypic space while keeping the same distance to the optimum, we scale the standard 

deviation as , where Γ(.) is the gamma function and 

 is the average norm of random mutations (constant across complexities). This 

relationship converges for large complexity to , such that the average 

fitness effects of random mutations (equal to ) is also constant across complexities. 

We use this scaling for the simulations, but our analytical results are general with respect to 

the potential relationship between σmut and n. As a consequence of this scaling, the major 

effect of increasing complexity is to reduce the variance of the norm (fig. 1).

We also found that selected mutations point in the direction of the optimum when 

complexity is low, but that they point increasingly in a direction orthogonal to the optimum 

as complexity increases (the distribution of θ becomes concentrated around π/2), such that 

mutations pointing directly towards the optimum (θ = 0) become extremely rare (Appendix, 

fig. 1). This change in orientation at high complexity is due to the overwhelming importance 

of other phenotypic directions relative to the “main axis of selection”. In complex 

organisms, because of pleiotropy, beneficial mutations cause small changes on a myriad of 

other phenotypes as a side effect of changing the phenotypic value on the “main axis of 

selection”. This effect of complexity was previously noted in the context of random 

mutations (Hartl and Taubes 1998, Poon and Otto 2000).

1.3 Stochastic, individual-based simulations

To verify the analytical results, we simulated a population under selection, mutation and 

genetic drift under Fisher’s model. The population is of constant size Ne = 107 and is 

initially composed of a single genotype whose position is drawn at random on the fitness 

isocline W0 (the ancestral strain is maladapted on all phenotypic axes).

The number of individuals of each genotype after selection is drawn in a multinomial 

distribution with parameters Ne and , where zi 

is the phenotypic vector for genotype i, p(zi) is the frequency of genotype i, W(z) is the 

fitness function given by Fisher’s model, g is the number of genotypes in the population, and 

 is the mean fitness . In the simulations, we set the norm of random 

mutations, constant across complexity, to .

Following selection, the number of mutations that affect an individual’s genome is given by 

a Poisson distribution with parameter μ = 10−9. The phenotypic effects of each mutation are 

drawn in a multivariate normal distribution (0, In) following the assumptions of Fisher’s 

model.

The low value of Nμ ensures that adaptation occurs by successive selective sweeps of 

beneficial mutations. We iterated the following life cycle until the desired number of 

mutations had fixed in the population or tmax = 107 generations was reached. The output of a 

run was discarded when the desired number of mutations was not reached at tmax. This 
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should not alter significantly our results, as it only happened for a very small fraction of 

runs.

2. Results

2. 1 Distribution of fitness effects of selected mutations

Under the SSWM regime and assuming the wild type is far from the optimum, the 

normalized fitness effects of selected mutations are distributed as a χ2 (Appendix). In 

mathematical terms,

(2)

This density is essentially the distribution of fitness effects of random mutations, weighted 

by their probability of fixation (assumed to be proportional to the selection coefficient s in 

the SSWM regime). The most frequent mutations to evolve have an intermediate fitness 

effect, because they represent the best compromise between occurring frequently and 

enjoying a high selection coefficient (Kimura 1983). The mean of this distribution is 

 and the standard deviation is . Under 

our assumptions, the distribution of fitness effects does not directly depend on complexity 

(although it would depend indirectly on complexity through the scaling). Indeed only the 

main axis of selection determines fitness, so the number of other phenotypic directions, 

assumed to be neutral, does not matter. Interestingly the coefficient of variation of the 

selection coefficient is  and is independent of initial fitness and the 

effect of mutations in the phenotypic space.

This analytical result was found to be a good approximation when compared with the results 

of stochastic, individual-based simulations, when the ancestral strain is far from the 

optimum (W0= 0.1) (fig. 2). We also compared this approximation to two other 

approximations for the distribution of fitness effects of selected mutations in Fisher’s model. 

The first is the beta distribution based on extreme value theory (Martin and Lenormand 

2008). This approximation does not depend on the phenotypic effects of mutation σmut but 

depends strongly on the complexity of the organism n (Appendix, equation S3d). It performs 

well when the ancestral strain is very close to the optimum (W00 = 0.99; not shown), and 

indeed even with W00 = 0.99 it is not very accurate. The second approximation is the gamma 

approximation based on a moment-matching method, which is always very accurate (Martin 

and Lenormand 2006; fig. 2; Appendix, equation S3c).

Given our analytical results on the properties of individual selected mutations in Fisher’s 

model, our goal now is to determine the emerging properties of genotypic landscapes 

composed of several mutations. Towards this goal, we next investigate the properties of 

pairs of mutations.
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2. 2. Properties of pairs of mutations in Fisher’s landscape

Epistasis coefficient among selected mutations—We first examine the distribution 

of the epistasis coefficient, which quantifies non-multiplicative interactions for fitness 

between two mutations. The epistasis coefficient between two mutations is defined as 

 where W11 is the fitness of the double mutant and, W01, W10 are that of the 

two single mutants (the fitness of the ancestral strain is now denoted W00 for clarity, because 

it bears the “0” allele at two loci). In Fisher’s fitness landscape model, it can be shown that 

epistasis is proportional to the scalar product of the effects of the two mutations in the 

phenotypic space (Martin et al. 2007):

(3)

where dzi and dzi′ are the phenotypic effect of two mutations on phenotype i. It has been 

shown previously that the coefficient of epistasis of random (newly arising) mutation does 

not depend on the fitness of the ancestral strain and is distributed as a N(0,4nσ−4) (Martin et 

al. 2007). Here we derive similar results for the distribution of the epistasis coefficient 

between selected mutations.

First we investigate the distribution of epistasis among two mutations that evolved in 

independent replicates. Specifically, we assume that each replicate starts with a 

monomorphic population of fitness W00 and is let to evolve until one mutation arises and 

fixes.

The epistasis coefficient (equation 3) can be decomposed as the sum of a “selected epistasis” 

component which emerges from selection along the main axis of selection (first axis), and an 

independent “random epistasis” component, contributed by all other orthogonal axes and 

which we characterize using the approximation developed by Martin et al. (2007) (details in 

Appendix).

We find, assuming a SSWM regime and a wild type far from the optimum, that the mean 

and variance of the distribution of epistasis are:

(4)

These results reveal that the average epistasis is negative, meaning that two independent 

mutations that both bring the population closer to the optimum along the first axis tend to 

interact negatively for fitness. As complexity increases, the variance of the distribution of 

epistasis among selected mutations converges to the variance among random mutations, 

because effectively neutral phenotypes contribute increasingly more to epistasis. 

Importantly, as long as the distance to the optimum is large, epistasis among selected 

mutations does not depend on the fitness of the ancestral strain, just as for random 

mutations.
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Figure 3 shows the predicted distribution of epistasis along with results of simulations 

described above. In general, our analytical approximations capture correctly the average and 

variance of epistasis when the population is initially not too close of the optimum (fig. 3, 

sup. fig.). It is worth noting that the impact of complexity on epistasis, which is apparently 

missing in equation 4, comes from the scaling of σmut with n that keeps the norm of random 

mutations constant across complexities. This scaling  (when n is large) causes 

both the average and variance of epistasis to be proportional to 1/n. If we impose no 

particular scaling, the average epistasis is indeed constant across complexities (sup. fig.).

Slight discrepancies with the predictions arise when the ancestral strain is close to the 

optimum relative to the size of mutations. Epistasis among independently selected mutations 

tends to be more negative than predicted analytically. Near the optimum, the selected 

mutations are more constrained to follow the direction of the optimum (θ is closer to 0 than 

expected) and this causes more negative epistasis on average. This “canalization” also 

causes a reduction in variance of epistasis close to the optimum.

Next we determine the distribution of epistasis arising between two mutations that arise and 

sweep to fixation sequentially in the same ancestral strain (“co-selected mutations”). We 

found that co-selected mutations have a distribution of epistasis very similar to that of 

independently selected mutations when the ancestral strain is far from the optimum; but that 

this distribution can be significantly shifted towards positive values of epistasis when the 

ancestral strain is closer to the optimum (fig. 3).

A simple argument explains why epistasis among co-selected mutations is distributed just as 

epistasis among independently selected mutations. Recall that epistasis is defined as 

, where W10 and W01 are the fitness of genotypes with the first and second 

mutation respectively. We have shown that when the ancestral strain is sufficiently far from 

the optimum, the distribution of phenotypic effects of selected mutations is independent of 

the position of the ancestral strain (Appendix, equation S3a). If following fixation of the first 

mutation, the single mutant is still sufficiently far from the optimum, the second mutation 

will have the same distribution of phenotypic effects as the first mutation. Thus, the epistatic 

coefficient, which is related to phenotypic effects through equation (3), will be the same 

among co-selected mutations than among independently selected mutations.

The shift of epistasis towards more positive values when the ancestral strain is closer the 

optimum is due to antagonistic pleiotropy. Indeed, close to the optimum, changes in the 

phenotypic directions orthogonal to selection are not neutral but selected against. A selected 

mutation will bring the population closer to the optimum along the main direction of 

selection at the cost of antagonistic pleiotropy in the other phenotypes. When a second 

mutation arises in the background of the first, it will compensate for these antagonistic 

effects. This compensation generates positive epistasis between the two mutations. When 

complexity n is high, many phenotypes are available for that compensation effect to operate 

and positive epistasis becomes more pervasive (fig. 3). The observation that epistasis 

between selected mutations is negative for low complexity but positive for large complexity 

has been noted previously (Chevin et al. 2014).
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Lastly we found, in accordance with previous studies (Velenich and Gore 2014), that 

mutations conferring larger selective advantage exhibit more negative epistasis (fig. 4).

Analytical predictions for selection and epistasis coefficients are important because these 

predictions can be directly compared to experimental data. These coefficients are also 

theoretically important to predict the dynamics of adaptation. However, they are difficult to 

relate to other properties such as the roughness and accessibility of the genotypic landscape. 

Such properties are determined by sign epistasis – the fact that mutations are beneficial in 

some background but deleterious in other backgrounds (Weinreich et al. 2005), which is not 

directly related to the epistasis coefficient. In the following part, we investigate the fraction 

of sign epistasis among selected mutations in Fisher’s model.

Sign epistasis among selected mutations—For independently selected mutations, 

we find that a mutation will present sign epistasis in the ancestral background vs. the 

background with another mutation when the selection coefficient is small and the epistasis 

coefficient is sufficiently negative (Appendix). Clearly, this condition will be increasingly 

easier to fulfill as the ancestral strain is closer to the optimum because the selection 

coefficient becomes smaller on average, and epistasis become more shifted towards negative 

values. Similarly, for co-selected mutations, because the epistasis coefficient is more 

positive on average among co-selected mutations, the first mutation should more rarely be 

sign epistatic. Thus sign epistasis is predicted to be less frequent among co-selected than 

among independently selected mutations. The effect of complexity on the fraction of sign 

epistasis is harder to predict, because both the selection and epistasis coefficients tend to be 

concentrated around 0 as complexity increases.

Our predictions are confirmed by stochastic simulations: sign epistasis is much more 

frequent when the fitness of the ancestral strain is higher, both in independently selected and 

co-selected mutations (fig. 4). Moreover, we found that sign epistasis is more frequent in a 

more complex phenotypic space. As much as 20% of sign epistasis occurred between 

independently selected mutations when W00 = 0.95 and n = 100. This large fraction of sign 

epistasis may seem at first surprising since Fisher’s model is a completely smooth 

phenotypic landscape. Even more strikingly, this large fraction of sign epistasis emerges in 

the absence of optimum overshooting. Optimum overshooting – the fact that individual 

mutations are so large that their combined effects are deleterious (fig. 5) – can generate sign 

epistasis in Fisher’s model, but is not present for the values of parameters we chose because 

the ancestral strain is always too far away from the optimum relative to the size of 

mutations. To understand what causes sign epistasis, we looked more specifically at the 

properties of sign epistatic mutations and found that, on average, these mutations had larger 

norm, smaller selection coefficient and were more orthogonal to the main direction of 

selection (θ is closer to π/2). In other words, sign epistatic mutations are mutations of very 

small fitness effect with large antagonistic pleiotropy. Such mutations have a small 

beneficial effect in the background in which they evolve, but they easily become deleterious 

in another background (fig. 5). In more complex organisms, there are much more phenotypic 

axes along which antagonistic pleiotropy can arise, explaining why sign epistasis is more 

frequent.
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To conclude, a smooth phenotypic landscape such as that of Fisher’s model may generate 

high amounts of sign epistasis among mutations because of antagonistic pleiotropy, and 

especially so in complex organisms. This suggests that Fisher’s model has the potential to 

generate quite rough genotypic landscapes. In the following we explore this possibility by 

considering genotypic landscapes composed of a larger number of mutations.

2. 3. A great diversity of genotypic fitness landscapes is expected under Fisher’s 
phenotypic model

Several experiments study the properties of the fitness landscape by examining the 

genotypic landscape encompassing an ancestral genotype and a set of evolved genotypes 

differing from the ancestor by a small number of mutations L (typically 4-5 mutations). The 

genotypic landscape is composed of 2L genotypes with all possible combinations of these 

mutations. Because of the stochasticity of the evolutionary process (stochasticity of 

mutations and genetic drift), a single underlying fitness landscape will generate a 

distribution of possible genotypic landscapes depending on the L mutations that are sampled. 

Thus, in the next part, we characterize the distribution of possible genotypic landscapes as a 

function of the parameters of the underlying fitness landscape (W0 and n), when mutations 

are independently selected or co-selected.

Statistics summarizing the properties of a genotypic landscape—We use two 

commonly used statistics to summarize the properties of genotypic landscapes. The first is 

the fraction of sign epistasis among all pairs of genotypes separated by two mutations (as 

already investigated for the simpler case of two mutations in part 2.2 above). This 

proportion is 0 in an additive landscape and expected to be 2/3 among random mutations in 

a House of Cards model. Our simulations show it reaches 70 to 90% among independently 

selected mutations in the House of Cards model (not shown). The second statistic is the 

roughness to slope ratio (Carneiro and Hartl 2010, Szendro et al. 2013). This measure 

quantifies how well the landscape can be described by a linear model where mutations 

additively determine fitness. Specifically, the linear model is:

(6)

where the sum is over all L loci, cj is the effect of the mutation at the jth locus on fitness, and 

aj is an indicator variable which is 0 or 1 if the jth locus is wild type or mutated respectively. 

The cj are estimated by least square regression. The slope is the defined as the average 

additive effect of mutations, , and the roughness is the residual variance that 

quantifies the fit of the linear model, . The roughness to 

slope ratio r/s is 0 when the fit of an additive model is perfect, and becomes very large in a 

House of Cards model.

Distribution of the statistics—We first investigated the distribution of the two above 

statistics when starting from an ancestral strain with fitness W00 = 0.1, and when selecting 

five mutations according to the two sampling protocols described above (mutations 
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occurring either independently in different replicates, or co-selected). We found that Fisher’s 

fitness landscape consistently generates a genotypic landscape very close to a smooth, 

additive landscape when the ancestral strain is far from the optimum relative to the size of 

mutations (W00 = 0.1 and ). Specifically, there is no sign epistasis in more than 

95% of landscapes and the roughness to slope ratio is always very close to 0. Interestingly, 

the genotypic landscape is closer to additive in phenotypic landscapes of higher complexity 

(lower r/s ratio) (fig. 6). This is because the deviation from strict additivity is due to the 

curvature of the fitness landscape, which appears smaller in more complex landscapes 

because the effects of mutations in the direction of the optimum are smaller.

In a second step, we investigated genotypic landscapes that emerge when the ancestral strain 

is fitter (W00 = 0.9). Three general tendencies emerge from the distribution of these statistics 

(fig. 6). First, complexity does not affect much the distribution of the statistics. Again, this is 

because we scale the norm of mutations such that the expected norm is constant across 

complexity. Second, the properties of the genotypic landscapes depend strongly on the 

sampling protocol. Specifically landscapes generated from independently selected mutations 

tend to be more rough than those generated from co-selected mutations. Indeed, landscapes 

with co-selected mutations include at least one evolutionarily accessible path from the initial 

genotype to the genotype of maximal fitness, and tend to exhibit mutations of smaller effect 

on average, which generates less rough genotypic landscapes. Third, and more strikingly, a 

great diversity of genotypic landscapes may be generated with the same underlying fitness 

landscape because of the inherent stochasticity of the evolutionary process (fig. 6, 7).

Discussion

Main results

Fisher’s fitness landscape is a smooth phenotypic landscape with stabilizing selection 

towards a single optimum. Yet non-trivial properties of individual random mutations and 

their interactions emerge from that model. In the present paper, we have explored the 

properties of genotypic fitness landscapes generated by adaptive mutations in Fisher’s 

fitness landscape model and developed analytical predictions that apply when the ancestral 

strain is far from the optimum.

First, selected mutations may point in the direction of the optimum in simple organisms, but 

in more complex organisms they are often almost orthogonal to the main direction of 

selection because of the numerous pleiotropic effects of mutations. The fitness effects of 

selected mutations follow a χ distribution with 2 d.f., independent of the complexity, with an 

invariant coefficient of variation of approximately 0.5.

Second, the epistasis coefficient among pairs of selected mutations is on average negative 

when the ancestral strain is far from the optimum. When the ancestral strain is close to the 

optimum, the epistasis coefficient is on average more strongly negative between 

independently selected mutations. For co-selected mutations, epistasis is negative on 

average in landscapes of low complexity but can become positive when complexity gets 

very high. Sign epistasis – the fact that a mutation may be beneficial or deleterious 

depending on the background in which it appears–may be common in Fisher’s model, 
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especially when the ancestral strain is close to the optimum relative to the size of mutations. 

The cause of sign epistasis in Fisher’s model when far from the optimum is antagonistic 

pleiotropy, whereby the combination of pleiotropic effects in multiple phenotypic directions 

are deleterious in the double mutant. As a consequence, sign epistasis occurs more 

frequently in more complex organisms.

Third, we explore how these properties of pairs of mutations scale up to the global 

properties of genotypic landscapes made of all combinations of mutations between an 

ancestral strain and an evolved genotype. When the ancestral strain is far from the optimum, 

these empirical landscapes are smooth and very similar to an additive landscape. However, 

when the ancestral strain is close to the optimum, the landscape can encompass some 

roughness, especially when mutations have been independently selected. Even though all 

landscapes have a major additive component, an appreciable variety of empirical genotypic 

landscapes can be observed across different replicate simulations using the same set of 

parameters.

Critical assumptions

Our analytical results rely on several assumptions. First we assumed that the landscape is 

isotropic, that is the eigenvalues of SM (the product of the selection matrix and the mutation 

matrix) are all identical. Recent work suggests that the isotropic landscape emerges under a 

relatively general set of “first principles” (Martin 2014). Our analytical results may be 

extended to anisotropic landscape when the ancestral strain is maladapted only on one 

phenotype (Appendix, sup. fig.), but it remains to be explored how the outcomes are 

modified when the landscape is anisotropic and when the ancestral strain is maladapted on 

several phenotypes. Simulations suggest that anisotropy may alter the average value of 

epistasis (sup. fig.). Second we assume universal pleiotropy, whereby each mutation affects 

all phenotypes of the organism. We predict that restricted pleiotropy will reduce the fraction 

of sign epistasis and the roughness of small genotypic landscapes. Indeed, if restricted 

pleiotropy only makes the norm of mutations smaller (Lourenço et al. 2010), then the 

optimum will appear further away in the phenotypic space and sign epistasis will be less 

common. If restricted pleiotropy also reduces the complexity of the sub-space affected by 

mutations (Chevin et al. 2010), antagonistic pleiotropy will be less common and this will 

also make sign epistasis less common. Also, note that we scale the mutational effect such 

that complexity does not affect the expected norm of mutations in the phenotypic space. 

With a different scaling such that the norm of mutations is larger in a more complex space, 

an even greater impact of complexity on sign epistasis and roughness is expected. Third, we 

assume that the pool of available beneficial mutations is infinite: each mutation that can 

occur and fix in the population is unique. If the number of available beneficial mutations 

were reduced, we expect less variation across replicate genotypic landscapes because the 

same beneficial mutations will be sampled several times across replicates. However this 

effect will be important only when the number of beneficial mutations is very reduced, and 

is likely to be irrelevant in a number of contexts where the pool of available beneficial 

mutations is of the order of tens or hundreds (Salverda et al. 2011, Tenaillon et al. 2012, 

Schenk et al. 2013). This confirms the relevance of continuous (phenotypic) landscapes 

(Achaz et al. 2014) and implies that an empirical landscape built from a handful of 
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mutations is a single random sample among all possible sets of adaptive mutations. The last 

important assumption is that of “Strong Selection – Weak Mutation” regime. Under this 

regime, adaptation occurs by successive fixation of beneficial mutations. If the mutation rate 

and/or population size are large (Nμ >> 1), several beneficial mutations will compete in the 

population (clonal interference) and beneficial mutations of larger fitness effect on average 

will fix. Thus, genotypic landscapes may also vary depending on the evolutionary regime, a 

possibility that would be worth exploring in future work.

Comparison with previous theoretical work

Our study complements previous work. Draghi and Plotkin (2013) studied the patterns of 

epistasis along adaptive walks in Kauffman’s NK model and in a simulated RNA folding 

landscape, and examined the implications of their results for in the light of experimental data 

from bacterial populations. They found a predominance of antagonistic (negative) epistasis 

in the early steps of adaptation and of synergistic (positive) epistasis later on. This result is 

very similar to our finding that co-selected mutations tend to interact negatively for fitness 

far from the optimum, but positively close to the optimum (fig. 3). Both illustrate the limited 

number of options left for adaptation when close the optimum (Greene and Crona 2014). 

Draghi and Plotkin’s observation stems directly from the finiteness of the genotypic space. 

Close to the optimum, there are very few beneficial mutations; if one of these mutations 

fixes, it is very likely that adaptation will proceed further through other beneficial mutations 

that were “unlocked” by the fixation of the last beneficial mutation. In Fisher’s model, in 

contrast, more positive epistasis close to the optimum is due to the fact that most beneficial 

mutations exhibit antagonistic pleiotropy. The second mutation compensates for antagonistic 

pleiotropy of the first mutation. In our model this effect is observed in particular in more 

complex organisms where compensation operates in multiple phenotypic directions.

Testing our predictions with experimental data

Our analytical and simulation results generate a number of testable predictions for 

experimental work. We qualitatively compared several of these predictions with published 

data, and we found that in general the available data is in good agreement with Fisher’s 

model.

First, we tested the prediction that the coefficient of variation of the distribution of fitness 

effect of selected mutation is approximately 0.5 (equation 2). Two data sets on adaptation of 

E. coli to minimum glucose medium (Rozen et al. 2002) and adaptation of Pseudomonas 

aeruginosa to rifampicin (MacLean et al. 2010) are suitable to test this prediction. We found 

the distribution of fitness effects of selected mutations in these datasets has cv = 0.44 and cv 

= 0.42 respectively, which is in relatively good agreement with the prediction.

Second, our results on the distribution of epistasis among pairs of selected mutations suggest 

that complexity of the organism and the mutational variance could be estimated from data. 

This approach has been suggested using the distribution of fitness effects of random 

mutations (Martin et al. 2007). Yet with random mutations, n and σmut could not be 

estimated independently. Here on the contrary, the mean and variance of the distribution 

give access to n and σmut independently. For example, the coefficient of variation of 
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epistasis is equal to , from which the complexity n can inferred. Moreover, 

the distribution of the selection coefficient can be used to infer the initial fitness W00 

(equation 2). We computed n and σmut for Methylobacterium adapting to methanol medium 

(Chou et al. 2011). In that dataset, the strain was initially extremely maladapted and four 

beneficial mutations were quickly selected. Using the distribution of epistasis among these 

pairs of mutations we found n = 8 and .

Third, we tested whether the distribution of statistics characterizing the full genotypic 

landscape was compatible with the predictions of Fisher’s model. We developed three 

predictions: first mutations arising in an ancestral strain far from the optimum relative to the 

size of mutations generate a close-to-additive fitness landscape, while mutations arising in a 

fitter background generate more rough landscapes. To test this prediction, we compared the 

fraction of sign epistasis and roughness to slope ratio for two published experimental 

landscapes (Chou et al. 2011, Khan et al. 2011) that differ in their initial maladaptation, as 

the first one exhibits an increase in fitness of 100% over 600 generations while the other one 

fitness increased of 30% over 2000 generations. As expected the landscape starting from a 

better-adapted strain (Khan et al. 2011) exhibited more sign epistasis and a higher roughness 

to slope ratio than the landscape starting from a very poorly adapted strain (Chou et al. 

2011) (fig. 6). The second prediction is that the properties of genotypic landscapes depend 

on the procedure by which mutations are sampled (Szendro et al. 2013), and in particular 

that co-selected mutations tend to show less epistasis than independently selected mutations. 

Chou et al.’s dataset is also meeting this prediction. While mutations arising in the same 

replicate exhibited little sign epistasis (Chou et al. 2011), mutations occurring in 

independent populations exhibited substantial levels of antagonistic and sign epistasis (Chou 

et al. 2014). In this system all mutations resulted in a decrease of the expression of an 

operon carried on a plasmid. The combined effects of two mutations occurring 

independently resulted in too low levels of expression, hence lower fitness. In addition, the 

genotypic landscape reconstructed in Weinreich et al. (2006), which comprises 5 mutations 

which did not all evolve together (only some combinations of these mutations were found 

together in the same population) exhibits a high fraction of sign epistasis and roughness to 

slope ratio compatible with independently selected mutations in Fisher’s model. It is 

encouraging to note that the joint values of the two statistics in the three experimental 

landscapes we examined fall squarely in the density of points generated with Fisher’s model 

(fig. 6). However the relationship between the two statistics could be a property exhibited by 

many fitness landscapes and not a specific prediction of Fisher’s model. Indeed Szendro et 

al. (2013) find a similar relationship in the “Rough Mount Fuji” model (see their fig. 4). The 

third prediction on genotypic landscapes under Fisher’s model is that, when close to the 

optimum or when mutations have effects large enough to get close to the optimum, a wide 

diversity of genotypic landscapes may emerge as independent realizations of stochastic 

sampling of a set of mutations evolved on a single underlying landscape. This is in line with 

the experimental results of Schenk et al. (2013), who show that several genotypic landscapes 

of adaptation to cefotaxime resistance in the enzyme TEM-1 β-lactamase have distinct 

properties. Sign epistasis and roughness were contingent on the sample of mutations used to 

build the landscape (Schenk et al. 2013) and generated a diversity of landscapes strikingly 
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similar to the ones plotted in figure 7. To our knowledge, there are no other examples of 

such replicate landscapes, but we should keep in mind that stochasticity in the emergence 

and evolutionary fate of mutations may explain a substantial amount of variability observed 

among empirical landscapes. This variability is not necessarily due to different properties of 

the underlying fitness landscape. It will be important to design statistical tools that make 

more precise what information on the underlying landscape is contained exactly in a small 

genotypic landscape.

To summarize, the good agreement between our qualitative predictions and experimental 

data, and the diversity of landscapes that Fisher’s model may generate, suggest that Fisher’s 

model may be used as a flexible tool to describe the relationship between genotypes and 

fitness. Specifically, although Fisher’s model is based on a smooth phenotypic space, it may 

actually be used to interpret experimental evolution results where very short adaptive walks 

and highly rugged genotypic landscapes are observed (e.g., Gifford et al. 2011). These 

limitations call for more flexible and more robust methods to estimate the parameters of 

Fisher’s model from experimental data. Of course, it would also be necessary to compare 

more rigorously the explanatory power of different fitness landscape models. For example, 

the “Rough Mount Fuji” model (Szendro et al. 2013) or the NK model (Franke et al. 2011) 

are also able to explain a diversity of patterns observed in experimental data. The analytical 

and simulation results presented here are a step forward towards this goal. But Fisher’s 

model appears as a good candidate to standardize and unify a growing and disparate body of 

experimental work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix for “Properties of selected mutations and genotypic landscapes 

under Fisher’s Geometric Model”

1. Properties of selected mutations

Distribution of phenotypic effects and selection coefficient of fixed mutations

We use the following fitness function to define the relationship between phenotypes and 

fitness: , where zi is the phenotype i, λi is the strength of selection 

on phenotype i and n is the total number of phenotypes (the complexity). In the Appendix 

we derive analytical results where the λi are kept unspecified, but in the main text, for 
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simplicity, we restrict the analysis to the isotropic landscape λ1 = ⋯ = λn = 1. We assume 

the phenotype of the ancestral strain is  where W00 is the 

fitness of the ancestral strain. We make the approximation that selection operates only along 

the first phenotypic axis (this approximation works best when the ancestral strain is far from 

the optimum). As a consequence, selection affects the distribution of phenotypic effects of 

selected mutations along the first axis only, and the distribution of phenotypic effects along 

all other n−1 directions is exactly the same as the distribution of random phenotypic effects 

(i.e.,  where N stands for the normal distribution).

To derive the distribution of selected phenotypic effects along the first axis, we assume we 

are in a “strong selection – weak mutation” regime. In this regime, the next beneficial 

mutation to fix in the population is obtained by a random drawing among the pool of 

beneficial mutations, with each mutation is weighted by its selection coefficient (Kimura 

1983). Thus, the distribution of selected phenotypic effect will be the distribution of random 

phenotypic effect weighted by the selective effect of the mutation along the first axis. To 

derive the distribution of phenotypic effects along the first axis, we need to know what is the 

selection coefficient acting on a mutant with effect on the first phenotype dz1. This is given 

by:

(S1)

with . Thus, the distribution of phenotypic effects along the first 

direction is given by the product of the selection coefficient  and the 

distribution of phenotypic effects of random mutations  (Fisher 1930, Kimura 1983), 

that is:

(S2a)

where κ is a normalizing constant. Similarly the distribution of fitness effect of fixed 

mutations is given by:

(S2b)

where κ′ is another normalizing constant and f(s) is the distribution of fitness effects of 

random mutations.

Assuming mutation effects on the phenotype are small relative to the distance to the 

optimum, we may ignore the  term in (S2a), and the selection coefficient is directly 

proportional to the phenotype at the first axis s ≈ −2λ1,z0,1dz1. In this case the distribution 

of phenotypic effects of mutations along the first axis simplifies to:
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(S3a)

The above expression reveals that −d z1/σmut follows a χ2 (χi denotes a chi distribution with i 

degrees of freedom). Similarly the distribution of selection coefficients of selected mutations 

is:

(S3b)

Which gives equation (2) of the main text when λ1 is set to. The coefficient normalized by 

 follows a χ2. Note that several others approximations for f(s) may be 

plugged into equation (S2b) to find other approximations for the fitness effects of selected 

mutations (e.g., the normal distribution of Waxman and Peck 1998, Lourenço et al. 2011, or 

the gamma distribution of Martin and Lenormand 2006). For example, in the isotropic case 

(no heterogeneity in selection, λ1 = ⋯ = λn = 1) we used the displaced gamma distribution 

proposed by Martin and Lenormand and obtained the following distribution:

(S3c)

where ,  with  and κ is a normalizing 

constant (with a lengthy expression). We also compared these analytical predictions with the 

beta distribution based on Extreme Value Theory (Martin and Lenormand 2008), given by:

(S3d)

Geometry of selected mutations

The algebraic results derived above can be translated in geometric terms. The angle between 

a selected mutation and the first phenotypic axis can be calculated as:

(S4)

where the numerator is the norm of the resultant vector of the phenotypic space in all 

“neutral directions (phenotypic directions 2 to n), and the denominator is the norm of the 

vector in the first phenotypic direction (under selection). Because both the numerator and 

the denominator follow χ distributions when appropriately scaled, the quantity 
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is distributed according to a F-distribution with degrees of freedom n − 1 (corresponding to 

the numerator) and 2 (corresponding to the denominator) when appropriately scaled. It 

follows a relatively simple expression for the distribution of the angle θ:

(S5)

Lastly, the norm of selected mutations scaled by σmut is distributed according to a chi 

distribution with degrees of freedom (n + 1). This follows from the fact that the effect along 

the first phenotype normalized by σmut is χ2 while all other effects (along the n − 1 other 

phenotypes) are  distributed. Thus the sum of squares is a  and the norm is a 

χn+1.

These geometrical results can be extended to describe the relationship between two 

independently selected mutations. Whatever the complexity of the phenotypic space, it is 

possible to represent the relationship between two independent mutations and the optimum 

in a 3-dimensional space. This can be done using the Gram-Schmidt process, which 

generates an orthonormal basis for this 3-dimensional space in which the norm and angles 

are conserved (note that this space will of course be different for each pair of mutations 

considered). The relative disposition of the two mutations in the 3D space is characterized 

by their norms, the angles they have with the main direction of selection, and the angle 

between the two mutations when projected on a plane orthogonal to the main axis of 

selection (the azimuth). Because the fitness effect of a mutation does not change when it 

revolves around the main axis of selection, this angle is well characterized by the 

distribution of angles of random mutations for n − 1 phenotypic directions, that is (Poon and 

Otto 2000):

(S6)

The angles of the two mutations with the main axis of selection, which we call θ and θ′ 

together with the azimuth ψ are sufficient to find the angle between two mutations α:

(S7)

where θ and θ′ lie in  and ψ in [0, π]. Although we know the distribution of θ, θ′ and ψ, 

we were not able to derive explicitly the distribution of α. The average of the distribution of 

cos [α] is . This average is a decreasing function which is equal to 4/9 when n = 

3 and tends to 0 as the complexity increases. Hence, the distribution of cos[α] becomes 

increasingly concentrated around 0 as the complexity increases (i.e., the distribution of α is 

concentrated around π/2). Thus, in a very complex phenotypic space two independent 

mutations tend to be perpendicular in the phenotypic space.
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2. Distribution of epistasis among selected mutations

Epistasis among two mutations is defined as:

(S8)

Where W00 = W0 is the fitness of the ancestral strain, W11 is the fitness of the double mutant, 

and W10 and W01 are the fitnesses of the two single mutants. Under Fisher’s model of 

adaptation where the fitness of a genotype characterized by n phenotypes zi with i ∈ [1, n] is 

given by , epistasis reduces to (Martin et al. 2007):

(S9)

where dzi and dzi′ are the phenotypic effects of two independent mutations that evolved in 

this background. Equation (S9) gives equation (3) of the main text when the λi are set to 1.

Under our approximation, we can partition epistasis into a component due to mutational 

effect along the first (selected) axis and a component due to mutational effect along all other 

axes:

(S10)

The second component follows the distribution of neutral epistasis for n − 1 phenotypes. 

This can be approximated by a normal distribution with mean 0 and variance 

where the average  is taken over phenotypes 2 to n − 1 (Martin et al. 2007). The first 

component is the product of two independent random variables following the distribution 

given by (S3a). It can be shown using the standard formula for the probability density 

function of two independent random variables that the probability density function of this 

component is:

(S11)

where Y0(.) is a Bessel function of the second kind (it is defined as the solution of a 

differential equation). The total density of epistasis is thus a convolution between the 

function defined in (S11) and the density of a :

(S12)
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We were not able to find a simpler expression for this convolution. But as the number of 

phenotypes increases, epistasis should increasingly look like a normal distribution with 

proper mean and variance, because all non-selected phenotypes will progressively have 

more weight in the convolution. The mean and the variance of epistasis can be found by 

summing up the mean and variances of the two components of epistasis. The mean and 

variance of selected epistasis are:

(S13)

Epistasis corresponding to the selected component is always negative. The mean and 

variance of total epistasis are:

(S14)

Equation (S14) gives equation (4) of the main text when the λi are set to 1.

3. Sign epistas selected mutations

For independently selected mutations, the relationships W10 > W00 and W01 > W00 must hold 

in a strong selection, weak mutation regime, because the mutations are both beneficial in the 

ancestral strain. Thus, the first mutation is sign epistatic if and only if W11 < W01 (an 

analogous condition holds for the second mutation). This condition is equivalent to log(W11) 

− log(W01) < 0, equivalent to:

(S15)

Thus, a selected mutation is sign epistatic with another mutation, relative to the ancestral 

background, if and only if the sum of its selection coefficient and its epistasic coefficient is 

negative.

For co-selected mutations, the relationships W10 > W00 and W11 > W10 must hold. Thus the 

first mutation is sign epistatic if and only if W11 < W01, and the second mutation is sign 

epistatic if and only if W01 < W00 to the condition expressed in (S15) and the second 

condition is equivalent to log(W01) − log(W00) < 0, equivalent to:

(S16)

where s(2) denotes the selection coefficient of the second mutation. Note that reciprocal sign 

epistasis cannot happen between co-selected mutations, because it would imply that W11 < 

W00.
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Figure 1. 
The geometry of selected mutations in Fisher’s fitness landscape for various complexities of 

the phenotypic space. The left panel represents an isotropic landscape with n = 3. The log-

fitness isocline in the phenotypic space is a sphere centered at the origin 

. The vertical axis is the main axis of selection. The ancestral strain 

and the optimum are shown as black points. A beneficial mutation is shown as a plain arrow. 

The geometry of the mutation is characterized by the norm ||z|| and by the angle between the 

mutations and the main axis of selection θ. On the right panel, the distribution of these 

quantities is shown for complexities n = 3, n = 10, n = 100. The mutational variance σmut 

was normalized such that the expected norm is the same for all complexities. At higher 

complexities, mutations tend to be almost orthogonal to the main axis of selection (θ → π/2) 

and to exhibit very little variation in their norm.
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Figure 2. 
Distribution of the selection coefficient under Fisher’s model for various fitnesses of the 

ancestral strain W0 (left: far from the optimum, right: near the optimum) and various 

complexities of the phenotypic space (from bottom to top). The line is the χ2 analytical 

approximation (equation 2), the dashed line is based on the gamma approximation 

developed in Martin and Lenormand (2006) (Appendix) and the dotted line for W0 = 0.9 is 

the beta approximation developed in Martin and Lenormand (2008). Selection coefficient is 

calculated for 10000 selected mutations. σmut is scaled such that the average norm of the 
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mutational effect on phenotype is constant equal to 0.1 across complexities. The population 

size is N = 107 and the mutation rate μ = 10−9.
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Figure 3. 
Distribution of the epistasis coefficient e between two independently selected mutations 

(grey) and for co-selected mutations (white) for various fitnesses of the ancestral strain W0 

(left: far from the optimum, right: near the optimum) and complexities of the phenotypic 

space (from bottom to top). The plain line is the analytical approximation for independently 

selected mutations based on a normal distribution with mean and variance given by equation 

(4), and the dashed line is the normal approximation for random (newly arising) mutations 

(Martin et al. 2007). For independently selected mutations, the first mutations sweeping 
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through the population in each of 20000 independent replicates were selected, and epistasis 

coefficient is calculated for 10000 independent pairs of selected mutations. For co-selected 

mutations, the first two mutations sweeping through the population in each of 10000 

independent replicates were selected, resulting in 10000 independent epistasis coefficients. 

σmut is scaled such that the average norm of the mutational effect on phenotype is constant 

equal to 0.1 across complexities. The population size is N = 107 and the mutation rate μ = 

10−9.
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Figure 4. 
Relationship between epistasis and the selection coefficient. Top panel: average epistasis 

coefficient between pairs of mutations as a function of the average selection coefficient of 

the two mutations, when W00 = 0.1 and W00 = 0.9, between independently selected 

mutations (filled squares) and co-selected mutations (open squares). For each parameter set, 

the selection coefficients were binned in 10 intervals of size (smax − smin)/10 and the average 

epistasis was computed for each of these bins when at least 10 pairs of mutations were 

present. For all curves complexity n = 10 (relationships are similar for other values of n). 

Bottom panel: Fraction of sign epistasis between two independently selected mutations 

(filled symbols) and between two co-selected mutations (open symbols). This is shown for 

complexities of the phenotypic space n = 3 (circles) and 100 (triangles). Inset shows the 

average coefficient of selection among non sign epistatic mutations (top curve) and sign 
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epistatic mutations (bottom curve), as a function of the starting fitness, for complexity n = 3 

and independently selected mutations (curves are similar for other parameters and selection 

procedure). The fraction of sign epistasis is calculated among at least 2000 independent 

pairs of mutations. Other parameters as in fig. 3.
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Figure 5. 
The geometry of sign epistasis among two mutations in a two-dimensional Fisher’s fitness 

landscape model. The light gray lines are the fitness isoclines and the black lines are the 

phenotypic axes. Beneficial and deleterious mutations are shown respectively as blue and 

red arrows in the phenotypic space. In panel A, the two mutations are beneficial in the 

ancestral background and in the background with the other mutation (no sign epistasis). In 

panels B and C, two examples of pairs of sign epistatic mutations are shown. In B, one of 

the mutations is deleterious in the background with the other mutation (simple sign 

epistasis). In C, both mutations are deleterious in the background with the other mutation 

(reciprocal sign epistasis). In B and C, sign epistasis may occur by antagonistic pleiotropy 

(up, right) or optimum overshooting (bottom, left).
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Figure 6. 
The distribution of the roughness to slope ratio and the fraction of sign epistasis over 1000 

genotypic fitness landscapes generated with 5 mutations. Top left panel: distribution of 

roughness to slope ratio when W00 = 0.1, for three levels of complexity, for independently 

selected mutations (distributions for co-selected mutations are very similar). In these 

conditions, there is no sign epistasis in more than 95% of the landscapes. Top right panel: 

distribution of the statistics in independently selected (blue) vs. co-selected mutations 

(purple). Bottom panel: distribution of the statistics for different levels of complexity (n = 3, 
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n = 10, n = 100 in blue, red, green) in independently selected mutations (left) and co-

selected mutations (right). Statistics corresponding to three experimental landscapes are 

superimposed (C: Chou et al. 2011, K: Khan et al. 2011, W: Weinreich et al. 2006).
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Figure 7. 
Rough (top) and smooth (bottom) fitness landscapes obtained with 5 co-selected (left) or 

independently selected (right) mutations in Fisher’s model, with the same parameters (n = 3, 

W00 = 0.9). Fitness of the 25 = 32 genotypes is shown as a function of the number of 

mutations relative to the ancestor. The black points represent genotypes’ fitnesses, and the 

blue and red links are beneficial and deleterious mutations respectively. The thicker links 

represent the evolutionary path that was actually taken in the simulation, for co-selected 

mutations. In some cases, the genotypic landscape generated by independently selected 

mutations reflects quite clearly the presence of an optimum in fitness.
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