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Improving accuracy of rare variant imputation with
a two-step imputation approach

Eskil Kreiner-Møller1,2,3, Carolina Medina-Gomez1, André G Uitterlinden1, Fernando Rivadeneira1,6

and Karol Estrada*,1,4,5,6

Genotype imputation has been the pillar of the success of genome-wide association studies (GWAS) for identifying common

variants associated with common diseases. However, most GWAS have been run using only 60 HapMap samples as reference

for imputation, meaning less frequent and rare variants not being comprehensively scrutinized. Next-generation arrays ensuring

sufficient coverage together with new reference panels, as the 1000 Genomes panel, are emerging to facilitate imputation of

low frequent single-nucleotide polymorphisms (minor allele frequency (MAF) o5%). In this study, we present a two-step

imputation approach improving the quality of the 1000 Genomes imputation by genotyping only a subset of samples to create a

local reference population on a dense array with many low-frequency markers. In this approach, the study sample, genotyped

with a first generation array, is imputed first to the local reference sample genotyped on a dense array and hereafter to the

1000 Genomes reference panel. We show that mean imputation quality, measured by the r2 using this approach, increases by

28% for variants with a MAF between 1 and 5% as compared with direct imputation to 1000 Genomes reference. Similarly,

the concordance rate between calls of imputed and true genotypes was found to be significantly higher for heterozygotes

(Po1e-15) and rare homozygote calls (Po1e-15) in this low frequency range. The two-step approach in our setting improves

imputation quality compared with traditional direct imputation noteworthy in the low-frequency spectrum and is a cost-effective

strategy in large epidemiological studies.
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INTRODUCTION

The genome-wide association studies (GWAS) approach has been
useful in identifying thousands of single-nucleotide polymorphisms
(SNPs) associated with hundreds of complex traits and human
diseases.1–3 This has been made possible by the increase in power
achieved by the meta-analysis of different studies where imputation of
missing genotypes is essential to harmonize and share data.4–6 Low-
frequency variants have not been scrutinized by most GWAS based on
HapMap content.7 Using newer reference panels for imputation will
allow this (eg, the 1000 Genomes project based on resequenced data
sets) with more variants with lower frequencies for the association
analysis with traits8 hereby increasing resolution and improving
power9,10 within the so-called next-generation GWAS. Newer arrays
have been designed including marker content in the low-frequency
spectrum.11 These arrays are expensive (at the time of writing this
paper, the approximate price for 5 M array was around 600$ per
sample) and it is not clear so far if worth the investment in already
GWAS’ed populations.

Here, we propose a two-step imputation approach seeking the
optimization of imputations of low-frequency variants when using
arrays based on HapMap content. This approach consists of first
genotyping a local reference population with an array with dense
marker content and a high coverage of markers in the low-frequency

spectrum. Second, the whole study population on arrays with
HapMap content is imputed to the array content of the local reference
set, before imputing to the 1000 genomes references panel. This
strategy results in improved imputation accuracy and quality in
what constitutes a cost-effective strategy for genotyping very large
populations.

MATERIALS AND METHODS

Design
This study was nested within the Rotterdam study, a prospective study of

14 926 participants over 45 years of age living in a suburb of Rotterdam. The

study has been approved by the institutional review board (Medical Ethics

Committee) of the Erasmus Medical Center and by the review board of The

Netherlands Ministry of Health, Welfare and Sports. Over 11 000 samples have

been genotyped either with Illumina (San Diego, CA, USA) Humanhap

microarray beadchips 550 or 610 K.12

Strategy overview
A subset of individuals from the Rotterdam study was chosen as the study

sample for this project. This subset consisted of trios genotyped on two

different platforms: the Illumnia 550 K and the Omni2.5 (N¼ 88). Another

subset of individuals, consisting of women without major disease conditions

during follow-up (N¼ 397), was genotyped on the Illumnia Omni5 array and

used as the local reference panel as described below. These individuals were
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also genotyped using the Illumina 550 K array. For baseline comparison of the

Omni5 and 550 K arrays, these two data sets were imputed to 1000 Genomes

(1000 G) in a traditional direct one-step approach (Supplementary Figure S1).

For the two-step approach, we first used our local reference panel and imputed

our study sample using the 550 K data, while the Omni2.5 data for the same

individuals were used as gold standard for later accuracy analyses. After this first

imputation, the best-guess imputed genotypes were hereafter used as input for

imputation using the 1000 G reference panel (Version 3,20101123, European

panel) (Figures 1 and 2). For comparison, we also directly imputed our study

sample to 1000 G in a traditional direct one-step approach.

Imputation software
We employed the MACH/Minimac software13 using a pre-phasing step before

the actual imputation as described at the Minimac website (see Web resources)

adjusted with an extra intermediate imputation step as described above.
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Figure 1 Panel a illustrates the baseline comparison of the local reference sample genotyped on both the 550K and Omni5 arrays imputed to the 1000

Genomes reference panel. Panel b illustrates imputation of the study sample applying the two-step approach and comparison with traditional direct one-step

imputation approach.
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Figure 2 Two-step imputation approach. Uppercase characters represent genotyped single-nucleotide polymorphisms (SNPs), while lowercase characters

represent imputed SNPs. Panel a illustrates the first step: imputation of the study sample using the local reference panel. Panel b illustrates the second

imputation step: imputing the output best-guess imputed genotypes from step 1 by using the 1000 Genome reference panel. The final output data set is

illustrated in panel c. Illustration adapted from Li et al.6

Improving accuracy of rare variant imputation
E Kreiner-Møller et al

396

European Journal of Human Genetics



The local reference sample was phased with MACH and hereafter used as a

reference panel.

Samples QC
We used regular QC procedures before imputation steps as described in

Supplementary Table S1, including removal of markers out of Hardy–

Weinberg Equlibrium (Po1.0E-06) with very low MAF (o0.001) and low

SNP call rate (o0.98). We further removed individuals from the study sample

related to individuals in the local reference population based on IBD

estimation (proportion IBD 40.2). The study sample consisted of 88 samples

genotyped on both Illumina 550 K and Omni2.5. The concordance rate

between these two arrays was higher than 99.9%. The local reference sample

consisted of 397 individuals genotyped on the Omni5 platform.

Imputation quality assessment
The r2 statistic from Minimac was used as a quality measure with r240.3

considered as sufficient imputation quality4 and high imputation quality

defined as r240.8. After the first imputation step in the two-step strategy,

SNPs were removed using three different filters for comparison: (1) no filter;

(2) sufficient quality (r2 filter on 0.3) and (3) high quality (r2 filter on 0.8).

Accuracy was defined as the proportion of correct imputed genotypes over the

total number of imputed genotypes and estimated by comparing the imputed

best-guess data to the gold standard data (Omni2.5) using Calcmatch (see Web

resources). This analysis was stratified per genotype class as the allelic

concordance rate for homozygotes major allele (major–major), heterozygotes

(major–minor) and for homozygotes minor allele (minor–minor). Mendelian

errors were calculated per study sample family in Plink.14 Only imputed

markers (ie, those markers not genotyped in the 550 K array) were taken into

account while assessing and comparing the imputation quality. To evaluate the

influence of number of individuals included in the local reference sample and

its impact on imputation quality, we randomly selected two subsets of

individuals with 100 and 200 individuals, respectively and compared these

with the full local reference using all 397 samples.

The performance of our approach using different imputation parameters

was assessed by analyzing chromosomes 2 and 20. Information on samples

genotyped across different platforms and allele frequencies is presented in

Table 1. After the evaluation of imputation parameters, we imputed all

autosomal chromosomes using the two-step approach (r2 filter on first step 0.3)

as well as using the direct approach. We then compared number of SNPs with

sufficient imputation quality in the low-frequency spectrum by both

approaches. Annotation was done using publicly available data (see web

resources).

When comparing quality between the two-step and the direct imputation

strategy in means of r2 or concordance rates, we applied paired t-tests.

RESULTS

Imputation quality (as measured by r2 statistic)
Description of number of markers per array is presented in Table 1.
We compared the effect of the array’s coverage in imputation quality
by direct imputation of the local reference sample (N¼ 397) using
both the Omni5 and the 550 K array data (Supplementary Figure S1).
This plot revealed improvement in imputation quality measured by r2

using the Omni5 array as compared with the 550 K with a mean
r2¼ 0.91 for the Omni5 and r2¼ 0.71 for 550 K data in the minor
allele frequency range between 1 and 5%.

To assess the effect of the two-step approach, we compared the
imputation quality, as measured by the mean r2 across all imputed
SNPs (chromosome 2 and 20), over the whole-allele frequency
spectrum (Figure 3). First, our results indicate a gain in mean r2

while using the two-step approach compared with the direct
imputation, especially in the low-frequency ranges. Second, evaluating
the results when applying different imputation quality (r2) cutoffs on
the first imputation showed that using no filter and using a filter on

r240.3 increased the quality as compared with applying the stricter
filter on r240.8.

The comparison of the statistical differences in r2 values revealed
highly significant improvement in imputation quality for the two-step
approach using paired t-test (all Po1e-15) (Table 2). In the 1–5%
MAF range, the two-step approach using a r2 filter on 0.3 (mean
r2¼ 0.87) had a 28% higher mean r2 compared with the direct
imputation (mean r2¼ 0.68). For this analysis, filtering out SNPs
genotyped in the local reference panel resulted in a slightly lower r2

increase between approaches on 21%.
Once we set a fixed threshold of r240.3 (sufficient quality) to

remove badly imputed markers in the first imputation step, we
imputed all autosomal chromosomes using both the two-step and
direct imputation approaches. This analysis revealed 2 528 598 SNPs
(intergenic: 78.49%, intronic: 20.47%, exonic: 1.04%) with MAF
1–5% and r2 above 0.3 using the two-step approach (r240.3 on first
step) compared with 2 147 168 (intergenic: 78.42%, intronic: 20.58%,
exonic: 1.00%) when imputing directly to the 1000 G. This represents
an increment of 18% in the number of low-frequency SNPs using the
two-step approach (synonymous: 21.10%, non-synonymous: 25.89%
and UTR 20.39% more variants). The r2 distribution of the extra
imputed SNPs for the two-step approach in this low-frequency
spectrum was highly right-skewed toward an r2 of 1 depicted in the
supplement (Supplementary Figure S2).

Accuracy
Overall accuracy estimates are presented in Supplementary Table S2.
The accuracy is also presented per genotype class in Table 3 and in
Supplementary Figure S3. Supplementary Figure S3 shows higher
accuracy for the heterozygotes and rare homozygotes when using the
two-step approach in low frequencies (MAFo10%). Again, using a
filter for the first step on r240.3 performed best. The mean accuracy
was statistically significantly higher in the lower MAF (1–5% and
5–10%) bins when using the two-step approach (first-step filter
r240.3) compared with the direct imputation. Comparing the
accuracy of the heterozygotes-imputed genotypes from the two-step
approach using the r2 filter on 0.3 with the approach without filter
also revealed a significant difference (Po1e-15) and better accuracy of
applying a filter on 0.3.

Mendelian consistency
There were no differences between direct and two-step imputation in
the number of mendelian errors per family in the imputed SNPs
(Supplementary Table S3).

Table 1 Description of number of markers and samples per array

Local reference sample Study sample

Array Omni5 550 K Omni2.5

Samples 397 88

SNPs, CHR2þ20 309 320 51 050 157 924

SNPs, MAF 40–1% 61815 413 7738

SNPs, MAF 1–5% 83588 3130 25 912

SNPs, MAF 5–10% 33718 5681 20 814

SNPs, overlapa — 119 965

Abbreviations: MAF, minor allele frequency; SNP, single-nucleotide polymorphism.
For the study sample, the 550-K data was used for imputation.
aOverlap: refers to the common SNPs between 550-K imputed data and Omni2.5 genotypes
used in gold standard analysis.
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Evaluating the size of the local reference panel
Accuracy estimates are presented in Figure 4, Supplementary
Figures S4 and S5 for different sizes of the local reference panel.
As expected, the larger the local reference panel, the better the
quality of the imputation. In the low-frequency spectrum with
MAF from 1 to 5%, accuracy measures (two step, r240.3 at first
step) dropped in the heterozygotes when lowering the number
from all 397 samples (accuracy¼ 0.915) to 200 (accuracy¼ 0.901)
and 100 (accuracy¼ 0.879) individuals in the local reference
panel. Similar drops were seen in the rare homozygotes in the
same MAF bin from all 397 samples (accuracy¼ 0.895) to 200
(accuracy¼ 0.868) and 100 (accuracy¼ 0.838) individuals used in
the local reference panel.

DISCUSSION

Principal findings
In this study, we have compared the traditional direct one-step
imputation procedure with a proposed two-step imputation approach
to improve the quality of the imputed data obtained after the use of
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Figure 3 Imputation quality metric, r2 per minor allele frequency (MAF) for the two different imputation strategies, chromosome 2 and 20 for the study

sample. The two-step strategy further stratified by first imputation step filter. A gray horizontal dashed line at r2¼0.8 is included to indicate high

imputation quality. Lines were created by meaning r2 per 100 single-nucleotide polymorphisms (SNPs) and applying local polynomial regression fitting

(loess function in R-project).

Table 2 Imputation quality metric (r2) for the two-step approach

compared with direct imputation

Two stepa Direct

Minor allele frequency N r2, mean (SD) N r2, mean (SD)

40–1%b 684 334 0.16 (0.28) 839 141 0.10 (0.20)

1–5%b 309 759 0.87 (0.23) 303 608 0.68 (0.31)

5–10%b 144 718 0.94 (0.17) 143 065 0.85 (0.24)

10–50%b 538 142 0.97 (0.11) 539 322 0.92 (0.17)

aFirst imputation filter on r2 0.3.
bComparing two step and direct imputation in each minor allele frequency bin revealed
P-values o10�15.

Table 3 Imputation accuracy for the two-step approach compared

with direct imputation stratified per genotype class

Minor allele

frequency N

Two stepa accuracy,

mean (SD)

Direct accuracy,

mean (SD) P-valueb

Common homozygotes (major–major)

40–1% 25 087 0.998 (0.005) 0.999 (0.004) —

1–5% 25 087 0.998 (0.006) 0.998 (0.006) —

5–10% 18 613 0.996 (0.009) 0.996 (0.01) —

Heterozygotes (minor–major)

40–1% 25 087 0.830 (0.237) 0.806 (0.244) 3.4e-6

1–5% 25 071 0.915 (0.145) 0.886 (0.172) o1e-15

5–10% 18 613 0.955 (0.083) 0.942 (0.106) o1e-15

Rare homozygotes (minor–minor)

40–1% 0 — — —

1–5% 1248 0.895 (0.241) 0.826 (0.294) o1e-15

5–10% 6746 0.925 (0.204) 0.888 (0.245) o1e-15

aFirst imputation filter on r240.3.
bComparing groups, heterozygotes and rare homozygotes in each minor allele frequency bin.
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dense reference panels, as the ones emerging nowadays. Our most
important finding was that the two-step approach increases both the
quality and the accuracy of imputation, even increasing the number
of high-quality markers in 18% for the lower frequency spectrum
(MAF 1–5%) as compared with the traditional direct imputation
approach. Accuracy improvement was primarily seen for the low-
frequency variants and only in the heterozygotes and rare homo-
zygotes genotype classes.

Limitations and strengths
We evaluated the two-step imputation approach by means of different
measures of quality, specifically r2 and imputation accuracy. Compar-
ison to a gold standard data (in our case: 88 samples genotyped with
two different arrays) must be seen as one of the primary strengths of
this study, enabling the evaluation of the approaches in low-frequency
markers. Nonetheless, one limitation is the relative low number of
samples in our study sample.

To evaluate the gain of power and improvement in means of novel
findings in the GWAS setting, a future effort should focus on applying
the two-step approach to entire data sets, as earlier applied when
analyzing the difference between HapMap and 1000 G imputation.9

This comparison would surely require large sample sizes and the
combination of several studies before an assessment of its value at
meta-analysis level can be done.

Further estimation of minimum marker content of the input for
the study sample would also be necessary to evaluate and analyze by
testing if this two-step approach would surpass the quality of direct

imputation in studies that are already genotyped in arrays with lower
content than the 550 K array.

Meaning of the study
We found that the proposed two-step imputation approach excels the
imputation quality (r2) and accuracy (concordance) as compared with
the direct imputation to 1000 G. One of the main reasons for this
could be that we used a dense array with many low-frequency markers
at the intermediate imputation step. As these low-frequency markers
can create population-specific haplotypes,8 we would expect that the
markers imputed in our study sample using the local reference panel
provide more precise haplotypes of both common and rare variants
over which imputation to a more comprehensive panel such as the
1000 G can be improved. The main reasoning to this improvement
being that a local reference panel must be closer to the study sample
in means of ancestry and that the overall number of haplotypes for
some markers are doubled (794 haplotypes in the local reference
panel in step 1þ 758 from the 1000 G panel in step 2). However, we
did not apply the two-step approach imputing other European
populations and using this Dutch local reference panel. The
reasoning on closeness in ancestry between the study sample and
local reference panel is therefore speculations.

It is possible that the increasing quality of future panels of the
1000 G (or other sequencing projects used as reference) may decrease
the boost provided by our proposed two-step approach and thus be as
efficient or even surpass the accuracy reached by the two-step
approach suggested in this manuscript. Nevertheless, the rationale
behind our approach is that by first imputing from a local reference
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Figure 4 Imputation accuracy for different local reference sizes. Imputation accuracy stratified per genotype for the different sizes of the local reference
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panel can result in more accurate imputation of variants in the lower
minor allele frequency spectrum, independent of the quality of the
reference panel.

The size of the local reference panel influenced the imputation
quality of the two-step approach. Nonetheless, for heterozygous
genotypes of variants in the MAF 1–5% range, the increase in quality
seems to level-off with increasing sample size, as observed from
doubling the local reference panel from 100 to 200 samples. This
increment showed a bigger leap in imputation quality, than the one
after doubling the number from 200 to 397 samples (Supplementary
Figure S5). Probably, further increment in the local reference panel
size (beyond the 397 samples) could still add to the imputation
accuracy but in a less pronounced manner. Moreover, the current
imputation quality metrics are within reasonable values expected
across studies, raising the question if adding more samples will be a
cost-efficient approach.

One other study by Sampson et al15 has assessed a two-platform
approach, genotyping a subset of samples on a denser array
(Omni2.5). These samples were combined with the 1000 G
reference set before imputation. Increasing the number of samples
to combine with the 1000 G improved r2.15 However, by using
standard imputation tools, the combination of reference panels is only
implemented in IMPUTE2,5 software not used in the current study.
We were therefore not able to compare the two-step approach to a
direct one-step approach with the combined use of the 1000 G
reference panel and our local reference panel. Nonetheless, in a recent
study we showed that combining 1000 G with a Dutch sequenced
panel (GoNL) only increased imputation r2 by 1.4% compared with
the GoNL alone, for low-frequency markers imputing a Dutch GWA
data set (Deelen et al, accepted EJHG). Thus, we would not expect
that combining our local reference panel with the 1000 G panel would
surpass the increase showed in our previous study.

Our study highlights a possible cost-effective strategy for large
studies undertaking genome-wide genotyping or a possible upgrade
of existing genotyped data sets. We expect that in large studies (with
thousands of individuals), a substantial reduction in costs would be
achieved by genotyping only a subset of the samples on these
relatively expensive arrays with many low-frequency markers (eg,
Omni5) and subsequently use these samples as a local reference set in
a two-step imputation approach. This extra load will represent an
increase in imputation quality and hence, the uncertainty of imputa-
tion calls will decrease, yielding more precise dosages what will be
reflected in the power to detect associations in future GWAS on
complex diseases. Nonetheless, discovering low-frequency variants
associated with complex traits in GWAS does not depend only on
imputation quality, but also on sufficiently powered settings (large
sample sizes). Thus, the proposed two-step approach needs to be
applied by all participating studies of a GWAS meta-analysis in order
to observe an increase in the power needed to detect rare variants.

CONCLUSION

Imputation is a useful approach to improve both coverage and power
in genetic association studies. The two-step approach in our setting
increased imputation quality compared with direct imputation

especially in the low-frequency spectrum. Further, this imputation
methodology is a cost-effective strategy for improving imputation
quality in large samples.
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