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Linking genotypes database with locus-specific
database and genotype–phenotype correlation in
phenylketonuria

Sarah Wettstein1, Jarl Underhaug2, Belen Perez3, Brian D Marsden4, Wyatt W Yue4, Aurora Martinez2 and
Nenad Blau*,1,5

The wide range of metabolic phenotypes in phenylketonuria is due to a large number of variants causing variable impairment in

phenylalanine hydroxylase function. A total of 834 phenylalanine hydroxylase gene variants from the locus-specific database

PAHvdb and genotypes of 4181 phenylketonuria patients from the BIOPKU database were characterized using FoldX, SIFT Blink,

Polyphen-2 and SNPs3D algorithms. Obtained data was correlated with residual enzyme activity, patients’ phenotype and

tetrahydrobiopterin responsiveness. A descriptive analysis of both databases was compiled and an interactive viewer in PAHvdb

database was implemented for structure visualization of missense variants. We found a quantitative relationship between

phenylalanine hydroxylase protein stability and enzyme activity (rs¼0.479), between protein stability and allelic phenotype

(rs¼ �0.458), as well as between enzyme activity and allelic phenotype (rs¼0.799). Enzyme stability algorithms (FoldX and

SNPs3D), allelic phenotype and enzyme activity were most powerful to predict patients’ phenotype and tetrahydrobiopterin

response. Phenotype prediction was most accurate in deleterious genotypes (E100%), followed by homozygous (92.9%),

hemizygous (94.8%), and compound heterozygous genotypes (77.9%), while tetrahydrobiopterin response was correctly predicted

in 71.0% of all cases. To our knowledge this is the largest study using algorithms for the prediction of patients’ phenotype and

tetrahydrobiopterin responsiveness in phenylketonuria patients, using data from the locus-specific and genotypes database.
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INTRODUCTION

Phenylketonuria (PKU; OMIM# 261600) is an autosomal recessive
metabolic disease caused by a deficiency of hepatic phenylalanine-4-
hydroxylase (PAH; EC 1.14.16.1). It is the most common inborn error
of amino acid metabolism, affecting about 1 in 10 000 newborns in
Europe.1 PAH is a non-heme iron enzyme that catalyzes the rate-
limiting step in phenylalanine (Phe) catabolism using molecular
oxygen as an additional substrate, iron and tetrahydrobiopterin (BH4)
as cofactor. Loss of function variants in the PAH gene therefore lead
to an accumulation of Phe in the liver, the blood, and finally in the
brain, causing severe mental retardation, behavioral disturbances and
psychiatric disorders in untreated patients.1 While a Phe-restricted
diet has shown to almost abolish these symptoms, some patients
treated from an early age show lower IQ scores than their controls,2

while cognitive outcomes are inversely correlated to blood Phe levels.3

The clear relationship between clinical and metabolic phenotype is
the basis of phenotype classification, which is predicated on off-diet
blood Phe levels. Most classifications today distinguish between mild
hyperphenylalaninemia (MHP; 120–600mmol/l), mild PKU
(600–1200mmol/l) and classic PKU (41200mmol/l),1 while some
recognize an additional group of moderate PKU (blood
Phe 900–1200mmol/l). The wide range of metabolic (and clinical)
phenotype has been shown mainly to be determined by PAH
genotype4,5 although other factors might play a role as well.6

To date, more than 800 PAH variants (as annotated in the locus-
specific database (LSD) PAHvdb; http://www.biopku.org) across the
three PAH domains (N-terminal regulatory, central catalytic and
C-terminal oligomerization domain) are known. Most patients are
compound heterozygotes so that allelic interaction potentially com-
plicates genotype-based prediction of phenotype. The key to com-
prehend genotype–phenotype relationships and its inconsistencies lies
within understanding PKU disease mechanisms: gene variants within
the catalytic domain may directly abolish PAH enzyme function,7

while splice-site variants can result in a non-functional truncated
protein.8 Missense variants have been reported to primarily result in
misfolding of the protein9–11 which impairs protein stability9,11 and
oligomer assembly.9 Misfolded proteins were observed to aggregate in
prokaryote hosts4 and to be degraded in cellular models12 leading to
diminished PAH activity. Various algorithms analyzing mutant PAH
protein folding, stability and function have been developed to predict
metabolic and clinical phenotype. We tested FoldX,13 PolyPhen-2,14

SIFT Blink15 and SNPs3D16 algorithms as well as residual PAH
activity (%PAH) for each variant as instruments for phenotype
prediction.

Similarly, the issue of BH4 responsiveness in PKU and its prediction
have been a topic of intense research.17 Kure et al18 were the first to
describe PKU patients responding to oral BH4 administration with
lowering of blood Phe levels. Randomized clinical trials19 as well as
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international multicenter studies20 followed to establish BH4 (FDA-
approved drug Kuvan) as a valid treatment option in PKU. Studies
have shown that B20–30% of all PKU patients and about
60–80% of patients with MHP or mild PKU may benefit from
BH4 treatment.21 While multiple mechanisms for BH4 responsiveness
have been suggested,22 in many cases BH4 seems to act as a
pharmacological chaperone assisting in protein folding, promoting
enzyme stability and hindering degradation.23,24 Response to BH4 has
also been shown to depend on initial blood Phe levels21 and seems to
require a certain minimal %PAH.25 Additionally, genotype has been
closely associated with BH4 responsiveness type although not without
inconsistencies.25 In this study we used several prediction algorithms
as well as %PAH and allelic phenotype value (APV) to predict disease
severity and BH4 responsiveness. The large scale of this study
(4181 patients with complete genotype information, 1543 different
genotypes, and 267 variants with known APV) allowed for confident
identification of predictive factors.

MATERIALS AND METHODS

Databases
PAHvdb is a LSD (http://www.biopku.org/home/pah.asp). A total of 834 PAH

variants were tabulated as of December 2013. Allelic phenotype classification

was modified from Guldberg’s arbitrary assigned values (AV)5 (AV1¼ classic

PKU, AV2¼moderate PKU, AV4¼mild PKU and AV8¼MHP) to a three-

category system for APV: APV1¼ classic PKU, APV3¼mild or moderate

PKU, and APV8¼MHP). Proteins with o3% in vitro %PAH (measured in

recombinant mutant proteins expressed in eukaryotic cell systems)26 as well as

nonsense and frame-shift variations were defined as null (and assigned

APV¼ 1). Splice-site variants affecting invariable ag and gt nucleotides were

also considered null while splice-site variants in non-canonical sequence

were defined as only putative-null since they can sometimes produce

wild-type protein.27 The definition of 156 null-variants (Supplementary

Table S1) allowed for the assignment of APVs to their complimentary alleles

in hemizygous genotypes. Alleles in homozygous genotypes were assigned

APVs whenever there was coinciding phenotype information on at least three

patients. Seven variants had conflicting phenotype information and were

excluded from APV analysis (see below). All variants were checked with

Mutalyzer 2.0.beta-27 (https://mutalyzer.nl/check)28 and PAH genomic

sequence.29 The reference accession number for the PAH sequence is

ENSG00000171759; RefSeq NM_000277.1. Sequence variants are compliant

with the HGVS rules (http://www.hgvs.org/mutnomen/).30

BIOPKU database (http://www.biopku.org/home/biopku.asp) enclosed 4181

patients with full genotype as of January 2014 and phenotype was known for

3374 cases (80.7%). Phenotype classification was based upon highest blood

Phe levels before treatment introduction and comprised three categories. BH4

responsiveness was defined as a Z30% reduction (responder) or 20–30%

reduction of blood Phe levels (slow responder) 24–48 h after BH4 administra-

tion (usually 20 mg/kg body weight).31 Response classification was based upon

blood Phe values at the end of the test (eg T24h or T48h or both) and with a

trend for a constant Phe concentrations decrease. Each response category was

assigned an arbitrary ordinal value for quantitative analysis: responder¼ 3,

slow responder¼ 2 and non-responder¼ 1.

Gene variants damage prediction tools
A number of web-based tools for prediction of pathogenic missense variants

are currently available.32 We selected four tools frequently used in our

laboratories and performed FoldX, PolyPhen-2, SIFT Blink and SNPs3D

calculations for all missense variants in PAHvdb. FoldX (http://foldx.crg.es) is a

computer algorithm predicting the impact of variants on protein stability.13

FoldX values were calculated using the 1J8U crystal structure (residues 118–424)

including the catalytic domain and dimerization motif of human PAH. The

1J8U structure was chosen for its high-resolution (1.5 Å).33 FoldX values

were calculated for 422 out of 488 missense variants. The stability of the

remaining missense mutations could not be calculated due to missing residues

in the PDB file used for the calculations. At present there is no high-resolution

3D structure for the full-length human PAH. The energy parameter

VdWDesign was set to 2, which provides a ceiling of 5 kcal/mol for the van

der Waals clashes between two atoms. Repair PDB was run in four iterations

on 1J8U PDB after each of which DDG was calculated for all possible missense

variants. The multiple iterations were performed to get the uncertainty

(standard deviation (SD)) in the DDG values, representing the precision of

FoldX prediction. Variants leading to a change of DDG41 kcal/mol were

considered destabilizing, those where the change in DDGo�1 kcal/mol

counted as stabilizing, while variants in the range in between were

considered neutral. Average DDG of the four iterations was used for

statistical analysis. PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2)

estimates the damaging effect of missense variants based on multiple

sequence analysis and by assessing variant effects on 3D structural features

of the protein.14 PolyPhen-2 also predicts the likelihood of nucleotide

replacements to destroy structural features such as the hydrophobic core or

electrostatic interactions of the protein. Continuous output ranges from 0.00

(benign) to 1.00 (probably damaging) with an intermediary category of

possibly damaging. We used HumDiv-trained PolyPhen-2 because of its

higher accuracy of prediction and sensitivity. The SIFT Blink (http://

sift.jcvi.org) algorithm estimates the functional impact of missense variants

based solely on multiple sequence analysis.15 It compares the mutant sequence

to similar sequences and their functional profile and predicts it to be either

deleterious (o0.06) or tolerated (Z0.05). The SNPs3D (http://

www.snps3d.org) module assesses the effect of non-synonymous SNPs on

protein stability and function based on sequence analysis, structural analysis

(using wild-type protein structures as reference) and a Support Vector Machine

(SVM).16 A negative SVM Score classifies the substitution as destabilizing to

the folded state, while positive scores indicate non-deleterious substitutions.

Predicting allelic phenotype
We established correlations between APV and %PAH, FoldX, SNPs3D,

PolyPhen-2 and SIFT Blink values. In a second step, multiple regression

analysis was run to predict APV from the aforementioned values.

Linking locus-specific and genotype database
We investigated relationships between patients’ genotype and phenotype

as well as BH4 responsiveness in (a) deleterious null–null genotypes,

(b) functionally hemizygous, (c) compound heterozygous and (d) homo-

zygous genotypes. Since many genotypes were reported with different

phenotypes, we first determined an average phenotype (�xPHENO) for each

genotype in BIOPKU. Second, all BIOPKU alleles were assigned their

concurrent allelic values from PAHvdb (APV, %PAH, FoldX, SNPs3D,

PolyPhen-2 and SIFT Blink values). �xPHENO and average BH4 responsiveness

(�xBH4) were then correlated with (a) genotype in deleterious null–null

genotypes, (b) allelic values of the non-null allele in hemizygous genotypes,

(c) averaged allelic values (eg �x % PAH) in both compound heterozygous and

(d) homozygous genotypes. Multiple regression analysis was run to predict

�xPHENO and �xBH4 from allelic values. Only genotypes with at least three patients

for which phenotype was known were included in this analysis. The same was

true for prediction of BH4 response.

Statistics
Statistical analysis was performed using IBM SPSS Statistics Version 21 (IBM,

Armonk, NY, USA) for Mac. Correlations between ordinal and nominal values

were described using w2-test while ordinal and continuous variables were

correlated using Spearman’s correlation. Relationships between two continuous

variables were evaluated using Pearson’s correlation (if normally distributed)

and Spearman’s correlation (if normality was violated). All correlations are

reported as r(N�2) where N¼ sample size and N�2¼ degrees of freedom.

One-way ANOVA was used to compare means between different groups.

Normal distribution was assessed by Shapiro Wilk’s test and homogeneity of

variance by Levene’s Test. Tukey post-hoc analysis was employed to locate

significant differences between groups. Whenever homogeneity of variance was

violated, ANOVA was replaced by Welch’s ANOVA and Tukey test by

Games–Howell analysis. Results of regression analysis are reported as
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F(dfreg/dfres)¼ obtained F-value, where dfreg¼ regression degrees of freedom

and dfres¼ residual degrees of freedom. Independence of residuals was assessed

by Durbin–Watson statistic.

RESULTS

PAHvdb
Descriptive analysis. Most (488) of the 834 variants in PAHvdb
(58.5%) were missense variants, followed by 133 deletions (15.9%),
114 splice-site variants (13.7%), 50 nonsense variants (6.0%) and 26
insertions (3.1%). Silent variants, ins/del and large genomic rearran-
gement together accounted for the residual 23 variants (2.8%). Most
known variants were located in the catalytic domain (503 variants,
60.3%), followed by intronic and non-coding region locations (124
variants, 14.9%), regulatory domain (148 variants, 167.7%) and
oligomerization domain (42 variants, 5.0%). The site with most
known variants was exon 7 (catalytic domain, 13.9%) followed by
exon 6 (catalytic domain, 13.5%) and exon 3 (regulatory domain,
9.7%) (Figure 1). %PAH was known for 96 variants (11.5%). The
values ranged from 0 to 111% with a mean of 35.4% (standard error
of the mean (SEM)¼ 3.07; SD 30.09%). APV was known for 267
variants (32.0%), of which 221 were classified as classic PKU (APV1,
82.8%), 25 were associated with mild PKU (APV3, 9.4%) and 21
with MHP (APV8, 7.9%). In seven cases there was conflicting
information on APV (Supplementary Table S2).

3D visualization of PAH variants. As a tool to inspect the 3D
environment of the amino acid variant sites in PAH, 455 entries in the
PAHvdb database were hyperlinked to an interactive viewer built on
the iSee concept—a one-stop platform providing interactive visuali-
zation of protein structures without the need for extensive user input
or prior knowledge of structure file handling.34 This tool enables the
user to view the local atomic environment (secondary structure
elements, bonding interactions and neighboring residues) for each
amino acid in the wild-type protein associated with a missense
change. An option is further provided to display, on the wild-type
template without further molecular dynamics/energy minimization,
the chemical structure of the mutated side-chain. This feature serves
to enable the user to discern any difference in the physico-chemical
properties between the wild-type and mutated side chains. Example
screenshots and first-time user instructions are provided in
Supplementary Figure S1.

Residual PAH activity and protein damage. There was a moderate
negative correlation between %PAH and the destabilization of the
mutant protein (DDG values provided by FoldX; rs (70)¼ �0.446,
Po0.001 (normality was violated)) as well as a moderate positive
correlation between %PAH and SNPs3D value (r(89)¼ 0.479,
Po0.001). There was no relationship between %PAH and either
SIFT Blink or PolyPhen-2 value (Supplementary Figure S2A-D).
All alleles with %PAH below 13% (n¼ 15) were associated with
classic PKU (APV¼ 1).

Allelic phenotype and variants damage tools. We established correla-
tions between %PAH, FoldX, SNPs3D, PolyPhen-2, SIFT values and
APV. There was a strong positive correlation between %PAH and
APV (rs (40)¼ 0.799, Po0.01) and mean %PAH differed significantly
between APV groups: Welch’s F(2,16.110)¼ 50.367, Po0.001. %PAH
increased from 3.75 (±4.24%) for APV1 to 40.40 (±15.86%) for
APV3 and to 51.69 (±24.95%) for APV8. Post-hoc analysis revealed
that the increase from APV1 to APV3 was statistically significant
(36.65%, 95% confidence interval (CI): 22.55–50.75, Po0.01), as was
the increase from APV1 to APV8 (47.94%, 95% CI (31.60 to 64.28),
Po0.01) (Supplementary Figure S3).

FoldX values correlated moderately with APV (rs(69)¼ �0.458,
Po0.01) and mean FoldX values differed significantly between APV
groups. It decreased from 3.27 (±2.52) in APV1 to 2.10 (±1.35) in
APV3 to 0.83 (±0.88) in APV8. The decrease from APV1 to APV8
(�2.43, 95% CI: �3.54 to �1.33, Po0.05) was statistically
significant as was the decrease from APV3 to APV8 (�1.26, 95%
CI: �2.28 to �0.25, Po0.05) (Figure 2a).

SNP3D values correlated moderately with APV (rs(83)¼ 0.447,
Po0.01) and mean SNPs3D value differed between APV groups
(F(2,82)¼ 12.396, Po0.001, o2¼ 0.211). It increased from �1.96
(±1.11) in APV1 to �1.26 (±1.21) in APV3 to �0.39 (±1.32) in
APV8. The increase from APV1 to APV8 (1.57, 95% CI: 0.81–2.33)
and the increase from APV3 to APV8 (0.86, 95% CI: 0.01–1.72) were
statistically significant (Po0.05) (Figure 2b).

There was a weak to moderate negative correlation between
PolyPhen-2 values and APV (rs(83)¼ �0.411, Po0.01) and
mean PolyPhen-2 value differed between APV groups. Only the
decrease from APV1 to APV8 (�0.32, 95% CI (�0.56 to �0.08))
was statistically significant (Po0.05), while homogeneity of variances
and normality were violated in all APV groups (Po0.001) (Figure 2c).
SIFT values (mean 0.04±0.15, SEM¼ 0.02, ranging from 0.00 to 1.00)
correlated moderately with APV (rs(83)¼ 0.456, Po0.01), but mean
SIFT values did not differ between APV groups (Figure 2d).

Predicting allelic phenotype. Multiple regression analysis was run
to predict linearized APV (continuous variable ranging from 1¼
classic PKU through 3¼mild PKU to 8¼MHP) from %PAH, FoldX,
PolyPhen-2, SNPs3D and SIFT value. We found that %PAH and
FoldX together accounted for 64.1%, while %PAH and SNPs3D
together accounted for 52.1% of the explained variability in linearized
APV, respectively (one outlier c.569T4C was removed because of
high leverage). Equations and regression coefficients with standard
errors can be found in Supplementary Table S3A.

BIOPKU database
Descriptive analysis. A total of 4181 genotypes corresponding to
8362 alleles were analyzed. Of the 1543 different genotypes, 126 were
homozygous (8.2%). The most frequent genotype was c.[1066-
11G4A];[1066-11G4A] found 137 times (3.3%) followed by
c.[1222C4T];[1222C4T] (3.1%) and c.[782G4A];[782G4A]

Figure 1 Distribution of mutations tabulated in the PAHvdb according to

gene region, affected protein domains, amino acid boundaries of the exons

and BH4 cofactor binding regions (CBR). Red bars, exons; blue bars, introns.

Linking PKU genotypes with locus-specific database
S Wettstein et al

304

European Journal of Human Genetics



(2.0%) (Table 1). The overall most frequent allele was
c.1222C4T (10.3%) followed by c.1066-11G4A (8.7%) and
c.782G4A (6.7%) (Table 2).

The 8362 variants predominantly affected the catalytic domain (268
residues, 5095 hits, 60.9%), followed by intronic sites (1683 hits,
20.1%), the regulatory domain (142 residues, 1174 variants, 14.0%)
and least the oligomerization domain (42 residues, 410 variants,
4.9%). Of the 8362 variants, 6665 (79.7%) hit exonic sites resulting in
an average of 14.7 variants per residue if distributed evenly. In reality,
however, the catalytic domain was disproportionately affected with
16.4 variants per residue (þ 1.7 mpr), as was the oligomerization
domain (þ 1.1 mpr), while the regulatory domain was comparatively
least affected (�4.7 mpr) (Supplementary Figure S4). Similarly, 6681
exonic variants (including large deletions) being evenly distributed
over 1359 nucleotides theoretically result in 4.9 variants per nucleo-
tide (mpn). In reality, however, exon 7 (þ 9.2 mpn) and exon 12
(þ 8.2 mpn) were disproportionately more affected. Relatively least
affected was exon 13 with only three variants total (0.07 mpn)
(Supplementary Figure S5).

BH4 responsiveness was reported for 2134 out of 4181
patients (51.0%). A total of 936 genotypes were classified as
responders (43.8%), 202 as slow responders (9.5%) and 996 as
non-responders (46.7%). BH4 responsiveness depended on pheno-
type: 92.9% of all MHP patients were responders compared with
63.9% in the mild PKU group and 15.5% of classic PKU patients. The
latter group included mostly non-responders (71.6%), which applied
to only 3.7% of the MHP patients (Figure 3). A Spearman’s rank-
order correlation revealed a moderate positive correlation between the
two variables (rs(1841)¼ 0.621, Po0.01). There was also an associa-
tion between domain combinations of the genotype and
response type. All genotypes with at least one variant in the oligomer-
ization domain showed higher rates of responders than any other
domain combination (Figure 4a). To correlate BH4 responsiveness with

individual PAH domains, each BIOPKU allele was assigned the
genotype’s BH4 responsiveness. 77.4% of all variants in the
oligomerization domain were associated with a responding

Figure 2 Relationship between different PKU phenotypes and (a) mean FoldX value (rs (70)¼ �0.446, Po0.001); (b) mean SNPs3D value

(rs (89)¼0.479, Po0.001); (c) mean PolyPhen-2 value (no relationship); and (d) mean SIFT values (no relationship). Error bars represent the 95%

confidence interval.

Table 1 The most frequent genotypes in the BIOPKU database

occurring in Z0.50% of all patients

Genotype Protein variant

Genotype

frequency (%)

c.[1066-11G4A];[1066-11G4A] p.[(?)];[(?)] 3.28

c.[1222C4T];1222C4T] p.[Arg408Trp];[Arg408Trp] 3.06

c.[782G4A];[782G4A] p.[Arg261Gln];[Arg261Gln] 1.96

c.[782G4A];[1222C4T] p.[Arg261Gln];[Arg408Trp] 1.22

c.[1315þ1G4A];[1222C4T] p.[(?)];[Arg408Trp] 1.22

c.[842C4T];[842C4T] p.[Pro281Leu];[Pro281Leu] 1.12

c.[1222C4T];[1241A4G] p.[Arg408Trp];[Tyr414Cys] 1.03

c.[143T4C];[143T4C] p.[Leu48Ser6;[Leu48Ser] 1.00

c.[1066-11G4A];[782G4A] p.[(?)];[Arg261Gln] 1.00

c.[1315þ1G4A];[1241A4G] p.[(?)];[Tyr414Cys] 0.88

c.[1315þ1G4A];[1315þ1G4A] p.[(?)];[(?)] 0.86

c.[143T4C];[1222C4T] p.[Leu48Ser];[Arg408Trp] 0.84

c.[838G4A];[838G4A] p.[Glu280Lys];[Glu280Lys] 0.74

c.[1066-11G4A];[1222C4T] p.[(?)];[Arg408Trp] 0.74

c.[143T4C];[782G4A] p.[Leu48Ser];[Arg261Gln] 0.62

c.[1066-11G4A];[194T4C] p.[(?)];[Ile65Thr] 0.60

c.[473G4A];[1222C4T] p.[Arg158Gln];[Arg408Trp] 0.57

c.[194T4C];[1222C4T] p.[Ile65Thr];[Arg408Trp] 0.55

c.[1066-11G4A];[1241A4G] p.[(?)];[Tyr414Cys] 0.55

c.[1066-11G4A];[143T4C] p.[(?)];[Leu48Ser] 0.53

c.[1066-11G4A];[898G4T] p.[(?)];[Ala300Ser] 0.50

c.[1055delG];[1055delG] p.[(Gly352Valfs*48)];

[(Gly352Valfs*48)]

0.50

The reference accession number for the PAH sequence is ENSG00000171759; RefSeq
NM_000277.1.
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phenotype compared with only 51.9% in the regulatory and 47.9% in
the catalytic domain. Splice-site variants were part of a responding
genotype in 29.9% of all cases. Those being mostly non-homozygous,
response was most likely due to the second allele in many cases.

Phenotype was known for 3374 out of 4181 genotypes (80.7%).
The smallest group was MHP composed of 630 patients (18.7%)
followed by mild PKU (30.2%) and classic PKU (51.1%). There was
also an association between domain combinations and phenotype: the
highest rate of MHP was found in genotypes where both variants
affected the oligomerization domain (28.0%) followed by the
oligomerization–regulatory (22.2%) and catalytic–catalytic combination
(21.8% MHP). Splice site–splice site genotypes showed mostly
classic PKU (84.3%) (Figure 4b). Connecting phenotype to indivi-
dual PAH domains, we found the highest rate of MHP patients in
the catalytic domain (20.7%) followed by the oligomerization
(18.6%) and regulatory domain (17.5%). Splice-site variants were
associated with classic PKU (59.2%).

Predicting disease phenotype. We investigated the possibility of
predicting phenotype for genotypes in different constellations:
(a) two null-alleles, (b) one null-allele (functionally hemizygous

genotypes), (c) two non-null alleles (compound heterozygotes) and
(d) two non-null alleles (homozygotes). Potentially, predictive factors
were genotype itself and allelic values (APV, %PAH, FoldX, SNPs3D,
SIFT Blink and PolyPhen-2).

To determine phenotypic homogeneity of genotypes we considered
all cases (n¼ 257) in which phenotype was known for at least three
patients (and theoretically all three phenotypes could occur). The
majority had a heterogenic phenotype profile (61.1%) with at least
two different phenotypes, while in 22 cases (8.6%) even all three
phenotypes had been described. Heterogeneity was most abundant in
homozygotes (65.0% with two and 15.0% with three different
phenotypes described), while deleterious null–null genotypes were
most homogenous (57.1% with only one and 40.0% with two
described phenotypes). With such heterogeneity at hand it seemed
of little use to assign each genotype to one phenotype category.
Instead, we determined average phenotype �xPHENO for each genotype.
Genotypes with two or less cases were excluded from this analysis
(with the exception of deleterious genotypes) to reduce influence of
misclassification. Multiple regression analysis was run to predict
�xPHENO from allelic values. All equations and regression coefficients
can be found in Supplementary Table S3A.

Deleterious genotypes with two null-alleles. A total of 149 genotypes
(774 patients) were classified as deleterious. Phenotype was known for
542 patients (70.4%), 501 of which showed classic PKU, while 41
(7.6%) were classified as mild PKU. Of these 41 patients, 18 with mild
phenotypes had at least one c.1066-11G4A allele which might,
through alternative splicing, lead to a functional protein. The other 23
patients were most likely misclassified. Excluding c.1066-11G4A
allele from analysis would therefore raise correct prediction of classic
phenotype by double-null-status close to 100%.

Functionally hemizygous genotypes. A total of 154 genotypes were
included in the analysis. All non-null alleles were assigned their
concurrent FoldX, PolyPhen-2, SIFT Blink, SNPs3D, APV and %PAH
values, and multiple regression analysis was run to predict �xPHENO

from them. APVnon-null accounted for 76.7% of the variability in
�xPHENO, %PAHnon-null for 32.5% and SNPs3Dnon-null and FoldXnon-null

Table 2 The most frequent alleles in the BIOPKU database occurring

in Z0.50% of all patients

Nucleotide aberration Protein variant Allele frequency (%)

c.1222C4T p.Arg408Trp 10.32

c.1066-11G4A p.(?) 8.71

c.782G4A p.Arg261Gln 6.67

c.1315þ1G4A p.(?) 4.64

c.842C4T p.Pro281Leu 3.73

c.1241A4G p.Tyr414Cys 3.67

c.143T4C p.Leu48Ser 3.64

c.194T4C p.Ile65Thr 3.17

c.473G4A p.Arg158Gln 2.94

c.1208C4T p.Ala403Val 2.28

c.1162G4A p.Val388Met 1.97

c.728G4A p.Arg243Gln 1.91

c.1169A4G p.Glu390Gly 1.64

c.898G4T p.Ala300Ser 1.55

c.838G4A p.Glu280Lys 1.52

c.754C4T p.Arg252Trp 1.29

c.1045T4C p.Ser349Pro 1.26

c.727C4T p.(Arg243*) 1.24

c.165delT p.(Phe55Leufs*6) 1.11

c.1042C4G p.Leu348Val 1.05

c.441þ5G4T p.(?) 1.04

c.781C4T p.(Arg261*) 1.02

c.1055delG p.(Gly352Valfs*48) 0.86

c.814G4T p.(Gly272*) 0.85

c.168þ5G4C p.(?) 0.83

c.331C4T p.(Arg111*) 0.78

c.1223G4A p.Arg408Gln 0.68

c.721C4T p.Arg241Cys 0.66

c.611A4G p.(Tyr204Cys) 0.66

c.204A4T p.Arg68Ser 0.63

c.1068C4A p.(Tyr356*) 0.55

c.734T4C p.Val245Ala 0.53

c.722G4A p.Arg241His 0.50

The reference accession number for the PAH sequence is ENSG00000171759; RefSeq
NM_000277.1.

Figure 3 Percentage of BH4 responders, slow responders and non-

responders within PKU phenotype groups.
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together for 12.4%. �xPHENO was correctly predicted in up to 94.8%,
while 5.2% of all genotypes were classified one category away from
�xPHENO.

Compound heterozygotes. Ninety-five genotypes were included in
this analysis. All alleles were assigned their concurrent values, which
were averaged for the genotype and correlated with �xPHENO. Multiple
regression analysis revealed that �xAPV accounted for 66.0% of the
explained variability in �xPHENO, while �x% PAH and �xSNP3D together
accounted for 39.4%.

Homozygotes. Twenty-eight homozygous genotypes were included
in the analysis. FoldX, PolyPhen-2, SIFT Blink and SNPs3D values as
well as APV and %PAH of either allele were correlated with �xPHENO.
APV accounted for 81.1% of the explained variability in �xPHENO, while
%PAH accounted for 27.5% of the explained variability.

Predicting BH4 responsiveness. There was also considerable hetero-
geneity in BH4 responsiveness within genotypes. of all genotypes,
53.8% had a homogenous response profile (27.7% with two types and
18.5% with three response types). This led us to determine average
response �xBH4 for each genotype. Genotypes with two or less cases
were excluded from this analysis (with the exception of deleterious
genotypes). Multiple regression analysis was run to predict �xBH4 from
allelic values. All equations and regression coefficients can be found in
Supplementary Table S3B.

Deleterious genotypes. All 149 deleterious genotypes (774 patients,
332 for which responsiveness was known) were included in the
analysis. Most of the patients for which response was known were
non-responders (89.2%), while 10 were classified as responders
(3.0%) and 26 as slow responders (7.8%). Five responders and 13
slow responders were part of a genotype including the c.1066-11G4A
allele which might, through alternative splicing, lead to a functional
protein. All other responding genotypes (n¼ 18) were most likely
misclassified as such. Excluding c.1066-11G4A allele from analysis
would therefore raise correct prediction of non-responsiveness by
double-null-status close to 100%.

Functionally hemizygous genotypes. Seventy-eight hemizygous
genotypes were included in the analysis (one outlier c.916A4G/
c.1222C4T was removed due to high leverage). Multiple
regression analysis revealed that APVnon-null and %PAHnon-null

together accounted for 58.4% of the explained variability in BH4

responsiveness.

Compound heterozygotes. A total of 66 compound heterozygous
genotypes were included in the analysis. Averaged APV and averaged
%PAH together accounted for 39.6% of the explained variability in
BH4 responsiveness.

Homozygotes. Sixteen homozygous genotypes were included in the
analysis. %PAH accounted for 38.5% and APV for 28.0% of the
explained variability in BH4 responsiveness.

DISCUSSION

We have compiled a descriptive analysis of 4181 PKU genotypes in
BIOPKU and 834 PAH variants in PAHvdb. Using different algo-
rithms we correlated protein stability, APV and %PAH with patients’
phenotype and BH4 responsiveness. The main purpose of our study
was to identify factors predictive of allelic and patients’ phenotype as
well as BH4 responsiveness.

In accordance with previous studies missense variants constituted
the largest group of PAH variants. The identification of c.1222C4T as
the most frequent allele and c.[1066-11G4A];[1066-11G4A] as the
most frequent genotype is in agreement with earlier findings.35 The
unequal variant density between PAH domains and exons supports
the notion of variable residue vulnerability suggesting that nucleotides
such as c.1222C, c.143T, c.782G and others are disproportionately
more susceptible to alterations.

Missense variants in general have been shown to lead to misfolding
of the nascent protein.36 The first large-scale study to investigate and
confirm correlations between mutant protein stability (assessed by
FoldX algorithm), %PAH and (hemizygous) phenotype was Pey
et al.10 They studied 318 PKU-associated missense variants and
concluded that decreased protein stability is the main molecular
pathogenic mechanism in PKU and the determinant for phenotypic
outcome, although additional factors must be considered that may
contribute to the patient phenotype. Our study repeats these findings
with additional 199 missense variants, supporting the suggested
quantitative and causal relationship between enzyme stability,
activity and APV. Correlations between FoldX values and APV were
similar in the two studies, however, the correlation between our FoldX
values and those reported in Pey et al.10 were only moderate
(r¼ 0.65). This was most likely due to the different FoldX versions
and structures used. The current FoldX program does not include the
possibility to test and set an energy penalty (a ceiling for the van der
Waals clashes between two atoms) at values higher than 5 kcal/mol.
Furthermore, the use of different PDB files (1J8U in this work versus

Figure 4 (a) Percentage of BH4 responders, slow responders and

non-responders in PKU genotypes with different domain combinations;

(b) percentage of MHP, mild PKU and classic PKU patients in genotypes

with different domain combinations.
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2PHM, 1PHZ and 2PAH) might have contributed to differing values.
We selected the PDB file 1J8U because it covers the region that
includes most variants and has the highest resolution for the human
enzyme (1.5 Å, vs 3.1 Å for 2PAH). 2PHM and 1PHZ, corresponding
to rat PAH, cover a larger section of the sequence including the
regulatory ACT domain but have a lower resolution and are further
compromised by the need to prepare models of the human enzyme.
Using a high-resolution structure is one of the most important
criterions for good FoldX prediction of structural impact by
variants.13 Compared with the study by Pey et al,10 the use of PDB
1J8U in the present study improves the correlation between DDG
values and APV groups significantly (Figure 2a).

APV was best predicted by %PAH, FoldX and SNPs3D algorithms,
while PolyPhen-2 and SIFT Blink did not significantly add to the
prediction. %PAH showed a strong correlation with APV and
distinguished between classic/mild PKU as well as between classic
PKU/MHP. Mean %PAH did not differ significantly between mild
PKU and MHP indicating other factors might influence phenotype in
this range. In accordance with earlier findings, there was a minimum
of 13% residual enzyme activity below which APV was usually severe.
PolyPhen-2 and SIFT correlations with APV were unstable since data
was not normally distributed in either case. The low specificity and
lack of correlation with %PAH argues against both tools for
phenotype and BH4 responsiveness prediction in PKU.

Our analysis reveals that the majority (61.1%) of all genotypes had
a heterogenic phenotype profile. Some of this heterogeneity can likely
be attributed to misclassification,37 while it also points to other
factors such as individual metabolism influencing blood Phe levels,
previously shown in rats.38 Infants are usually screened between days
2 and 7, while samples in the US are usually obtained at 24–48 h when
Phe levels might not have peaked yet. While most physicians reported
initial blood Phe levels along with attributed severity of PKU in their
patients, misclassification could not be entirely excluded where this
was not the case. It should be also stressed that PKU is a complex trait
disease and that factors other than blood Phe may attribute to the
phenotype and thus explain most of outsiders. Thus, the complexity
of PKU may be illustrated by (a) different phenotypes that can be
accounted for by allelic variation in PAH, (b) the blurring of predicted
relationships between genotype and phenotype in PKU, (c) modifier
genes and (d) non-genetic factors that contribute to the phenotypes
of PKU variants.6 Genotype remains, however, a reliable predictor of
patients’ phenotype as seen before.39 Our genotype-based approach
correctly predicted average phenotype in 89.0% of all genotypes. Not
surprisingly, prediction is easiest in deleterious genotypes where
double–null-status usually equals classic phenotype.

APV proved to be by far the best overall predictor of patient’s
phenotype. While average APV was consistently 1 in deleterious
genotypes, two severe alleles always excluded MHP phenotype
and no MHP allele was ever seen in classic PKU phenotype. Overall,
the high predictive value of APV is intuitive as it mirrors blood
Phe concentrations most closely. Three factors potentially limit
prediction: (1) interallelic complementation in compound hetero-
zygotes (where prediction was least exact), (2) gene dosage in
homozygotes and (3) factors other than genotype (eg gene modifiers).

%PAH was consistentlyo3.0% in deleterious genotypes and an
overall moderate predictor of phenotype in other genotype constella-
tions. Accuracy of prediction was higher in compound heterozygotes
than in hemizygous and homozygous genotypes.

Overall BH4 responsiveness was 53.3%, which is within the range
described in earlier studies.40 The strong association between variants
in the oligomerization domain and BH4 responsiveness indicates that

BH4 most easily compensates oligomerization defects, which supports a
role of BH4 in oligomer assembly as suggested previously.24 Overall,
BH4 responsiveness was best estimated by APV and %PAH and
correctly predicted in 71.0% of all cases. In accordance with earlier
findings,25 BH4 responsiveness required a minimal residual activity of
about 20% in hemizygous genotypes, while the threshold was 15% in
homozygous and compound heterozygous genotypes. Some splice-site
variants (eg, c.1066-3C4T; c.442-5C4G) are clearly associated with
mild phenotype and response to BH4.41 It is possible that a BH4-
responsive splicing mutation may not be fully penetrant and the gene
may produce multiple mRNAs, including some wild-type PAH-mRNA
message, and thus result in a small amount of the full-length functional
protein. This hypothesis would explain a mild phenotype and BH4

responsiveness in three patients who are homozygous for c.1066-
3C4T. The same may be possible for some other splice variants, but
was never investigated in detail and is thus only speculative.

To our knowledge this is the largest study using algorithms for the
prediction of patients’ phenotype and BH4 responsiveness in PKU.
Previously frequently used PAH knowledgebase (www.pahdb.mc-
gill.ca) is no longer up to date (last updated in 2009). Our results
using data from the up-to-date LSD PAHvdb and genotype database
BIOPKU show that genotype, allelic phenotype, protein stability and
residual enzyme activity reliably predict patients’ phenotype and BH4

responsiveness. While allelic approaches are limited by interallelic
complementation, inconsistencies in genotype–phenotype relation-
ships are most likely due to individual metabolic and genetic
properties as well as misclassification of phenotypes. Our findings
contribute to a better understanding of relationship between BH4

responsiveness and prediction of disease severity, allowing for a better
classification of PKU patients.

NOTE ADDED TO PROOF

A total of 851 variants were tabulated in the PAHvdb (as of June
2014). Most of them (61.2%) were located in the catalytic domains,
followed by the regulatory (16.8%) and oligomerization (5.2%)
domains. The rest of the variants were located in non-coding regions
of the gene. Out of 851 gene variations, 61.5% were missense variants,
15.0% splice variants, 12.8% deletions, 5.8% nonsense variants, 1.9%
insertions, and 3.0% included indels, large deletions and silent
variations.

A total of 7453 patients with 1918 different genotypes had been
tabulated in BIOPKU as of June 2014. The smallest group was MHP
comprising 1161 patients (15.7%), followed by mild PKU (24.1%)
and classic PKU (48.2%).
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