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Integrated and genome-based flux balance analysis, metabolomics, and 13C-label profiling of phototrophic and heterotrophic
metabolism in Chlorella protothecoides, an oleaginous green alga for biofuel. The green alga Chlorella protothecoides, capable of
autotrophic and heterotrophic growth with rapid lipid synthesis, is a promising candidate for biofuel production. Based on the
newly available genome knowledge of the alga, we reconstructed the compartmentalized metabolic network consisting of 272
metabolic reactions, 270 enzymes, and 461 encoding genes and simulated the growth in different cultivation conditions with flux
balance analysis. Phenotype-phase plane analysis shows conditions achieving theoretical maximum of the biomass and
corresponding fatty acid-producing rate for phototrophic cells (the ratio of photon uptake rate to CO2 uptake rate equals 8.4)
and heterotrophic ones (the glucose uptake rate to O2 consumption rate reaches 2.4), respectively. Isotope-assisted liquid
chromatography-mass spectrometry/mass spectrometry reveals higher metabolite concentrations in the glycolytic pathway
and the tricarboxylic acid cycle in heterotrophic cells compared with autotrophic cells. We also observed enhanced levels of
ATP, nicotinamide adenine dinucleotide (phosphate), reduced, acetyl-Coenzyme A, and malonyl-Coenzyme A in heterotrophic
cells consistently, consistent with a strong activity of lipid synthesis. To profile the flux map in experimental conditions, we
applied nonstationary 13C metabolic flux analysis as a complementing strategy to flux balance analysis. The result reveals
negligible photorespiratory fluxes and a metabolically low active tricarboxylic acid cycle in phototrophic C. protothecoides. In
comparison, high throughput of amphibolic reactions and the tricarboxylic acid cycle with no glyoxylate shunt activities were
measured for heterotrophic cells. Taken together, the metabolic network modeling assisted by experimental metabolomics and
13C labeling better our understanding on global metabolism of oleaginous alga, paving the way to the systematic engineering of
the microalga for biofuel production.

Green algae in the genus Chlorella spp. are a large group
of eukaryotic, unicellular, and photosynthetic microor-
ganisms that are widely distributed in freshwater envi-
ronments. Chlorella spp. can grow photoautotrophically
and were used as a model system in early research on

photosynthetic CO2 fixation (Bassham et al., 1950; Barker
et al., 1956; Calvin, 1956). They are also among the very
few algal groups capable of using organic carbon for
heterotrophic growth, which endows Chlorella spp. meta-
bolic flexibility in response to environmental perturbation.
Because of its robust and various metabolic capacities,
Chlorella spp. has aroused widespread interest as a po-
tential alga for industrial production of biomass (Lee,
2001), biofuel (Xu et al., 2006), and value-added chemicals
(Pulz and Gross, 2004).

Chlorella spp. are among the best oil feedstock micro-
organisms for the production of biofuel (Gouveia and
Oliveira, 2009). It was frequently reported that, under
nitrogen-limited environments, carbon overflow (e.g.
nitrogen depletion or organic carbon feeding) allows
Chlorella spp. to accumulate a high percentage of neutral
lipids that can be processed for biodiesel production
(Miao and Wu, 2006). Biogenesis of neutral lipids
was found in Chlorella spp. cells undergoing glucose
bleaching, in which the growth is switched from pho-
toautotrophic to heterotrophic mode and accompanied
by chlorophyll degradation. This metabolic transition
has been incorporated into a highly efficient biofuel
production process (Xiong et al., 2010a), whereas many
global changes in metabolism, such as degeneration
of the chloroplast, redistribution of carbon flux, and
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reprogrammed nitrogen assimilation, remain poorly
understood.
In our previous studies, we initiated metabolic analysis

of Chlorella spp. by steady-state 13C analysis of protein-
ogenic amino acids and profiling of metabolic fluxes for
heterotrophic Chlorella protothecoides (Xiong et al., 2010b).
The quantitative metabolic information can be further
expanded to the complete metabolome by means of re-
cent development in isotope-associated mass spectros-
copy (MS), which enables the accurate measurement of
both isotopic labeling kinetics and intracellular metabolite
concentrations (Bennett et al., 2008; Seifar et al., 2008).
Intracellular fluxes can be estimated by computational
modeling of dynamic isotopic labeling patterns (Young
et al., 2011). This methodology allowed for mapping
fluxes under autotrophic growth conditions (Young et al.,
2011), because it overcame the limitation of traditional
steady-state 13C metabolic flux analysis (MFA), which
fails to resolve the flux from a uniformly steady 13C la-
beling pattern because of the assimilation of CO2 as car-
bon source of autotrophic organisms.
The metabolic information may also be interfaced with

genomic knowledge to generate a bird’s eye view of the
metabolic properties in system level. Metabolic pathways
can be reassembled stoichiometrically and simulated by
constraint-based flux balance analysis (FBA), which uses
a linear programming approach (Lee et al., 2006) to ac-
complish the optimal solutions of the objective function
(usually maximizing the yield of biomass or a specific
metabolic product; Edwards et al., 2002; Oberhardt et al.,
2009). The reconstructed metabolic models based on
multidimensional genome annotation are of great value in
guiding metabolic engineering and genetic improvement
of photosynthetic microorganisms, such as Synechocystis
sp. PCC 6803 (Shastri and Morgan, 2005; Fu, 2009; Knoop
et al., 2010; Montagud et al., 2010; Nogales et al., 2012),
Arthrospira platensis (Cogne et al., 2003; Klanchui et al.,
2012), and Chlamydomonas reinhardtii (Boyle and Morgan,
2009; Chang et al., 2011; Dal’Molin et al., 2011).
The goal of our study is to systematically investigate

C. protothecoides metabolism. Our research procedures
are outlined in Figure 1, combining the computational
and experimental knowledge by in silico reconstruction
of the metabolic network. Specifically, based on func-
tional annotation of the genome (Gao et al., 2014),
we mapped primary metabolism of C. protothecoides and
adopted FBA to simulate the optimal status for cell
growth and lipid accumulation. To validate the FBA
model, we quantitatively measured core metabolites in-
volved in the metabolic model by liquid chromatogra-
phy (LC) -MS. Kinetic isotopic tracing of intracellular
metabolites was performed to quantify intracellular
fluxes. Comparative analysis of 13C MFA measure-
ment and FBA prediction suggests distinct properties
of C. protothecoides in autotrophic and heterotrophic me-
tabolism. Altogether, the studies presented here will
detail the Chlorella spp. metabolism and pave the
way to biofuel production from this microalga with
the predictive ability of a constructed metabolic
model.

RESULTS

A Primary Metabolic Network of C. protothecoides

The starting point of metabolic mapping was to recon-
struct the primary metabolic network based on the ge-
nome of C. protothecoides, which was sequenced recently
(Gao et al., 2014). The genomic information contained in
the database was reorganized into various essential path-
ways, such as the Calvin-Benson cycle/the pentose phos-
phate (PP) pathway, glycolysis/gluconeogenesis, the
tricarboxylic acid cycle, biosynthetic pathways of macro-
biomolecules (amino acids, nucleotides, UDP-Glc, glycerol-
3-P, and fatty acids as well as chlorophyll), etc. (Fig. 2).
Some catabolic pathways, such as b-oxidation of fatty
acids, were also assembled. For each biochemical reaction,
details are listed for gene number, gene ontology number,
and enzyme name. The EC number and the Kyoto Ency-
clopedia of Genes and Genomes identifier for each enzyme
are also provided so that the stoichiometry of the reactions
can be subsequently looked up and extracted from the
online database.

All reactions were considered to be localized into four
main compartments: cytosol, chloroplast (Gao et al.,
2014), mitochondria (Grant and Hommersand, 1974), and
peroxisome (Codd et al., 1972; Chou et al., 2008), where
most of the common metabolic reactions take place.

Figure 1. Schematic MFA workflow of C. protothecoides using com-
putational and experimental approaches. Briefly, we reconstructed the
primary metabolic network of the oleaginous microalga C. protothecoides
based on the recently available gene functional annotation (Gao et al.,
2014). Intracellular fluxes under different cultivation conditions were
simulated, and the optimal solutions were predicted using cell growth and
lipid accumulation as the objective functions. The genome-based meta-
bolic model was further constrained by experimental metabolomics and
dynamic isotope labeling for INST-MFA (Young, 2014). Results from 13C
MFA measurement and FBA prediction are comparably analyzed.
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Corresponding compounds, including gas, nutrients, and
intracellular metabolites, were shuttled between com-
partments through transport systems or passive diffu-
sion. The methodology for localization was described in
“Materials and Methods.”

In the process of reassembling the genome-based in-
formation, in total, 270 functional enzymes coded by 461
metabolism-related genes catalyzing 272 biochemical
reactions are relocated into their metabolic pathways,
suggesting the completeness of primary metabolism in
Chlorella spp. Absences of some reactions were identified.

Gaps found in the pathways were cured using a protein
query tblastn search, which confirms the possible exis-
tence of the missing enzymes in the C. protothecoides
genome. These unannotated enzymes are listed in
Supplemental Table S1. Of these enzymes, only homo-Ser
O-acetyltransferase (EC 2.3.1.31), histidinol-phosphatase
(EC 3.1.3.15), 1-deoxy-D-xylulose-5-P reductoisomerase
(EC 1.1.1.267), and uroporphyrinogen-III synthase (EC
4.2.1.75) have no hits in the database. To maintain the
integrity of the metabolic pathway, assumptions of their
presence in the model were made.

Figure 2. An overview of the reconstructed primary metabolic pathways in C. protothecoides. Dashed arrows denote simplified
multiple steps in a pathway. Dotted arrows denote intracellular transmembrane transport reaction. Ac, Acetate; AcCoa, acetyl
CoenzymeA; AH, acetaldehyde; AKG, a-ketoglutarate; Cit, citrate; DHAP, dihydroxyacetone phosphate; E4P, erythrose-4-
phosphate; EtOH, ethanol; F6P, fructose-6-phosphate; FBP, fructose-1,6-bisphosphate; Fum, fumarate; G3P, glucose-3-phosphate;
G6P, glucose-6-phosphate; Glx, glyoxylate; Go3P, glycerol-3-phosphate; Gr, glycerate; Hpyr, hydroxypyruvate; Isocit, isocitrate;
Lac, lactate; Mal, malate; OAA, oxaloacetate; 3PG, 3-phosphoglycerate; P5P, pentose-5-phosphate; PEP, phosphoenolpyruvate; PGI,
phosphoglycolate; PGluc, 6-phosphogluconate; PI, phosphatidyl-inositol; PSP, Pyr, pyruvate; RuBP, ribulose-1,5-bisphosphate; SBP,
sedoheptulose-1,7-bisphosphate; S7P, sedoheptulose-7-phosphate.
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To simulate cell growth and predict intracellular fluxes,
biomass and macromolecular compositions were mea-
sured and are presented in Table I. Biomass was divided
into protein, lipid, carbohydrate, DNA, and RNA, which
totally account for 92% and 95% dry cell weight of auto-
trophic and heterotrophic cells, respectively (Fig. 3, A and
B). The significant variations between the two types of
cells are the predominant presence of protein in autotro-
phic C. protothecoides and the vast majority of lipid in
heterotrophic biomass, indicating nutrition effect on cell
storage. To detail lipid metabolism in our model, we also
analyzed the fatty acid profile in C. protothecoides and
found predominantly fatty acid chains of 18 carbons with
one and two degrees of unsaturation in both autotrophic
and heterotrophic cells.
Based on the newly accessible genome knowledge as

well as the biomass composition information, we recon-
structed the primary metabolic network and established a
fundamental model focusing on the core metabolism of
C. protothecoides. This is the first genome-based metabolic
network of this alga, which could serve as an in silico
platform to exploit the intracellular properties of
C. protothecoides metabolism. The detailed process is de-
scribed in “Materials and Methods,” and the complete
dataset regarding reaction network and gene-protein
association of the enzymes and transporters involved
in the network is presented in Supplemental Tables S2
and S3. The reconstruction data are also provided in
SBML format as Supplemental Text S1 and S2.

Growth Simulation of C. protothecoides under Autotrophic
and Heterotrophic Cultivation Conditions

On the basis of the reconstructed metabolic model,
growth properties of C. protothecoides in different cultiva-
tion conditions were evaluated using FBA.We defined the
flux of nutrients and metabolic end products in and out of
cells under these circumstances as constraints to maximize
biomass production as the objective function (flux balance
analysis model 1 [FBA1]; described in “Materials and
Methods”). The calculated specific growth rate was in
good agreement with the experimentally determined
one (Table II), validating the accurate determination of
uptake/secretion flux in and out of cells and that no
additional significant carbon assimilation reaction and
secretion are missed during the cultivation. We also pre-
dicted the ideal growth rate of C. protothecoides in auto-
trophic and heterotrophic conditions with only the energy
source specified (flux balance analysis model 2 [FBA2];
described in “Materials and Methods”). This model can
explore the optimal carbon use. The result shows the
potential of autotrophic and heterotrophic growth rates,
which could be further improved 20% and 10%, respec-
tively (Table II). According to the comparison of FBA1
and FBA2 (Supplemental Fig. S1), improved carbon me-
tabolism can be realized by less carbon loss from the ox-
idative PP pathway and pyruvate dehydrogenase and
increased carbon assimilation from phosphoenolpyruvate
carboxylase as well.

Table I. Biomass components and macromolecular composition of
C. protothecoides

Biomass components of major cellular macromolecules were
expressed based on mass fraction of dry cell weight. Detailed mac-
romolecular composition was expressed on the basis of mole per-
centage. Data are represented as mean 6 SD.

Cellular Constituent
Autotrophic

Cells

Heterotrophic

Cells

Proportion of
macromolecular
components
(g per 100 g
dry cell wt)a

Protein 55.89 6 0.35 14.14 6 0.20
Lipid 12.11 6 0.12 53.60 6 0.21
Carbohydrate 12.93 6 0.63 15.53 6 0.54
DNA 2.97 6 0.23 3.07 6 0.04
RNA 6.63 6 0.32 7.54 6 0.36
Chlorophyll 1.00 6 0.10 0

Proteinogenic amino
acid composition
(mol %)
Ala 0.133 6 0.047 0.131 6 0.026
Arg 0.041 6 0.014 0.050 6 0.010
Asn 0.045 6 0.016 0.044 6 0.009
Asp 0.045 6 0.016 0.044 6 0.009
Cys 0.004 6 0.001 0.005 6 0.001
Gln 0.054 6 0.019 0.050 6 0.010
Glu 0.054 6 0.019 0.050 6 0.010
Gly 0.134 6 0.047 0.099 6 0.020
His 0.016 6 0.006 0.020 6 0.004
Ile 0.035 6 0.012 0.038 6 0.008
Leu 0.083 6 0.029 0.088 6 0.018
Lys 0.054 6 0.019 0.067 6 0.013
Met 0.007 6 0.002 0.012 6 0.002
Phe 0.036 6 0.013 0.036 6 0.007
Pro 0.059 6 0.021 0.053 6 0.011
Ser 0.069 6 0.024 0.067 6 0.013
Thr 0.056 6 0.020 0.060 6 0.012
Trp 0.000 0.002 6 0.000
Tyr 0.020 6 0.007 0.021 6 0.004
Val 0.058 6 0.020 0.067 6 0.013

Fatty acid
composition
(mol %)
C14:0 0.026 6 0.003 0.013 6 0.003
C16:0 0.090 6 0.011 0.129 6 0.027
C18:0 0.007 6 0.001 0.028 6 0.006
C18:1 0.544 6 0.065 0.608 6 0.128
C18:2 0.311 6 0.037 0.173 6 0.036

DNA (RNA)
composition
(mol %)b

A 0.186 0.186
T(U) 0.186 0.186
C 0.314 0.314
G 0.314 0.314

aBiomass components were comparable between two types of cells
and applicable for additional calculation with the unmeasured dry
weights less than 10% (8% and 5% of autotrophic and heterotro-
phic cells, respectively). bNucleotide composition of DNA was
obtained from genome sequencing, and the same composition was
assumed for RNA.
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Phenotype-Phase Plane Analysis Predicts Optimal Growth
and Fatty Acid Synthesis under Autotrophic and
Heterotrophic Conditions

Based on the reconstructed network model, we pre-
dicted the optimal growth rate and corresponding pro-
ductivity of targeted fuel compounds (represented by the
oleic acid, which is the most abundant fatty acid in
C. protothecoides) using phenotype-phase plane (PhPP)
analysis (Edwards et al., 2001) with the variation of input
fluxes (light absorption and CO2 uptake in autotrophic
mode, and O2 consumption and Glc uptake in hetero-
trophic mode). For the autotrophic model, the intensity of
light input was represented by absorbed photon flux. The
surface of a three-dimensional PhPP corresponding to the
predicted maximal growth rate and fatty acid synthesis
rate was plotted as a function of the uptake photon flux
(0–3 mmol g dry cell weight21 h21) and the CO2 uptake
rate (0–0.3 mmol g dry cell weight21 h21; Fig. 4, A and B).
It was simulated that the cells exhibited distinct pheno-
types depending on the amounts of carbon fixation and
light absorption. As shown, the rates for growth and fatty
acid production are zero in Region I, where photon up-
take is low. It is probable that light is insufficient to
generate enough ATP for cell growth in this region. In
Region II, the maximal cell growth is positively correlated

with the light absorption; however, it is negatively cor-
related with the CO2 uptake. Interestingly, inhibition of
photosynthesis by elevated CO2 was reported in other
eukaryotic algae, such as C. reinhardtii (Yang and Gao,
2003) and Chlorococcum littorale (Satoh et al., 2001). In
Region III, the growth rate is only limited by the CO2
uptake because of light saturation. In economic consid-
erations, the optimal growth and lipid accumulation ap-
pear on the demarcation line separating Regions II and
III, with the ratio of photon uptake to CO2 consumption
rate around 8.4.

Similarly, prediction of the optimal growth rate and
corresponding fatty acid synthesis rate in heterotrophic
C. protothecoides was conducted with Glc and O2 con-
sumption rate (ranging from 0 to 0.9 mmol g dry cell
weight21 h21 and from 0 to 1.2mmol g dry cell weight21 h21,
respectively) as input variables (Fig. 4, C and D). The
surface plot also shows three distinct regions. In
Region I, the optimal growth rate is dependent exclu-
sively on oxygen absorption, because oxidative phos-
phorylation could be repressed with low O2 availability.
This is comparable with the work by Chen et al. (2011),
which showed that enhanced O2 uptake could lead to
higher growth rate of Escherichia coli. Cell growth and
fatty acid biosynthesis are dependent on both variables

Figure 3. Biomass composition of autotrophic (A) and heterotrophic (B) C. protothecoides and concentration composition of
the measured intracellular metabolites of autotrophic (C) and heterotrophic (D) C. protothecoides. Biomass components of
major cellular macromolecules were expressed based on mass fraction of dry cell weight. Metabolite concentrations were
expressed in moles per liter, and percentages of total concentrations are in parentheses. Amino acids include Glu, Arg, Ala, Asp,
Gln, Asn, Lys, Pro, Thr, Val, Gly, Ser, His, Leu, Ile, Met, Tyr, Trp, and Phe. Nucleotides include ATP, ADP, and AMP. Central
carbon intermediates are g-aminobutyric acid, (iso)citrate, malate, Glc/Fru-6-P, a-ketoglutarate, succinate, ribose-5-P, dihy-
droxyacetonphosphate, 6-phosphogluconate, phosphoenolpyruvate, fumarate, Hyp, and pyruvate. Redox cofactors are NAD+,
NADH, NADP+, and NADPH, and coenzymes are acetyl-CoA and malonyl-CoA.
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in Region II at the very beginning, after which the rates
of cell growth and fatty acid synthesis cease with excess
O2 uptake. According to the PhPP model, one probable
explanation is that excessive O2 uptake leads to the
weakening of the PP pathway and greatly enhanced
activity of the tricarboxylic acid cycle, which oxidizes
organic carbon to CO2. The situation continues in Region
III, and algal cells fail to grow with low Glc availability
and high O2 absorption. Consequently, the optimal ratio
of Glc uptake to O2 consumption is 2.7 for heterotrophic
growth and fatty acid synthesis, which could serve as a
theoretical criterion for the cultural optimization of
C. protothecoides in Glc-containing media.

Metabolite Concentrations in Autotrophic and
Heterotrophic Cells

To validate the genome-based metabolic network of
C. protothecoides experimentally, we took advantage of the
LC-MS tools to quantitatively measure the network com-
ponents: intracellular metabolites throughout the central
carbon metabolism. To this end, we set up an LC-MS/MS
program for metabolomics that coupled hydrophilic
interaction and reversed-phase HPLC by electrospray
ionization to triple-quadrupole MS/MS. The optimized
MS parameters for each metabolite, including the limit of
quantification, coefficient of determination (R2), and rel-
ative SD, were listed in Supplemental Table S4. We also
optimized the procedures for sample preparation, in-
cluding cell harvesting, sample quenching, and solvent
extracting. The extraction capacities of various solvent
combinations were compared with a heat map analysis
(Supplemental Fig. S2), and as a result, the methanol:
water (50:50) mixture was shown to have major ad-
vantages for metabolite yields over other combinations.
To avoid the ion suppression caused by the matrix

effect (Matuszewski et al., 1998; Annesley, 2003), which
suppresses the signal of a compound in the sample
relative to that of a standard at the same concentration
and leads to the unreliability of determination, we used
an isotope labeling approach proposed by Bennett et al.
(2008) for metabolomic quantitation. Briefly, unlabeled
standards in known concentrations were spiked into the
extracts of cells that were completely labeled with iso-
topic substrate in the culture media. The amount of
endogenous metabolite present in the cells was then
determined by the ratio of endogenous metabolite to
internal standard in the extract.
Identified metabolites with intracellular concentra-

tions in both photoautotrophic and heterotrophic cells

are summarized in Supplemental Table S5 with 95%
confidence intervals. Of a total of 144 metabolites from the
reconstructed draft metabolic network, 40 were identified
and quantitated in the metabolome of C. protothecoides. The
core metabolome, on a molar basis, consists of sugar
phosphates (0.3% in autotrophic and 4.8% in heterotrophic
mode), organic acids (7.7% in autotrophic and 11.3% in
heterotrophic mode), amino acids (89.7% in autotrophic
and 76.3% in heterotrophic mode), CoA (0.01% in auto-
trophic and 0.1% in heterotrophic mode), nucleotides
(1.3% in autotrophic and 4.8% in heterotrophic mode), and
reducing equivalents (0.9% in autotrophic and 2.4% in
heterotrophic mode; Fig. 3, C and D). The most abundant
metabolite in both nutritional patterns is Glu measured as
21.8 and 6.53 mM, respectively. Compared with metabolite
concentrations between nutrient patterns, variations are
present in the majority of metabolites (77.5% of which
exhibit significant difference between autotrophic and
heterotrophic cells; P , 0.05 by two-tailed Student’s
t test), especially for intermediates in glycolysis and the
tricarboxylic acid cycle, in accordance with the sub-
stantial impact of nutrient mode on the metabolome
composition.

Metabolome of C. protothecoidesmirrors its metabolic
features in response to nutrient changes. For example,
with respect to the metabolites of reducing equivalents
and bioenergy currency, the molar ratio of NADPH to its
oxidative counterpart rises from 0.66 in CO2-fed cells to
1.75 in Glc-fed cells. The NADH-NAD+ ratio also in-
creases significantly from 0.003 in CO2-fed cells to 0.01 in
cells fed with Glc. Also, intracellular concentration of ATP
presents a 1.5-fold increase in heterotrophic growth, and
the energy charge correspondingly increases from 0.9 to
0.92 according to ([ATP] + 0.5[ADP])/([ATP] + [ADP] +
[AMP). Together, these results are in good agreement
with the notion that Glc-fed condition favors energy-
intensive metabolism, such as fatty acid biosynthesis
(Hardie et al., 1999). This conclusion is further supported
by altered levels of building blocks in the fatty acid
pathway: 3-fold and as high as 97-fold increases are
observed for acetyl-CoA andmalonyl-CoA, respectively,
in heterotrophic metabolome compared with the auto-
trophic one.

Flux Estimation Using Isotopically Nonstationary
Metabolic Flux Analysis

To further validate the genome-based metabolic net-
work in experimental conditions, we applied isotopically
nonstationary metabolic flux analysis (INST-MFA; Young

Table II. Experimentally determined and predicted specific growth rate based on growth parameters of autotrophic and heterotrophic
C. protothecoides

Determined data were represented as mean 6 SD. m, Specific cell growth rate.

Cell Type Photon Uptake CO2 Uptake/Excretion Glc Uptake Determined m 13C MFA m FBA1 m FBA2 m

mmol dry cell wt21 h21 h21

Autotrophic cells 1.5012 6 0.0506 0.1310 6 0.0049 0 0.0028 6 0.0013 0.0030 0.0032 0.0038
Heterotrophic cells 0 0.5841 6 0.0126 0.3028 6 0.0335 0.0257 6 0.0024 0.0250 0.0251 0.0280
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et al., 2011) to our metabolic network, tracing the kinetics
of isotope labeling trajectories and quantifying the fluxes
in C. protothecoides. Dynamic isotope labeling of eight
metabolites in autotrophic cells and nine metabolites in
heterotrophic cells is shown in Supplemental Figure S3.
For autotrophic cells, 13C-bicarbonate uptake resulted in
prompt labeling of metabolites involved in the Calvin-
Benson cycle (i.e. 3-phosphoglycerate, erythrose-4-P, and
Glc-6-P/Fru-6-P), whereas there was relatively slower
turnover of the tricarboxylic acid cycle intermediates
(i.e. citrate/isocitrate, succinate, fumarate, and malate),

reflecting differentiated flux distribution among path-
ways. Note that the tricarboxylic acid cycle metabolites,
such as (iso)citrate and succinate, were slowly labeled
as above 50% of the unlabeled (M0) isotopomer that
remained 60 min postlabeling. In contrast to this, sugar
phosphates, such as 3-phosphoglycerate, have a short
half-labeling time around 8 min. With respect to het-
erotrophic cells, feeding uniformly labeled 13C-Glc
to cells led to faster labeling of sugar phosphates (i.e.
3-phosphoglycerate, erythrose-4-P, and Glc-6-P/Fru-6-P),
reflecting high activity of glycolytic and the PP pathway.

Figure 4. The predicted maximal growth rate (A) and corresponding fatty acid production rate (B) as a function of light intensity
and total CO2 uptake, respectively, under photoautotrophic growth. The predicted maximal growth rate (C) and fatty acid
production rate (D) as a function of Glc and O2 uptake, respectively, under heterotrophic growth. The fatty acid production rate
is represented by that of oleic acid, which is the most abundant fatty acid in the C. protothecoides biomass. The surface is
colored relative to the value of the z axis. gCDW, Gram cell dry weight.
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In terms of metabolites in the tricarboxylic acid cycle, one
interesting finding is the identical labeling pattern of
malate and fumarate. Prompt appearance of the three
carbon-labeled (M3) isotope was observed for both of
them, indicating the strong activities of malic enzyme
or phosphoenolpyruvate carboxylase, which convert
labeled (phosphoenol)pyruvate and unlabeled CO2 to
organic acids and thus, shortcut the tricarboxylic acid
cycle from the oxidative direction.
Based on least squares regression, by which the re-

siduals between experimentally determined and simu-
lated isotopomer distributions are minimized, we
generated a quantitative flux map of C. protothecoides as
displayed in Figure 5. Net fluxes are normalized to a CO2
fixation rate of 100 by Rubisco flux (0.154 mmol g dry
cell weight21 h21) in autotrophic cells and Glc uptake
rate of 100 in heterotrophic cells (Glc uptake rate: 0.303
mmol g dry cell weight21 h21). The metabolic activity of
autotrophically growing cells is mainly derived from the
chloroplast as a generator of energy and organic com-
pounds. The energy needed for autotrophic metabo-
lism mainly comes from the photophosphorylation in
chloroplast, and glyceraldehyde-3-P, the product of

photosynthesis, is transferred into the cytoplasm and
serves as a precursor for the biosynthesis of biomass
components (Fig. 5A). It is noticed that a much smaller
flux through succinate was calculated compared with the
average metabolic flow in the upstream and down-
stream of this node, suggesting a low respiratory activity
for succinate dehydrogenase under illumination. This
result is consistent with the notion that the major func-
tion of the tricarboxylic acid cycle in photosynthetic mi-
crobes is in biosynthesis instead of generating energy
(Pearce et al., 1969; Steinhauser et al., 2012; Schwarz
et al., 2013). According to the computation results,
photorespiration, the oxygenation process of Rubisco (a
bifunctional enzyme catalyzing the first step of CO2
fixation in the Calvin-Benson cycle), functions in auto-
trophic growth but merely accounts for 0.1% of the total
Rubisco activity (Fig. 5A). Although photorespiration
flux is measured low in photosynthetic microbes, such as
cyanobacteria (Young et al., 2011), it is usually thought to
be indispensable as glyoxylate, the intermediate in
this pathway that is required for Gly and Ser bio-
synthesis (Knoop et al., 2010). In our reconstruction,
these two amino acids can be synthesized elsewhere

Figure 5. The specific flux distribution estimated using INST-MFA for autotrophic (A) and heterotrophic (B) C. protothecoides.
Net fluxes are normalized to CO2 fixation rate of 100 by Rubisco in autotrophic cells and Glc uptake rate of 100 in hetero-
trophic cells, respectively. (The actual reaction rates for Rubisco and Glc uptakes are 0.154 and 0.303 mmol g dry cell weight21

h21, respectively.) The thickness of the arrow is scaled proportionally to the flux value. Dashed arrows represent formation of
biomass. Ac, Acetate; AcCoa, acetyl CoenzymeA; AKG, a-ketoglutarate; Cit, citrate; DHAP, dihydroxyacetone phosphate; E4P,
erythrose-4-phosphate; F6P, fructose-6-phosphate; FBP, fructose-1,6-bisphosphate; Fum, fumarate; G3P, glucose-3-phosphate;
G6P, glucose-6-phosphate; Ga, glycerate; Glx, glyoxylate; Mal, malate; OAA, oxaloacetate; 3PG, 3-phosphoglycerate; PEP,
phosphoenolpyruvate; PGI, phosphoglycolate; R5P, ribose-5-phosphate; Ru5P, ribulose-5-phosphate; RuBP, ribulose-1,5-
bisphosphate; SBP, sedoheptulose-1,7-bisphosphate; S7P, sedoheptulose-7-phosphate; X5P, xylulose-5-phosphate.
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from 3-phosphoglycerate by phosphoglycerate de-
hydrogenase (EC 1.1.1.95: Cpr000053.1, Cpr000361.4, and
Cpr001502.1), phospho-Ser transaminase (EC 2.6.1.52:
Cpr004187.1), phospho-Ser phosphatase (EC 3.1.3.3:
Cpr001503.4), and Gly hydroxymethyltransferase (EC
2.1.2.1: Cpr001327.2, Cpr003325.1, and Cpr003765.3).
Meanwhile, high concentration of bicarbonate added
for the 13C labeling experiment could further suppress
photorespiration (Huege et al., 2011; Young et al., 2011).

Flux map for heterotrophic cells was based on the Glc
catabolism, because C. protothecoides grew upon U-13C Glc
as the sole carbon source. Most of the carbon flux for
heterotrophic growth is directed through the glycolytic
pathway (Fig. 5B). High activity of the C4 pathway is also
observed. Consistent with the rapid accumulation of
malate M3 isotopomer, malic enzyme channels 36% of
the flux through phosphoenolpyruvate. The glyoxylate
shunt (isocitrate lyase encoding gene Cpr004092.1 and
malate synthase encoding gene Cpr001903.2) was in-
cluded in our model while measured to be inactive in
heterotrophic cells, which agrees with our previous study
(Xiong et al., 2010a, 2010b). Another noteworthy result is
the high use rate of acetyl-CoA for fatty acids in hetero-
trophically grown C. protothecoides, exhibiting 33-fold
higher flux than that in autotrophic growth (Fig. 5B).
Interestingly, acetyl-CoA inputs into the tricarboxylic acid
cycle also enhance greatly. In heterotrophic conditions,
the activity of the tricarboxylic acid cycle depending on
acetyl-CoA oxidation arises to supply the energy and
reducing equivalents required for biomass formation,
including the biosynthesis of fatty acids. Because acetyl-
CoA is also presumably used as the building block for
fatty acid synthesis, an appropriate split ratio of metabolic
flux should be assigned into these two pathways for the
carbon and cofactor balancing. According to our flux
map, the ratio of pyruvate used for fatty acid synthesis
to that directed through the tricarboxylic acid cycle
is assigned as 6.8:1 in heterotrophic Chlorella spp. and

correspondingly, 3.4:1 in autotrophic cells, suggesting a
flexible and tunable flux distribution for fatty acid syn-
thesis. Feasible strategies to optimize this ratio may in-
clude inhibition of citrate synthase, the first enzyme in the
tricarboxylic acid cycle. It was reported to cause the accu-
mulation of acetyl-CoA, which could be donated for fatty
acid synthesis (Taylor, 1973; Coleman and Bhattacharjee,
1975; Underwood et al., 2002). Meanwhile, alternative
pathways generating the reducing equivalents are desired
for fatty acid synthesis.

Cofactor Balance Analysis

Based on the quantitative results of 13C MFA, the
production and consumption of cofactors ATP and
NAD(P)H can be analyzed in autotrophic and heterotro-
phic C. protothecoides. As shown in Table III, photosynthesis
is principally responsible for the turnover of cofactors in
autotrophic cells, because 89% ATP and 78.6% NADPH
are directly derived from the light reactions and con-
sumed for the generation of glyceraldehyde-3-P. The rest
of cofactors are used in biomass synthesis for cell growth.
For example, fatty acid synthesis consume 1.1% and 4.1%
of the total ATP and NAD(P)H produced, respectively. In
heterotrophic cells, glycolysis and tricarboxylic acid cycle
are the main contributors for the formation of ATP.
Note that maintenance accounts for a great percentage of
ATP drain according to the quantitative model. Reducing
equivalents are concomitantly produced during the for-
mation of 3-phosphoglycerate and the decarboxylation
catalyzed by pyruvate dehydrogenase as well as other
reaction process in the tricarboxylic acid cycle. The abun-
dantly formed NAD(P)H is mainly used for ATP genera-
tion through the respiratory electron transport chain and
the formation of biomass components, especially the
NADPH-intensive fatty acid synthesis [computationally
13.6% and 53.1% of the total ATP and NAD(P)H pro-
duced, respectively] in heterotrophic C. protothecoides.

Table III. Balance of ATP and NAD(P)H cofactors in autotrophic and heterotrophic C. protothecoides

Stoichiometric coefficient was calculated according to net fluxes normalized to CO2 fixation rate of 100 by Rubisco (autotrophic cells) and Glc
uptake rate of 100 (heterotrophic cells). Fractional contributions in percentages of different pathways to the cofactor balance are indicated in
parentheses.

Cofactor
Glycolysis/

Glyconeogenesis
Photosynthesis

PP

Pathway

Pyruvate

Metabolism

Tricarboxylic

Acid Cycle

Anaplerotic

Pathway

Biomass

Formation

ATP

Maintenance

Autotrophic cells
ATP
Formation 41.6 (10.9) 340.1 (89.0) 0.5 (0.1)
Consumption 0.6 (0.2) 300.1 (78.5) 1.4 (0.4) 66.5 (17.4) 13.5 (3.5)

NAD(P)H
Formation 27.1 (11.8) 180.4 (78.6) 3.2 (1.4) 7.8 (3.4) 4.7 (2.0) 3.0 (1.3) 3.4 (1.5)
Consumption 200.1 (87.1) 2.3 (1.0) 27.2 (11.8)

Heterotrophic cells
ATP
Formation 278.0 (41.8) 387.5 (58.2)
Consumption 188.4 (27.7) 2.0 (0.3) 199.9 (29.4) 290.7 (42.7)

NAD(P)H
Formation 168.9 (44.1) 6.8 (1.8) 128.9 (33.6) 60.4 (15.8) 18.1 (4.7)
Consumption 4.9 (1.3) 155.0 (40.3) 224.4 (58.4)
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DISCUSSION

Elucidation of metabolic properties and functions in a
systemic level can be greatly facilitated by metabolic
network modeling that integrates the genome-annotated
enzymatic reactions and computational approaches to
a functional entity. Most of the current reconstructed
networks are assessed using FBA, which uses a linear
programming approach and provides a metabolic flux
distribution consistent with the optimal solution of
the objective function. In this study, we reconstructed
the primary metabolic network of C. protothecoides on the
basis of genome information, focusing on central me-
tabolism comprised by the Calvin-Benson cycle, glycol-
ysis, the PP pathway, the tricarboxylic acid cycle, and the
biosynthetic pathways of biomass building blocks. The
model was operated with in silico calculations, which
were in reasonable agreement with the measured growth
rates. The application of FBA led to several conclusions:
(1) completeness of metabolic functionality mined in the
genome information (few gaps in the certain pathways
were identified and filled, whereas only four putative
enzymes missed), (2) achievement of suboptimal growth
by autotrophic and heterotrophic cells, and (3) optimality
of metabolic parameter for cell growth and fatty acid
production. The objective function that we selected in the
model, to maximize biomass formation and the inlet and
outlet carbon flux through the autotrophic and hetero-
trophic C. protothecoides (e.g. photon uptake and CO2
uptake rate of autotrophic cells and the CO2 excretion
and Glc uptake of heterotrophic cells), can be deter-
mined. Our modeling defined by carbon influx (FBA1)
resulted in agreement of calculated cell growth rates with
experimental determined ones, thus validating the ac-
curacy of our approach. FBA was then applied multiple
times by varying growth conditions, and the output of
objective function formed the PhPP plot, which mirrors
metabolic potential of C. protothecoides. Overall, this
model represents the first metabolic network draft, to our
knowledge, for oleaginous microalga C. protothecoides
reassembled from the newest availability of genome in-
formation. Upon presented framework, higher-resolution
metabolic mapping is expected through extensive refin-
ery of genomic information.
Despite its wide application in metabolic network

analysis, the limitation of FBA should be taken into ac-
count in that solution space needs to be further con-
strained to approach real flux values. To address this,
we adopt two experimental strategies. (1) Validation of
C. protothecoides metabolism by the metabolomic analy-
sis. According to the absolutely quantitative measure-
ment of metabolite concentrations using LC-MS, we
compared the metabolite levels of C. protothecoides in
different nutrients. Heterotrophic C. protothecoides ex-
hibits high levels of ATP, NAD(P)H, acetyl-CoA, and
malonyl-CoA, supporting a superior lipid synthesis over
autotrophic cells and being in line with the FBA mod-
eling results from the reconstructed network. (2) Ap-
plication of FBA framework in nonstationary 13C MFA.
For this purpose, INST-MFA was, for the first time to

our knowledge, used for a eukaryotic alga, and the best
estimates of intracellular fluxes were obtained. To in-
vestigate the difference of real fluxomics and optimal
flux status, we compared the results of INST-MFA es-
timation with FBA predictions. Shown in Supplemental
Figure S1 are the net fluxes resulted from FBA and
INST-MFA. Taking autotrophic cells for example, INST-
MFA led to similar flux distributions as FBA models.
However, the main differences include a less active
tricarboxylic acid cycle detected by INST-MFA, con-
sistent with slower labeling of the tricarboxylic acid
intermediates. Note that, generally, the FBA model
performs optimization of linear systems with seldom
experimental inputs, whereas nonstationary 13C MFA is
further defined by ordinary differential equations aim-
ing to fit kinetic 13C data, thus leading to a more reliable
flux map closer to reality. According to the results from
FBA1 and 13C MFA, differences of final flux values are
in a few reactions in the PP pathway, photorespiration,
glyoxylate shunt, and tricarboxylic acid cycle. Higher
accuracy could be further realized if more dynamic
isotope labeling trajectories of central carbon metabo-
lites can be included in the system, and the genome-
based FBA model, thus, offered an open framework for
improved flux estimate. We also exploit this model by
fitting it with the steady-state 13C labeling data gener-
ated in our previous work (Xiong et al., 2010a, 2010b).
A noncompartmented and simplified model was used
to investigate fluxes of heterotrophic cells, because no
detailed genomic information was available at that
time. Applying the isotopomer distribution data of
proteinogenic amino acids to this model generates higher-
resolution flux maps (data not shown). Compared with
flux profiling defined by kinetic labeling data (Fig. 5B),
flux distributions throughout primary pathways are
fairly similar, indicating data consistency. Remaining
minor discrepancies are probably caused by changed
experimental conditions, different labeling strategies, and
a refined flux-estimating algorithm. Nevertheless, it
should be noted that our research provided a case study
showing the feasibility of both stationary and nonsta-
tionary 13C flux analyses based on a large-scale com-
partmentalized metabolic network. These integrated
studies of metabolic network coupled with meta-
bolomics analysis shed light on the metabolism of ole-
aginous microalga C. protothecoides and may serve as a
cutting-edge toolbox for the systematic engineering of
microalgae for biofuel production.

MATERIALS AND METHODS

Abbreviations and Nomenclature

Abbreviations and nomenclature used in the figures and supplemental
materials are listed in Supplemental Table S6.

Cultivation Conditions and Analytical Procedure

Microalga Chlorella protothecoides 0710 was provided by the Culture Col-
lection of Alga at the University of Texas. The basic medium composition was
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the same as previously described (Xiong et al., 2008). Briefly, for autotrophic
cultivation, 2 g L21 NH4Cl was added to the basic medium as a nitrogen
source with four 18-W cool-white fluorescent lamps (Philips) providing an av-
erage surface illumination intensity of 1,470 lux (namely, 19.9 mmol m22 s21 with
the conversion factor of 0.0135); 10 g L21 Glc and up to 1 g L21 NH4Cl were used
as carbon and nitrogen sources, respectively, for heterotrophic growth in a 1-L
fermenter (Infors).

An Ultrospec 2000 UV/Visible Spectrophotometer (Pharmacia Biotech) was
used to monitor alga growth by measurements of optical density at 540 nm
(Xiong et al., 2010a, 2010b). Initial and residual Glc in the media during the
cultivation process were determined by a BSA-40C enzymatic bioanalyzer
(Shangdong Academy of Science). CO2 consumed or secreted by autotrophic
and heterotrophic algae was calculated from the difference between inlet and
outlet CO2 concentrations determined by a real-time tandem gas analyzer
(Milligan Instrument).

To determine the macromolecular composition of C. protothecoides, the Lowry
method (Holdsworth et al., 1988) was used to measure protein content, and amino
acid composition was obtained with an L-8800 Amino Acid Analyzer (Hitachi); the
content and composition of oil were measured by gas chromatography (GC)-MS as
previously described (Xiong et al., 2010b). The 3,5-dinitrosalicylic acid method
(Miller, 1959) was applied to determine intracellular carbohydrate and starch. The
percentage of nucleic acid was determined according to the diphenylamine-
colorimetric method (Gendimenico et al., 1988) and the method proposed by
Benthin et al. (1991); chlorophyll in autotrophic algae was measured using the
improved N,N-dimethylformamide extraction method according to Pan et al.
(2001).

Primary Metabolic Network Reconstruction

The primary metabolic network is a foundational model focusing on the
central metabolism of C. protothecoides. The reconstruction work began with
the genome annotation of C. protothecoides, the genome that was recently se-
quenced by us (Gao et al., 2014). Textbook knowledge and constructed met-
abolic networks of other photosynthetic microbes, including Synechocystis sp.
PCC 6803 and Chlamydomonas reinhardtii (Shastri and Morgan, 2005; Boyle and
Morgan, 2009; Manichaikul et al., 2009; Knoop et al., 2010; Chang et al., 2011;
Hädicke et al., 2011), were also referenced. An original list of reactions and
corresponding enzymes was collated according to the pathway maps in the
Kyoto Encyclopedia of Genes and Genomes (Kanehisa and Goto, 2000).

Each reaction in the network was manually checked, and those genes with
hypothetical protein product were reannotated using the online blast program of
UniProt (http://www.uniprot.org/blast/) and confirmed with conserved do-
main analysis (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Reaction
gaps resulting from the incompleteness of genome annotation were identified.
Missing genes were searched for in other species of Chlorophyta (C. reinhardtii,
Ostreococcus tauri, and Volvox carteri ), Arabidopsis (Arabidopsis thaliana), or
Saccharomyces cerevisiae, and the known nucleotide or amino acid sequences
were blasted against the C. protothecoides genome database. Most of the missing
enzymes had hits with acceptable e values, except for four essential enzymes, which
were retained in the stoichiometric model for the completeness and functionality of
the network. Reactions in a pathwaywithout branch were lumped (e.g. routes in the
biosynthesis of macromolecules) to simplify the model calculation, which was still
sufficient to detail the network.

To model the biomass formation reactions, we determined the biomass
components and macromolecular composition of autotrophic and heterotro-
phic C. protothecoides (Table I) consisting of proteins, lipids, carbohydrates,
DNA and RNA, and chlorophyll in autotrophic algae. GC content of DNA was
obtained from genome sequencing, and the same GC content was assumed for
RNA. Lipids were represented by diacylglycerol, and fatty acids were subdivided
to tetradecanoic, hexadecanoic, and octadecanoic acids as well as unsaturated
fatty acids octadecenoic (C18:1) and octadecadienoic acid (C18:2). Genes related to
the nonpolar lipid synthesis of phosphatidylethanolamine, phosphatidyl-Ser,
phosphatidylcholine, phosphatidic acid, phosphatidylinositol, phosphatidylglycerol,
sulfoquinovosyl diacylglycerol, monogalatosyl diacylglycerol, digalactosyl
diacylglycerol, and ceramide were also identified, whereas the reactions were
simplified in the flux computation. Because no reliable experimental data were
available, ATP demand for maintenance (EC 2.7.4.1: Cpr003988.1) and trans-
hydrogenase (EC 1.6.1.2: Cpr004180.1) was not specified to balance the energy
generation and consumption of C. protothecoides in each scenario.

Enzymes present in the network were localized into four cellular com-
partments (cytoplasma, mitochondria with matrix and intermembrane space
[Grant and Hommersand, 1974], chloroplast with stroma and thylakoid lumen
[Gao et al., 2014], and peroxisome [Codd et al., 1972; Chou et al., 2008])

primarily based on literature evidence of C. protothecoides and enzyme ho-
mologs in other species of Chlorella spp. (Chlorella pyrenoidosa, Chlorella fusca,
and Chlorella sorokiniana), C. reinhardti, and Arabidopsis supplemented by
PredAlgo, a multisubcellular localization predictor for algae (Tardif et al.,
2012). In the absence of any evidence for localization, enzymes were assigned
according to neighboring reactions for the functional feasibility of the network.

The actual photon absorption flux of autotrophic C. protothecoides by light-
harvesting complexes for metabolic use is difficult because much of the incident
light was reflected or scattered before it could generate the light reaction. Here,
we applied a simplified approach proposed by Manichaikul et al. (2009) to esti-
mate the photon uptake flux. The conversion rate of incident light to photon
absorption flux is assumed to be constant, which is also practicable for the photon
saturation point. The minimal light uptake that is sufficient for photosynthetic
saturation measured as O2 evolution was calculated to be 37.72 mmol g dry cell
weight21 h21 when autotrophic C. protothecoides grows at its maximal specific
growth rate that has ever been reported (Sorokin and Krauss, 1959). The exper-
imental photon flux saturation point was 500 mmol m22 s21 (Ouyang et al., 2010).
Therefore, the actual flux of photon uptake can be estimated with experimentally
measured light radiation.

The cyclic and noncyclic electron transport chains in photosynthesis and the
ATP synthesis reactionwere adopted according to Shastri andMorgan (2005). As
for enzymes for which the electron donors and acceptors are unknown, NADH
was assigned as the final donor, and NAD was assigned as the final acceptor
(Knoop et al., 2010). NAD(H) and NADP(H) were integrated in one reaction for
which both were available cofactors, and the stoichiometric numbers were set
equal to minimize the consequence on FBA results.

Growth Simulation

FBAwas applied in the quantification of the stoichiometric model of metabolic
network using INCA 1.1 (Young, 2014) and CellNetAnalyzer 9.9 (Klamt et al.,
2007) on MATLAB 7.6 (Mathworks). To simulate the growth state of C. proto-
thecoides in autotrophic and heterotrophic conditions, we fixed photon uptake
(set to zero for heterotrophic metabolism), Glc uptake (set to zero for autotrophic
metabolism), and CO2 uptake/excretion rates as constraints and maximized the
growth rate as the objective function under the assumption that algal cells were
striving to achieve a maximal biomass production, an assumption that is rea-
sonable for cells in the exponential growth phase (FBA1). Other constraints used
for simulations are reported in Supplemental Table S7. We also made the pre-
diction with only energy source uptake flux (photons of the autotrophic model
and Glc of the heterotrophic model) constrained to predict the ideal growth of
C. protothecoides (FBA2), which allowed for the optimized carbon use and distri-
bution within cells. Other constraints were the same as those of FBA1.

Metabolite Extraction

Extraction of metabolites in C. protothecoideswas according to Bennett et al. (2008)
with slight modification. A 2-mL cell culture was rapidly harvested by filtering with
a 47-mm-diameter round hydrophilic nylon filter (Sartorius Nylon Membrane,
0.45 mm) and quickly transferred into a prechilled dish containing 5 mL of 270°C
methanol for metabolism quenching. The dishes were stored in a 270°C freezer for
2 h; then, the filters were rinsed, and the cell suspension was centrifuged. The pellets
were extracted with 500 mL of methanol:water (50:50) mixture three times (various
extract solvent combinations were tested, and finally, a methanol:water [50:50]
mixture was selected). The supernatant was collected and combined with the
remaining methanol, and it was evaporated by centrifugation under a vacuum. The
resulting pellets were redissolved in 600 mL of LC mobile phase (see below) and
stored at 280°C until LC-MS analysis.

LC-MS Analysis

All cell extracts were analyzed using an Agilent 1290 Analytical HPLC System
coupled with an Agilent 6460 Triple-Quadrupole Mass Spectrometer (Agilent
Technologies). For LC separation, we adopted a modified method by Munger
et al. (2008). A Luna NH2 Column (Phenomenex) was used in positive mode.
Mobile phases are identical to those by Munger et al. (2008), but the gradient was
modified as follows: t = 0 min, 82% (v/v) B; t = 4 min, 80% (v/v) B; t = 11 min,
80% (v/v) B; t = 13 min, 62% (v/v) B; t = 16 min, 62% (v/v) B; t = 22 min, 0% (v/v)
B; t = 30 min, 0% (v/v) B; t = 31 min, 82% (v/v) B; and t = 45 min, 82% (v/v) B.
The flow rate was kept at 0.15 mLmin21. In negative mode, both the NH2 column
and a Synergi Hydro-RP (C18) Column (Phenomenex) were used. The mobile
phases are solvent A (5 mM ammonium acetate with 10 mM ammonium
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hydroxide in water), solvent B (acetonitrile for the NH2 column with identical
flow rate), and solvent A (10 mM ammonium acetate with 20 mM acetic acid in
water) and solvent B (methanol for C18 column with a flow rate of 0.1 mLmin21).
The gradient was as follows: t = 0 min, 3% (v/v) B; t = 5 min, 3% (v/v) B; t = 8
min, 90% (v/v) B; t = 10 min, 90% (v/v) B; t = 11 min, 3% (v/v) B; and t = 20 min,
3% (v/v) B for NH2 column and t = 0 min, 0% (v/v) B; t = 2 min, 0% (v/v) B; t = 9
min, 95% (v/v) B; t = 11 min, 95% (v/v) B; t = 12 min, 0% (v/v) B; and t = 20 min,
0% (v/v) B. Chromatography runs were divided into several segments to increase
the scan time. The mass spectrometer was operated in multiple reaction moni-
toring; metabolite information and optimized MS parameters are described in
Supplemental Table S4.

All standards and reagents for LC-MS analysis were purchased from
Sigma-Aldrich and Acros Organics with purity $ 95%. Chromatographic
peaks from samples were identified through comparison of retention times
and mass spectra with those of standards. The lowest concentration allowed
for quantification has a signal to noise ratio of 10. For comparing the extract
capacity with different solvent combinations, clustering was carried out with
freely available software Cluster 3.0 after normalization of the means of peak
areas of the replicates against data of the 6-h sample and visualized with a
heat map using TreeView 1.60 (Eisen et al., 1998).

Absolute Quantitation of Intracellular
Metabolite Concentrations

Heterotrophic C. protothecoides was inoculated into basic medium with
[U-13C6]Glc (99% isotopic purity; Cambridge Isotope Laboratories), and the
handling was repeated two times before the 13C-labeled cells were transferred
into medium containing 1 g L21 [U-13C6]Glc and 0.1 g L21 NH4Cl. The cell
cultures in early log phase were harvested as previously described with and
without unlabeled standards spiked, and the quantitation was performed
using the ratio of the 13C peak height to the 12C peak height obtained from MS
data (Bennett et al., 2008). Because of the triple-quadrupole MS scan time,
monitoring every isotopic form in 13C-fed cultures was not feasible, and
therefore, equivalent unlabeled cultivations were analyzed to evaluate the
completeness of labeling. The absolute intracellular metabolite concentrations
were calculated according to the following formula:

Ch_avg ¼ Ravg
�
Lavgð12Ravg$ZavgÞ3M

�
Fh

where Ravg is the geometric mean of the ratio of the fully labeled peak in-
tensity to that of the fully unlabeled peak (including spiked unlabeled stan-
dards) from three replicates, Lavg is the geometric mean of the ratio of the fully
labeled peak in cells from labeled media to the fully unlabeled peak in cells from
unlabeledmedia, Zavg is the geometric mean of the ratio of fully unlabeled to fully
labeled from cells fed with 13C Glc and extracted without spiking any standard,
M is the amount of standards added to cell extract, and Fh is the total cell vol-
ume. For determination of the absolute concentrations in autotrophic algae, an
equivalent of metabolite extract from green cells was mixed with that from the
13C-labeled heterotrophic culture, and the concentrations were calculated by:

Ca_avg ¼ Lavgð12R’
avg$ZavgÞ

�
R’
avg 3Ch_avg$Fh

�
Fa

where R’
avg is the geometric mean of the ratio of the fully labeled peak in-

tensity to that of the fully unlabeled peak (including spiked unlabeled com-
pounds from autotrophic algae), and Fa is the corresponding autotrophic cell
volume. SE was considered by error propagation, and the final intracellular
metabolite concentrations with 95% confidence intervals were calculated and
reported.

13C Labeling Experiment

An elementary metabolite unit-based (Antoniewicz et al., 2007) INST-MFA
was used to estimate intracellular metabolic fluxes. It uses the isotope labeling
kinetics of intracellular metabolites (Young et al., 2008). Exponentially grow-
ing cells were then collected by centrifugation and resuspended in basic media
with no carbon or nitrogen source for 5 min. Time 0 sampling was conducted
using the harvesting and extracting method previously described. The broth
was transferred into a 500-mL SEBC bottle (Fisher Scientific) with BOLA Multiple
Distributor in a GL 45 cap (BOLA). The bottle was sterilized with a one-way
valve fitted to the cap to exhaust residual gas. The valve was then sealed to
prevent unlabeled CO2 from entering the bottle. An 8-mL aliquot of 0.5 M

NaH13CO3 (99% isotopic purity; Cambridge Isotope Laboratories) was injected

into the bottle through a rubber septum in the cap. pH was maintain at around
7.5 by the addition of 1 M H2SO4. The broth was sampled at time points of 30 s,
90 s, 5 min, 10 min, 30 min, 60 min, and 120 min using a syringe. C-switching
of the heterotrophic cells was achieved similarly by substituting uniformly
13C-labeled Glc with unlabeled carbon source, and the broth was sampled at
the same time points.

MFA Based on Dynamic Isotopomer Distributions

After samples were analyzed by LC-MS, the isotopomers patterns of metab-
olites were monitored simultaneously (Supplemental Fig. S3). The isotopomer
distributions, however, reflected mixed extracting pools of the same metabolites
located in different organelles because of the compartmentalization of Chlorella
spp. cells. To address this, pseudo-fluxes were introduced to simulate the pool
mixing, which participates in the isotopomer balance but has no effect on the
mass balance. The pseudo-fluxes were also used to account for the pool mixing of
Glc-6-P and Fru-6-P, dihydroxyacetonphosphate and glyceraldehyde-3-P, and
citrate and isocitrate, which were coquantitated. Dilution effect caused by the
mixing of slowly labeled or metabolically inactive pools and the turnover of
macromolecules was also considered with pseudo-fluxes on the principle of
Isotopomer Spectral Analysis (Kelleher and Masterson, 1992). To reduce com-
putation load and speed up the computation time, a condensed metabolic net-
work of C. protothecoides was acquired by lumping the formation reactions of
macromolecular building blocks with biomass produced directly from interme-
diates of primary metabolism (Supplemental Table S2). Then, the INST-MFA was
applied, and the sum of squared residuals between the kinetics of isotope labeling
of measured metabolites and the computationally simulated isotopomer dis-
tributions was minimized to obtain the best estimates of metabolic fluxes
(other constraints were the same with FBA models) followed by calculation
of SEs for all estimated fluxes (Young et al., 2011). Calculation was repeated
10 times using INCA 1.1 starting from random initial guess in each scenario
to obtain the global optimum. All flux estimates and SEs are presented in
Supplemental Table S8.

To do the cofactor balance analysis, we summarized all of the concomitant
formation and consumption of ATP and NAD(P)H (NADH and NADPH were
combined because of the uncertainty as cofactors of dehydrogenases and re-
ductases) according to the INST-MFA results and categorized them into rel-
evant pathways as shown in Table III.

Sequence data from this article can be found in the GenBank/EMBL data
libraries under accession number APJO00000000.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Heat map of the calculated net fluxes in compar-
ison of 13C MFA, FBA1, and FBA2.

Supplemental Figure S2. Heat map of metabolite quantification reflecting
the extract capacity with different solvent combinations.

Supplemental Figure S3. Kinetics of isotope labeling of measured metabolites.

Supplemental Table S1. Unannotated enzymes confirmed using a protein
query tblastn search.

Supplemental Table S2. List of reactions, catalyzing enzymes, and local-
ization in the primary metabolic network of C. protothecoides.

Supplemental Table S3. Gene-protein association of the enzymes and
transporters involved in the network.

Supplemental Table S4. MS parameters and method performance for
metabolites.

Supplemental Table S5. Absolute intracellular metabolite concentrations
of C. protothecoides in a 95% confidence interval.

Supplemental Table S6. Abbreviations and nomenclature of metabolites.

Supplemental Table S7. Modeling constraints used in growth simulations
with FBA.

Supplemental Table S8. Net fluxes with SEs determined by INST-MFA.

Supplemental Text S1. Autotrophic model of the C. protothecoides meta-
bolic network presented in SBML format.
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Supplemental Text S2. Heterotrophic model of the C. protothecoides meta-
bolic network presented in SBML format.
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