Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 May;72(5):1965–1969. doi: 10.1073/pnas.72.5.1965

Increased particulate and decreased soluble guanylate cyclase activity in regenerating liver, fetal liver, and hepatoma.

H Kimura, F Murad
PMCID: PMC432669  PMID: 239404

Abstract

We determined the activities of soluble and particulate guanylate cyclase [GTP pyrophosphatelyase (cyclizing); ?EC 4.6.1.2] IN REGENERATING RAT LIVER, FETAL AND NEONATAL RAT LIVER, AND HEPATOMA. TIn these tissues we found increased particulate and decreased soluble enzyme activities compared to normal adult rat liver. The particulate activity increased 12 hr after partial hepatectomy, reached maximal activity at 48 hr, and then declined. The soluble enzyme activity decreased within 8 hr and continued to decline. The activity of homogenates did not change. Guanylate cyclase activity was increased in plasma membrane and microsome fractions from regenerating liver. The increase in particulate activity was prevented with cycloheximide. Decreased soluble and increased particulate enzyme activities were found in fetal liver. After birth the soluble activity increased and the particulate activity decreased. Seven to 14 days after birth the activities of soluble and particulate fractions were similar to those of adult rat liver. In hepatoma 3924A, the activity of particulate guanylate cyclase was 9-fold greater and that of the soluble enzyme was 50% that of normal liver. These studies suggest that guanylate cyclase activity and its subcellular distribution may be related to liver growth through some unknown mechanism.

Full text

PDF
1965

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Averner M. J., Brock M. L., Jost J. P. Stimulation of ribonucleic acid synthesis in horse lymphocyte by exogenous cyclic adenosine 3',5'-monophosphate. J Biol Chem. 1972 Jan 25;247(2):413–417. [PubMed] [Google Scholar]
  2. BOLLUM F. J., POTTER V. R. Nucleic acid metabolism in regenerating rat liver. VI. Soluble enzymes which convert thymidine to thymidine phosphates and DNA. Cancer Res. 1959 Jun;19(5):561–565. [PubMed] [Google Scholar]
  3. BURCH H. B., LOWRY O. H., KUHLMAN A. M., SKERJANCE J., DIAMANT E. J., LOWRY S. R., VON DIPPE P. Changes in patterns of enzymes of carbohydrate metabolism in the developing rat liver. J Biol Chem. 1963 Jul;238:2267–2273. [PubMed] [Google Scholar]
  4. Chrisman T. D., Garbers D. L., Parks M. A., Hardman J. G. Characterization of particulate and soluble guanylate cyclases from rat lung. J Biol Chem. 1975 Jan 25;250(2):374–381. [PubMed] [Google Scholar]
  5. GARREN L. D., HOWELL R. R., TOMKINS G. M., CROCCO R. M. A PARADOXICAL EFFECT OF ACTINOMYCIN D: THE MECHANISM OF REGULATION OF ENZYME SYNTHESIS BY HYDROCORTISONE. Proc Natl Acad Sci U S A. 1964 Oct;52:1121–1129. doi: 10.1073/pnas.52.4.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HECHT L. I., POTTER V. R. Nucleic acid metabolism in regenerating rat liver. I. The rate of deoxyribonucleic acid synthesis in vivo. Cancer Res. 1956 Nov;16(10 Pt 1):988–993. [PubMed] [Google Scholar]
  7. Hadden J. W., Hadden E. M., Haddox M. K., Goldberg N. D. Guanosine 3':5'-cyclic monophosphate: a possible intracellular mediator of mitogenic influences in lymphocytes. Proc Natl Acad Sci U S A. 1972 Oct;69(10):3024–3027. doi: 10.1073/pnas.69.10.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ishikawa E., Ishikawa S., Davis J. W., Sutherland E. W. Determination of guanosine 3',5'-monophosphate in tissues and of guanyl cyclase in rat intestine. J Biol Chem. 1969 Dec 10;244(23):6371–6376. [PubMed] [Google Scholar]
  9. Kimura H., Murad F. Evidence for two different forms of guanylate cyclase in rat heart. J Biol Chem. 1974 Nov 10;249(21):6910–6916. [PubMed] [Google Scholar]
  10. Kimura H., Murad F. Nonenzymatic formation of guanosine 3':5'-monophosphate from guanosine triphosphate. J Biol Chem. 1974 Jan 10;249(1):329–331. [PubMed] [Google Scholar]
  11. Kimura H., Murad F. Two forms of guanylate cyclase in mammalian tissues and possible mechanisms for their regulation. Metabolism. 1975 Mar;24(3):439–445. doi: 10.1016/0026-0495(75)90123-7. [DOI] [PubMed] [Google Scholar]
  12. Kimura H., Thomas E., Murad F. Effects of decapitation, ether and pentobarbital on guanosine 3',5'-phosphate and adenosine 3',5'-phosphate levels in rat tissues. Biochim Biophys Acta. 1974 May 24;343(3):519–528. doi: 10.1016/0304-4165(74)90269-4. [DOI] [PubMed] [Google Scholar]
  13. Kram R., Tomkins G. M. Pleiotypic control by cyclic AMP: interaction with cyclic GMP and possible role of microtubules. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1659–1663. doi: 10.1073/pnas.70.6.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lanzani G. A., Giannattasio M., Manzocchi L. A., Bollini R., Soffientini A. N., Macchia V. The influence of cyclic GMP on polypeptide synthesis in a cell-free system derived from wheat embryos. Biochem Biophys Res Commun. 1974 May 7;58(1):172–177. doi: 10.1016/0006-291x(74)90907-3. [DOI] [PubMed] [Google Scholar]
  16. OLIVER I. T., BALLARD F. J., SHIELD J., BENTLEY P. J. Liver growth in early postpartum rat. Dev Biol. 1962 Feb;4:108–116. doi: 10.1016/0012-1606(62)90035-0. [DOI] [PubMed] [Google Scholar]
  17. Rudland P. S., Gospodarowicz D., Seifert W. Activation of guanyl cyclase and intracellular cyclic GMP by fibroblast growth factor. Nature. 1974 Aug 30;250(5469):741-2, 773-4. doi: 10.1038/250741a0. [DOI] [PubMed] [Google Scholar]
  18. Seifert W. E., Rudland P. S. Possible involvement of cyclic GMP in growth control of cultured mouse cells. Nature. 1974 Mar 8;248(5444):138–140. doi: 10.1038/248138a0. [DOI] [PubMed] [Google Scholar]
  19. TSUKADA K., LIEBERMAN I. SYNTHESIS OF RIBONUCLEIC ACID BY LIVER NUCLEAR AND NUCLEOLAR PREPARATIONS AFTER PARTIAL HEPATECTOMY. J Biol Chem. 1964 Sep;239:2952–2956. [PubMed] [Google Scholar]
  20. Thomas E. W., Murad F., Looney W. B., Morris H. P. Adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate: concentrations in Morris hepatomas of different growth rates. Biochim Biophys Acta. 1973 Feb 28;297(2):564–567. doi: 10.1016/0304-4165(73)90106-2. [DOI] [PubMed] [Google Scholar]
  21. Touster O., Aronson N. N., Jr, Dulaney J. T., Hendrickson H. Isolation of rat liver plasma membranes. Use of nucleotide pyrophosphatase and phosphodiesterase I as marker enzymes. J Cell Biol. 1970 Dec;47(3):604–618. doi: 10.1083/jcb.47.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Watson J., Epstein R., Cohn M. Cyclic nucleotides as intracellular mediators of the expression of antigen-sensitive cells. Nature. 1973 Dec 14;246(5433):405–409. doi: 10.1038/246405a0. [DOI] [PubMed] [Google Scholar]
  23. Weber G., Henry M. C., Wagle S. R., Wagle D. S. Correlation of enzyme activities and metabolic pathways with growth rate of hepatomas. Adv Enzyme Regul. 1964;2:335–346. doi: 10.1016/s0065-2571(64)80024-8. [DOI] [PubMed] [Google Scholar]
  24. Weinstein Y., Chambers D. A., Bourne H. R., Melmon K. L. Cyclic GMP stimulates lymphocyte nucleic acid synthesis. Nature. 1974 Sep 27;251(5473):352–353. doi: 10.1038/251352a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES