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Summary

Growthhormone(GH)andinsulin-likegrowthfactor (IGF)signaling

regulates lifespan in mice. The modulating effects of genetic

background gained much attention because it was shown that

life-prolonging effects in Snell dwarf and GH receptor knockout

vary between mouse strains. We previously reported that hetero-

zygous IGF-1R inactivation (IGF-1R+/–) extends lifespan in female

mice on 129/SvPas background, but it remained unclear whether

thismutationproducesasimilareffectinothergeneticbackgrounds

andwhichmoleculespossiblymodifythiseffect.Here,wemeasured

the life-prolonging effect of IGF-1R+/– mutation in C57BL/6J back-

groundand investigated the roleof insulin/IGFsignalingmolecules

in strain-dependent differences. We found significant lifespan

extensioninfemale IGF-1R+/–mutantsonC57BL/6Jbackground,but

the effectwas smaller than in 129/SvPas, suggesting strain-specific

penetranceof longevityphenotypes. ComparingGH/IGFpathways

between wild-type 129/SvPas and C57BL/6J mice, we found that

circulating IGF-I and activation of IGF-1R, IRS-1, and IRS-2 were

markedly elevated in 129/SvPas, while activation of IGF pathways

was constitutively low in spontaneously long-lived C57BL/6J mice.

Importantly, we demonstrated that loss of one IGF-1R allele

diminished the level of activated IGF-1R and IRS more profoundly

and triggered stronger endocrine feedback in 129/SvPas back-

ground than in C57BL/6J. We also revealed that acute oxidative

stress entails robust IGF-1R pathway activation, which could

account for the fact that IGF-1R+/– stress resistance phenotypes are

fully penetrant in both backgrounds. Together, these results

provide a possible explanation why IGF-1R+/– was less efficient in

extending lifespan in C57BL/6J comparedwith 129/SvPas.

Key words: Genetic background; gene knockout; IGF-I; IRS;

lifespan; stress resistance.

Introduction

Somatotropic hormones and their downstream signaling components

regulate lifespan in animals (reviewed in Kenyon, 2005, 2010; Berryman

et al., 2008). Mice with mutations in genes encoding key proteins of

somatotropic and metabolic endocrine pathways show extended

lifespan. This is the case for Ames dwarfs, Snell dwarfs, and Little mice

(Flurkey et al., 2001, 2002), GH receptor null mutants (GHRKO,

Coschigano et al., 2000), heterozygous IGF-1R knockout (IGF-1R+/�;
Holzenberger et al., 2003), several insulin receptor and IRS knockout

mice (Bl€uher et al., 2003; Taguchi et al., 2007; Selman et al., 2008,

2011), and mutants with inactivation of downstream molecules like

S6K1 (Selman et al., 2009). Low circulating levels of IGF-I obtained by

liver-specific IGF-I inactivation (LI-IGF�/�; Svensson et al., 2011) or brain-

specific IGF-1R knockout (Kappeler et al., 2008) also extend lifespan in

mice. We demonstrated that the longevity effect of IGF-1R+/� mutation

on 129/SvPas genetic background is sexually dimorphic, because lifespan

was extended by 33% in females, while the effect was not significant in

males (Holzenberger et al., 2003). Similarly, the longevity effect of low

IGF-I in LI-IGF�/� mice was seen in females, but not in males (Svensson

et al., 2011).

Recently, Yuan et al. (2009) showed that longevity of mouse strains is

inversely correlated with circulating levels of IGF-I. Moreover, this group

identified several quantitative trait loci (QTL) that are linked to circulating

IGF-I level, one of which co-localizes with the igf1 gene (Leduc et al.,

2010), underlining the role of genetic background in longevity

determination. Meanwhile, it has been demonstrated that the effect

of Pitdw/dw (Snell dwarf mutation) and GHR knockout on lifespan varies

conspicuously with genetic background (Coschigano et al., 2000, 2003;

Flurkey et al., 2001, 2002). In addition, the robust effect of dietary

restriction, which is linked to low circulating levels of IGF-I, also depends

on the mouse strain (Liao et al., 2010). This raises the question whether

and how longevity effects of IGF-1R loss-of-function mutation depend

on genetic background. This debate was fueled when Bokov et al.

(2011) reported only 5% extension of lifespan in female IGF-1R+/� mice

on C57BL/6J genetic background and unchanged lifespan in mutant

males. While their results suggest that sexual dimorphism of IGF-1R

lifespan regulation is conserved between 129/SvPas and C57BL/6J

genetic background, they also point to possible genetic modifiers that

reduce lifespan-extending effects of IGF-1R inactivation in C57BL/6J

mice. We speculated that background-specific differences in IGF

pathway signaling could underlie the variable penetrance of IGF-1R+/�

longevity phenotypes. We hypothesized that the consequences of a

signal transduction bottleneck created by heterozygous IGF-1R knockout

depends on the strain-specific activity routed through this pathway.

Intriguingly, impaired growth and enhanced resistance to oxidative

stress, which are also characteristics for IGF-1R+/� mutants, do not vary

with genetic background (Holzenberger et al., 2003; Bokov et al.,

2011). To find an explanation for this dissociation of phenotypes, we

investigated activation of IGF signaling under acute oxidative stress.

Results

Extended lifespan by IGF-1R+/� mutation in C57BL/6J females

We used mice with heterozygous IGF-1R knockout (IGF-1R+/�) back-

crossed to C57BL/6J (B6) genetic background. Mutant males and females

showed a moderate growth deficit that started at puberty (Fig. 1A), very
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similar to the growth trajectories previously observed in 129/SvPas (129S2)

background (Holzenberger et al., 2003). At 12 weeks of age, male and

female IGF-1R+/� mice were 9% lighter than their respective wild-type

(WT) controls (P < 0.001, Student’s t-test). At 1 year of age, body weight

was 8% lower in IGF-1R+/� females (IGF-1R+/�: 22.8 � 0.4 vs. controls:

24.6 � 1.2 g), and 9% lower in IGF-1R+/� males (IGF-1R+/�: 28.2 � 0.5

vs. control: 30.9 � 0.4 g) (both P < 0.001, Student’s t-test). Growth and

final body size depend on pubertal peaks of endocrine IGF-I, when plasma

IGF-I is two to three times higher than either immediately after birth or later

during adulthood (Kappeler et al., 2008). Accordingly, growth trajectories

of IGF-1R+/� and IGF-1R+/+ groups start to diverge at the age of pubertal

growth spurt, not before (Fig. 1A–C; Holzenberger et al., 2005).

IGF-1R+/� females on B6 genetic background showed a significant

11% extension of lifespan (IGF-1R+/�: 896 � 23 day vs. controls:

805 � 26 day, P = 0.023; Fig. 1D). Male IGF-1R+/�, in contrast, showed

no extension and in fact had shorter maximum lifespan (Fig. 1E). This

demonstrated that a sexual dimorphism of IGF-1R+/� longevity effect

existed also in B6 background. However, the 11% increase in lifespan

observed here in B6 IGF-1R+/� females was markedly smaller than the

33% increase previously found in 129S2 females (Holzenberger et al.,

2003).

Differential IGF pathway activation between strains

To investigate genetic background-specific differences in IGF signaling

pathway, we first compared IGF-1R signaling between adult (3-month-

old) WT mice of 129S2 and B6 genetic background. We found that

circulating levels of IGF-I were significantly higher in WT 129S2 mice

than in B6 mice (Fig. 2A). This difference was present in both males and

females. Body length showed concordant differences between 129S2

and B6 mice (Fig. 2B), with B6 being significantly shorter. Adult females

also showed consistent differences in body weight (Fig. 2C). Moreover,

(A) (D)

(B) (E)

(C)

Fig. 1 Heterozygous knockout of IGF-1R in C57BL/6J genetic background inhibits growth in both sexes and extends lifespan in females. (A) Postnatal growth in male

and female IGF-1R+/� mice. Significant differences existed from 6 weeks of age onwards in females (P < 0.05) and from 7 weeks onwards in males (P < 0.01; Student’s

t-test, N = 18–24, error bars represent SEM). A star indicates difference between genotypes within the same sex (P values between 0.036 and < 0.001). (B and C) Male and

female growth velocity was calculated as weight gain per day using data from (A). Peaks of growth velocity at 4 weeks of age are blunted in IGF-1R+/� mutants. (D)

Heterozygous knockout of IGF-1R extended lifespan in female mice. IGF-1R+/� females (gray line) lived 11% longer than controls (black) (896 � 23 vs. 805 � 26 day;

P = 0.023, Cox regression test; P = 0.021, log-rank test). (E) IGF-1R+/� males (gray line) showed reduced maximum lifespan (803 � 20 vs. 831 � 22 day; P = 0.027, Cox

regression test; P = 0.025, log-rank test). Detailed lifespan data and descriptive statistics are provided in Tables S1 and S2. For comparison, mean lifespan in B6 control

groups from the recent literature is on average 811 days in females and 822 days in males (Table S3).
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we detected elevated plasma levels of acid-labile subunit (ALS) in 129S2

mice (Fig. 2D), consistent with their high IGF-I. Plasma GH in contrast

was lower in 129S2 mice compared with B6 (Fig. 2E), and we concluded

that low endocrine IGF-I levels in B6 mice were due to constitutive

differences in IGF-I expression.

IGF-I participates in metabolic regulation, namely through crosstalk

with insulin signaling pathways. These pathways show strain-specific

differences in glucose homeostasis marked by poor glucose tolerance in

males (Kulkarni et al., 2003; Goren et al., 2004). Here, we showed

strong differences in glucose homeostasis between B6 and 129S2 mice.

Glucose tolerance test (GTT) revealed elevated glycemia profiles in B6

mice compared with 129S2 (Fig. 2F). Similarly, glucose levels in the fed

state were significantly higher in B6 mice, whereas the highest levels

occurred in B6 males (Fig. 2G). Because IGF-I is able to reduce glycemia,

it is conceivable that low IGF-I in B6 contributes to the elevated blood

glucose profiles.

To better understand how the observed strain-related differences in

endocrine IGF-I translate into signaling activation of IGF-1R, we analyzed

receptor abundance and activation in tissues of ad libitum-fed mice from

WT B6 and 129S2 backgrounds using Western blot (WB). In muscle, the

amount of IGF-1R protein was very similar in both strains (Fig. 3A), and

this was also true for IRS-1 and IRS-2 (data not shown). However, the

degree of tyrosine phosphorylation of IGF-1R, IRS-1, and IRS-2 was

distinctly lower in B6 mice (Fig. 3B–D). This was the case for females

(B6 to 129S2–ratio of 35, 53, and 38% for P-IGF-1R, P-IRS-1, and P-IRS-

2, respectively) as well as for males (B6 to 129S2–ratio of 62, 40, and

44% for P-IGF-1R, P-IRS-1, and P-IRS-2, respectively) (Fig. 3B–D), all

consistent with the low levels of IGF-I in B6 mice. We confirmed these

findings in brain and lung tissues (B6 to 129S2–ratio for P-IGF-1R in the

brain: females 61%, males 44%; in lung tissue from females: 43%; all

results P < 0.01; N = 6 per group). Brain and lung are also major targets

for IGF signaling and are implicated in somatotropic development, stress

response, and survival (Ahamed et al., 2005; Kappeler et al., 2008).

Taken together, we found similar IGF-1R and IRS protein abundance but

significant differences in IGF-I/IGF-1R pathway activation between

strains. This suggested that high circulating levels of IGF-I resulted in

significantly high IGF ligand–receptor interaction and downstream

signaling activity in 129S2 mice.

IGF-1R is structurally and functionally related to insulin receptor (IR)

and both share substrates (LeRoith & Yakar, 2007). To check whether

insulin receptors also show differential activation, we measured IR

abundance and prevalence of P-IR, but found both to be unchanged in

WT B6 and 129S2 mice (Fig. 3E). Moreover, plasma insulin in the fed

state was similar in females of both strains (129S2: 0.85 � 0.19 vs. B6:

0.98 � 0.17 ng mL�1, NS; N = 16–18 per group) and was elevated in

B6 males (129S2: 0.65 � 0.11 vs. B6: 1.43 � 0.18 ng mL�1,

P < 0.001; N = 15–16 per group). Thus, insulin receptors and insulin

were unlikely to contribute significantly to the observed strain-specific

activation of IGF-1R and downstream pathways.

Differential effect of IGF-1R+/� mutation on IGF signaling in

B6 and 129S2 background

We then asked how experimentally induced decrease in IGF-1R

abundance interacts with the strain-specific molecular settings of the

IGF axis. For this, we used the heterozygous IGF-1R+/� mutants

maintained on B6 and 129S2 genetic background and compared them

with their respective IGF-1R+/+ littermate controls. IGF-1R signaling was

analyzed using immunoprecipitation (IP) of the receptor followed by WB,

in 11- to 13-week-old males and females separately (Fig. 4A). As

expected, IGF-1R abundance was identical in both backgrounds, and

heterozygous knockout of IGF-1R diminished the receptor abundance to

(A)

(E) (F) (G)

(B) (C) (D)

Fig. 2 Comparing somatotropic hormones, adult body size and glucose homeostasis between wild-type (WT) B6 and 129S2 mice. (A) Plasma IGF-I concentration.

***P < 0.001, Student’s t-test; N = 18–19 per group. (B) Body length (naso-anal distance). (C) Body weight. N = 11–13 per group. (D) Plasma acid-labile subunit (ALS).

***P < 0.001, Student’s t-test; N = 9 per group. (E) Comparing plasma GH concentration by rank plot analysis (Xu et al., 2011) between WT females from B6 (open

marks) and 129S2 (black marks) background (P = 0.012, log-rank test). (F) Glucose tolerance test (GTT) in male and female mice. Glucose (2 g kg�1 body weight) was

intraperitoneally (i.p.) injected at T0 and glycemia measured at T0, 15, 30, 60, and 120 min. Note that all groups rapidly regained control over glycemia. ***P < 0.002

(N = 7–8 per group) comparing B6 with 129S2. Individual area under curve (AUC) between both strains is significantly different (P < 0.001, one-way ANOVA with

Bonferroni’s post hoc test). (G) Glycemia in the fed state. ***P < 0.001 (N = 6–10 per group) (one-way ANOVA with Bonferroni’s post hoc test). A-E and G were performed

in 11- to 13-week-old mice. Tests in panel F were performed in 2-month-old mice. Error bars indicate SEM.
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half of the wild-type levels (Fig. 4B). No difference between genetic

backgrounds existed in this regard. We then measured the phosphoty-

rosine activation of IGF-1R in these mice (Fig. 4C). Activation of IGF-1R in

WT mice of 129S2 background was stronger compared with B6,

confirming the findings in Fig. 3B. Importantly, inactivation of one

IGF-1R allele entailed a two to three times stronger reduction in

phospho-IGF-1R levels in 129S2 background compared with the

corresponding reduction in B6 background (Fig. 4C). This effect

occurred very similarly in males and in females. We then calculated

the degree of phosphorylation of IGF-1R (Fig. 4D). This showed that

mutant and control groups in 129S2 genetic background had a

significantly higher P-IGF-1R/IGF-1R ratio than mutant and control

groups in B6 genetic background. However, no significant differences

existed between mutant and control groups within the same back-

ground.

Activated IGF-1R recruits IRS to trigger downstream signal transduc-

tion cascades. This interaction can be revealed by measuring the amount

of IRS-1 co-immunoprecipitating (coIP) with IGF-1R. The IRS-1 coIP

(A)

(B)

(C)

(D)

(E)

Fig. 3 Activation of IGF-1R and substrates IRS-1 and IRS-2 is higher in WT mice of

129S2 than in WT mice of B6 genetic background, in males and females. Ad

libitum-fed mice (11–13 week old) were used to recapitulate pathway activation

under physiological conditions. Results shown are from skeletal muscle.

Representative Western blots (WB) are displayed on the right. (A) Total IGF-1R;

vinculin was used as loading control. (B) Phospho-IGF-1R (P-IGF-1R), (C) P-IRS-1,

(D) P-IRS-2, and (E) P-IR were detected by immunoprecipitation (IP) using specific

antibodies, followed by WB using an anti-phosphotyrosine (P-TYR) antibody.

Signals of activated protein were expressed relative to total protein. N = 6 per

group, in males and females; *P < 0.05, **P < 0.01, Student’s t-test; error bars

represent SEM.

(A)

(B)

(C)

(D)

(E)

(F)

Fig. 4 IGF-1R phosphotyrosine activation and IRS-1 recruitment differ significantly

between 129S2 and B6 mice of IGF-1R+/� (+/�) and WT genotype. Ad libitum-fed

11- to 13-week-old mice were used. (A) Representative WB results. (B) Prevalence

of IGF-1R revealed by IP and subsequent WB. (C) Phospho-IGF-1R (P-IGF-1R)

detected from total immunoprecipitated IGF-1R using phosphotyrosine-specific

antibody (P-TYR). (D) P-IGF-1R relative to total immunoprecipitated IGF-1R. (E)

IRS-1 co-immunoprecipitating with IGF-1R shows a profile similar to (C). (F)

Expressing co-immunoprecipitated IRS-1 relative to IGF-1R shows a profile similar

to (D). In each graph, the mean of WT 129S2 mice was arbitrarily set to 100, and

results from other groups expressed relative to that. N = 7–12 per group;

*P < 0.05, **P < 0.01, ***P < 0.001, in one-way ANOVA with Bonferroni’s post

hoc test; error bars represent SEM.
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pattern among heterozygous and WT mice (Fig. 4E,F) plainly confirmed

the phospho-IGF-1R pattern (Fig. 4C,D) in both sexes. Collectively, these

results showed that quantitative aspects of IGF-1R pathway activation

depend on genetic background. Data also suggested that interaction

between IGF-1R abundance and activation of signaling differed slightly

between males and females, although these sex-specific differences did

not reach levels of significance.

Data in Figs 3 and 4 showed that IGF-1R pathway activation changed

with endocrine IGF-I levels, which were high in 129S2 and low in B6 mice

(Fig. 2A).We concluded that under high IGF-1R stimulation, heterozygous

receptor knockout strongly decreases phosphotyrosine-activated IGF-1R.

In contrast, when IGF-1R stimulation is low, heterozygous knockout

engenders much smaller, although still significant decreases in activated

IGF-1R. Similar to our previous findings in 129S2 background, 4-

month-old IGF-1R+/� mutants on B6 background showed upregulated

circulating IGF-I (+9%, P = 0.032; Student’s t-test; N = 15 for each

group), yet the effect was smaller than previously reported in 129S2,

suggesting reduced endocrine feedback in IGF-1R+/� mutants on B6

background. All together, these findings suggest that activation of

IGF signaling is less affected in B6 IGF-1R+/�mice than in 129S2 IGF-1R+/�

mice, which can explain the observed differences in lifespan extension

between backgrounds.

Response to acute oxidative stress involves peak levels of IGF

pathway activation

While longevity effects vary, somatic growth and stress resistance

phenotypes of IGF-1R+/� are fully penetrant in both backgrounds:

measured 72 h after paraquat injection, survival to paraquat increased

from 52% in WT to 75% in IGF-1R+/� on 129S2 background (P < 0.05;

Holzenberger et al., 2003) and from 50 to 74% on B6 background

(P < 0.001; Bokov et al., 2011). As shown in Fig. 4, reduction in

receptor levels in IGF-1R+/� mutants has limited inhibitory effect on

downstream signaling in B6 mice under basal conditions, but we

speculated that peak concentrations in IGF-I hormone are able to reveal

differences in capacity of pathway activation between IGF-1R+/� and WT

mice. Postnatal growth spurt in juvenile mice is induced by maximal IGF-

1R pathway activation, but it is not known whether this is also the case

for the response to oxidative stress. To test this, we challenged 3-month-

old wild-type mice with paraquat and analyzed plasma IGF-I and

downstream signaling (Fig. 5A). Within 48 h under acute oxidative

stress, endocrine IGF-I tripled, total IGF-1R abundance increased

significantly in lung tissue (IP: +48%, WB: +54%; P < 0.05), and levels

of phosphotyrosine-activated IGF-1R increased as well (+155%)

(P < 0.05; Fig. 5B). Downstream of IGF-1R, both Akt and Erk levels

increased significantly, while IRS-1 showed moderate depletion. We

detected several-fold increases in phospho-activation of IRS-1 (+108%),

Akt (+152%), and Erk (+370%) after 48 h of stress, proof that strong

IGF-1R pathway activation is a hallmark of response to oxidative stress. In

addition, low activation of p38 facilitates IGF-1R signaling (D�avila &

Torres-Aleman, 2008), and we showed here that levels of activated

P-p38 diminished under paraquat (Fig. 5). We obtained similar results in

muscle (not shown). Collectively, we demonstrated that IGF-1R signaling

was strongly activated under oxidative stress, a situation similar to IGF

pathway activation during juvenile growth spurt.

Finally, with respect to metabolic phenotype, we confirmed that GTT

and ITT profiles are normal in adult (4- to 6-month-old) IGF-1R+/� males

and females on B6 background (Supplementary Fig. S1), aspects that

have been thoroughly investigated by Bokov et al. (2011) and Garg et al.

(2011). Fed glycemia and insulin levels in control males were high

compared with females, indicating insulin resistance in males on B6

background.

Discussion

We showed here that heterozygous knockout of IGF-1R on B6

background extended female lifespan significantly, albeit to a lesser

degree than on 129S2 background (Holzenberger et al., 2003). This

finding is in line with previous reports, showing that diminished

endocrine IGF-I favors longer lifespan (Kappeler et al., 2008; Svensson

et al., 2011; Yuan et al., 2012). We also showed that partial IGF-1R

inactivation is less efficient in inhibiting IGF-1R signaling in B6 than in

129S2 background. Moreover, comparing the mean lifespans of mice of

B6 and 129S2 backgrounds suggested that IGF-1R activation level is

IGF-I 

IGF-1R 

IRS-1 

Akt

Erk 

p38 

Phospho
Total (IP) 
Ratio 
Total (WB) 

Phospho 
Total 
Ratio 

Phospho 
Total 
Ratio 

Phospho 
Total 
Ratio 

Phospho
Total 
Ratio 

0 h 36 h 
249 ±  82 338 ±  137 

95 ±  5 99 ±  20 
572 ±  9 653 ±  66 
0.17 ±  0.01 0.16 ±  0.05 
167 ±  19 180 ±  9 

105 ±  15 125 ±  18 
149 ±  9 175 ±  7 * 
0.72 ±  0.14 0.71 ±  0.08 

69 ±  13 67 ±  6 
345 ±  22 313 ±  45 
0.20 ±  0.03 0.23 ±  0.04 

133 ±  20 234 ±  35 
127 ±  14 193 ±  40 
1.07 ±  0.17 1.28 ±  0.26 

29 ±  10 19 ±  3 
140 ±  36 277 ±  47 
0.26 ±  0.12 0.07 ±  0.01 

48 h 
838 ±  106 * 

242 ±  46 * 
844 ±  82 * 
0.30 ±  0.09 * 
257 ±  37 * 

219 ±  5 * 
110 ±  12 * 

2.04 ±  0.25

175 ±  16 * 
616 ±  21 * 
0.28 ±  0.02 

626 ±  196 * 
373 ±  75 * 
1.67 ±  0.33 

23 ±  1 
410 ±  87 * 
0.06 ±  0.01 

% 
337% 

255% 
148% 

154% 

208% 
74% 

252% 
179% 

470% 
293% 

79% 
292% 

(A) (B)

Fig. 5 Activation of IGF signaling pathways 36 and 48 h after i.p. injection of paraquat. (A) WB detection of IGF-I from blood and of key signal transduction proteins in IGF

pathways (P-tyrosine-activated forms and total protein) from lung tissue. Gel loading was controlled by vinculin. (B) Quantification of WB by chemiluminescence.

Phosphotyrosine-IGF-1R (P-IGF-1R) and P-IRS-1 were detected using a phosphotyrosine-specific antibody after IP. Note that increase in IGF-1R abundance over time was very

similar whether detected from IP samples or by direct WB. Tests were performed in 11- to 13-week-old mice. N = 3 per group; mean � SEM, expressed in arbitrary units.

*P < 0.05, Mann–Whitney U-test.
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inversely related to strain-specific longevity. This result is compatible with

the work by Yuan et al. (2009) revealing an inverse correlation between

adult (6-month-old) endocrine IGF-I levels and mean lifespan in a panel

of mouse strains. Data from Yuan et al. also confirm sexual dimorphism,

as the correlation between IGF-I and lifespan is significant for females,

but not for males. These authors also studied B6 mice that carried an

IGF-I allele backcrossed from C3H genetic background (Yuan et al.,

2012). High IGF-I levels from this allele decreased lifespan in B6 females,

but not in males. Flurkey et al. (2001, 2002) and Coschigano et al.

(2000, 2003) had shown that genetic background modulates the life-

prolonging effect of mutations in somatotropic genes upstream of IGF-I.

Notably, the increase in lifespan in GHRKO mice relative to the control

group was roughly twice as strong on mixed 129/Ola-Balb/cJ back-

ground than on B6 (Coschigano et al., 2000, 2003). At the same time,

authors found 60% higher plasma IGF-I in control groups of 129/Ola-

Balb/cJ background compared with B6. Here, we demonstrated that the

129S2 strain has high circulating IGF-I levels. Conversely, comparing

129S2 longevity (Holzenberger et al., 2003) with other strains, Yuan

et al. (2009) showed that 129S2 longevity is at the lower quantile. Thus,

it appears that a short-lived strain with high endocrine IGF-I and elevated

IGF-1R activation has a higher potential for lifespan extension than a

spontaneously long-lived strain with low IGF-I. Yuan et al. (2012)

showed that B6 is one of, if not, the most long-lived inbred strains,

enhancing the import of the observed 11% increase in B6 lifespan by

IGF-1R+/� mutation.

While present results show that partial IGF-1R inactivation extends

lifespan in females on a long-lived genetic background, they also

allow us to draw conclusions with respect to endocrine mechanisms.

Genes in the GH/IGF axis act in networks, such that longevity effects

of mutations inhibiting this pathway likely depend on strain-specific

molecular context. Our finding that diminishing IGF-1R levels had

stronger effects on IGF signaling in 129S2 than in B6 background

suggested that signaling activity in this pathway is primarily deter-

mined by the prevalence of activated forms of receptor and

substrates, but not by their total abundance. Our finding that IGF-

1R+/� mutation was less efficient in extending longevity in a low IGF-I

background is in accord with the fact that both IGF-I and its receptor

regulate lifespan. Indeed, the mechanisms of genetic epistasis predict

that for genes acting in the same pathway, the combined effects of

inactivating mutations are smaller than the sum of effects when they

are measured for each component separately (reviewed in Cordell,

2002). Consequently, in a strain with low IGF-I, the loss of one IGF-1R

allele does not represent the same bottleneck effect as in a mouse

strain with high circulating IGF-I. This seems to also apply to decreases

in IGF-I provoked by dietary restriction. Combined effects of dietary

restriction and GHRKO on lifespan are much smaller than the sum of

their separate effects (Bonkowski et al., 2006). Finally, while it seems

natural that in IGF-1R+/� mice, IGF-I is involved in differential

activation of IGF-1R, other effectors such as protein tyrosine

phosphatases (PTPs) and IGF binding proteins (IGFBP-1 to IGFBP-6)

could also play a role. However, it should be noted that none of these

possibilities seems as powerful as the regulation by the cognate ligand

IGF-I itself.

Using an equivalent IGF-1R+/� knockout mouse (Liu et al., 1993) on

B6 genetic background, Bokov et al. (2011) reported that female

mutants lived longer than controls (+5%, P = 0.02 by log-rank test).

However, the increase in lifespan was noticeably smaller than our

original observation on 129S2 background. Bokov et al. mistakenly

compared our 129S2 longevity data with a different strain, 129/SvImJ

(129S1), and speculated that our original survival experiments were

carried out under stressful conditions, presumably favoring premature

death. This explanation is unproven and is unlikely. Our 129S2 and B6

experiments were performed under similar conditions to ensure

comparability, and lifespan of our B6 control population is similar to

data from other laboratories (see Table S3 and methods for details).

Admittedly, a problem arises from the fact that no reference data are

available for 129S2 and that many genetically divergent substrains were

developed from the original 129 mouse strain through extensive use,

notably for ES-cell derivation and KO mouse production. These strains

currently present with different lifespans (Table S4) (Simpson et al.,

1997; Threadgill et al., 1997; Petkov et al., 2004; Yuan et al., 2009,

2012). Yuan et al. (2009) showed that circulating IGF-I varies up to

3-fold among mouse strains and that this is correlated with strain-

specific longevity, which varies from < 300 days to more than 900 days.

Median lifespan, even in closely related strains, can differ by more than a

100 days.

Besides genetic background, differences in longevity among labora-

tories can originate from environmental factors, for example breading

protocols, diet, or litter size (Taguchi & White, 2008; Kappeler et al.,

2009). We showed that it is possible to modify the development and

adult function of somatotropic hormone axis through early life nutrition

(Kappeler et al., 2009). Interestingly, the control females from the Bokov

study lived on average 923 days (males: 983 days), which is considerably

longer than B6 lifespan reported by most laboratories (Table S3). One

may ask whether controls in the Bokov study exhibit a particularly low

somatotropic tone. That would explain both their outstanding longevity

and also the limited beneficial effect of IGF-1R+/� mutation. A direct

comparison of IGF-1R activation from their controls could clarify this

issue. A useful clue may also be the age at weaning, which is 21 days in

the Bokov study, while we keep litters with mothers until day 30, as

recommended for offspring with growth deficiency. Early weaning can

impair learning of eating behavior and slow down somatic development,

especially during periods of maximum growth in juvenile animals. Diet

composition is another important factor, and note should be taken that

chow we provided contains higher proportion of protein (22%) than

NIH-31 (18%), used by Bokov et al. (2011). Further inspection reveals

that Bokov’s and our findings do fit into a bigger picture (Fig. 6),

regardless of animal husbandry or health status, as Richardson and

colleagues speculated (Liang et al., 2003; Ladiges et al., 2009; Bokov

et al., 2011). In supplementary results, Bokov et al. present additional

survival data from females on a hybrid B6/129 background, where

median lifespan was 1009 days for controls, and no effect of IGF-1R+/�

mutation was observed. In Fig. 6, this result marks the point where

heterozygous inactivation of IGF-1R would no longer produce any life-

prolonging effect in females. Bokov et al. predicted a ‘stressor’ that

would explain the comparatively low mean lifespan of our 129S2

controls. Evidence from present work suggests that this ‘stressor’ is in

fact endocrine IGF-I and IGF-1R activation.

Another pertinent question is how differences in glucose metabolism

between B6 and 129S2 strains can interfere with longevity effects.

Intriguingly, we found that maximum lifespan was reduced in IGF-1R+/�

males with B6 background. We showed previously that heterozygous

IGF-1R knockout decreases glucose tolerance in males, while it amelio-

rates glucoses tolerance in females (Holzenberger et al., 2003). Here, B6

males showed high glycemia and high insulin levels indicating insulin

resistance, and it seems possible that male IGF-1R+/� mutants are more

susceptible to diabetic dysregulation, especially as they grow older, which

mayaccountfortheir longevityphenotype(Holzenbergeret al.,2003;Garg

et al., 2011; and this manuscript). Insulin receptor (IR) activation on the

otherhandwasvisiblyunaffected(Fig. 3E).Witherset al. (1999)showedby
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intercrossingmice heterozygous for null alleles of Igf1r and Irs-2 that Igf1-

Irs2 signaling is a key in the development andmaintenance of pancreatic b
cellmassandendocrine function.Consequently, adownregulationof IRS-2

signaling pathway or a reduced expression of Igf1r can explain peripheral

insulin resistance. Kido et al. (2002) showed that IGF-1R+/� did not alter

glucose homeostasis as long as insulin receptor signaling remained intact.

Together, this may explain why deleterious effects of IGF-1R inactivation

develop progressively in aged animals. It might be interesting to perform

caloric restriction in IGF-1R mutants and investigate IGF-I signaling during

refeeding,even thoughshort-termfastingandrefeedingdoesnotnormally

affect IGF-I levels (Lewitt et al., 2001). In mice with muscle-specific GHR

knockout, GH signaling plays a role in muscle lipid oxidation in basal

conditions, butnot after fasting–refeeding (Vijayakumaret al., 2012).One

mayaskwhethera similarmechanism isatwork in IGF-1R inactivation.High

GH levels in contrast may interfere with the metabolic and longevity

phenotypeof IGF-1R+/�mice.Both IGF-1R+/�and liver-specific IGF�/�mice

(Sj€ogren et al., 1999; Yakar et al., 1999) show increased circulating GH

levels and at the same time develop a sexual dimorphism in terms of

longevity, wheremales benefit less or not at all fromgenemutation. Yakar

et al. (2004) reported that inhibition of GH action improves insulin

sensitivity in liver-specific IGF-I-deficient mice, and it is therefore possible

that metabolic and longevity phenotypes are connected via enhanced GH

action onglucose homeostasis. Finally,male and female secretory patterns

of GH determine sex-dependent gene expression in the rodent liver that

may explain adverse effects of IGF-1R+/� mutation on male survival at

advanced ages (Ahluwalia et al., 2004;Waxman & Holloway, 2009).

We found it intriguing that IGF-1R+/� mutation induces stress

resistance and inhibits somatic growth to a similar extent in both B6

and 129S2 genetic backgrounds, while the longevity phenotypes were

quite different. Increased stress resistance is a common feature of

mutants with attenuated IGF signaling, from worms to mice (Berryman

et al., 2008), but the mechanism is still not clear. We showed that

IGF signaling is hyperactive under oxidative stress, and thus, it seems that

IGF-1R+/� mutation limits damage and ameliorates survival by blocking

acute overreaction to IGF-I. Similarly, growth spurts are blunted in IGF-

1R+/� mutants because the pubertal peak of IGF-I is no longer able to

stimulate maximal growth, thereby forcing individuals to leave their

growth trajectory (Holzenberger et al., 2005). Thus, stress response and

somatic growth are both determined by markedly high IGF-I levels. In

contrast to promote organismal longevity, it seems pivotal to reduce

metabolic activity and to keep protein turn over and cell renewal low.

Hence, a perfect IGF-I longevity allele would be a weak one that ensures

low basal hormone levels and limited inducibility, probably at the

expense of maximum somatic growth potential. We showed here that

IGF-1R+/� mutation inhibits signaling less efficiently under low-level IGF

stimulation than during high IGF-I, which would explain the dissociation

of the mutant phenotype between genetic backgrounds. Together, our

results suggest that stress resistance may be uncoupled from longevity

and that it may be the low basal levels of IGF-1R activation that

determine longevity, yet this awaits experimental confirmation.

In conclusion, several independent experiments showed that IGF-I and

IGF-1R regulate lifespan in mammals. In particular, the dose-dependent

effects illustrated in Fig. 6 confirm that the IGF-1R+/� mouse is a model

of increased longevity as predicted by mutations of IGF-1R homologues

in invertebrates. Here, we point out the modulating effect of genetic

background on IGF-1R signaling in gene knockout experiments. In view

of these results, we suggest a more systematic look into IGF-1R

activation, as a complement to measuring endocrine IGF-I levels.

Investigating the role of the mammalian IGF system in longevity is of

prime importance because heterozygous mutations have been identified

in human centenarians (Suh et al., 2008), and several studies found

association between exceptionally long human lifespan and gene

variants of AKT1, FOXO1A, and FOXO3A (Willcox et al., 2008; Flachs-

bart et al., 2009; Li et al., 2009; Pawlikowska et al., 2009; Soerensen

et al., 2010), together suggesting that these pathways also control

human aging.

Experimental procedures

Mouse genetics and husbandry

IGF-1R+/� mutant mice were produced and maintained on 129/SvPas

genetic background (Holzenberger et al., 2000, 2003) and backcrossed

to wild-type (WT) C57BL/6J mice for > 15 generations. WT mice of pure

C57BL/6J (B6) and 129/SvPas (129S2) genetic background were from

Charles River Laboratories (L’Arbresle, France). For lifespan studies and

analysis of growth, IGF-1R+/� mice and their littermate controls were

produced by mating B6 IGF-1R+/� males to WT B6 females. For signaling

studies and biochemistry, IGF-1R+/� mice and littermate controls were

produced by mating B6 IGF-1R+/� males to WT B6 females and by

mating 129S2 IGF-1R+/� males to WT 129S2 females. Litter size was

trimmed to 5–8 pups (mean 6.6 � 1.5 SD). We separated mice from

mothers on day 30 and housed six males or six females per cage, each

containing control and mutant animals. Mice lived under SPF conditions

in a barrier facility in individually ventilated cages (Tecniplast, Milan,

Italy). Sentinel mice (8–12 per room and year) were tested at Harlan

Fig. 6 Schematic illustration suggesting that heterozygous IGF-1R knockout

extends lifespan depending on longevity of genetic background and on sex. Data

are from Holzenberger et al., 2003 (a, 129S2), Xu et al. (b, B6; this paper), and

Bokov et al. (2011) (c, B6; d, hybrid B6/129). Data are used to compare mean

lifespan of IGF-1R+/� mutant populations (y-axis) with mean lifespan of

corresponding WT control populations (x-axis). In d, median lifespan was used.

Error bars represent SEM in a, b, and c, and 95% confidence interval in d. In

females, lifespan-extending effect of heterozygous IGF-1R knockout tends to

diminish with increasing mean lifespan of WT control. Male populations show a

similar trend, but seem to be exposed to adverse, life-shortening effects of IGF

receptor inactivation as mean lifespan increases. This schematic representation

raises the question whether stronger IGF-1R gene inactivation further extends

longevity, in spontaneously long-lived strains or under environmental conditions

that already favor long lifespan. It also suggests that DR may extend lifespan more

efficiently in 129S2 than in B6 (see also Swindell, 2012).
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Laboratories following FELASA recommendations. No infections or

pathogens were detected. Mice were kept at 23°C, with a 14/10-h

light/dark cycle, and had free access to water and rodent chow,

containing 22% proteins and 4% lipids (Special Diet Services, Essex, UK).

Cages were equipped with mouse houses (Tecniplast) to prevent male

aggressiveness. All animal experiments were conducted according to the

EC Council Directive (86/609/EEC).

Lifespan studies

Mice in the lifespan cohort were checked daily, but otherwise left

undisturbed until they died from natural causes. Single surviving females

were housed with neighbors. Importantly, WT littermates served as age-

and sex-matched internal controls. Three individuals (2.3%) died at

young age: one WT male at 21 days and two WT females at 80 and

119 days, respectively. This early mortality was supposedly caused by

developmental defects or accident, and not included in lifespan

analyses. Lifespan studies in 129S2 (Holzenberger et al., 2003) and B6

mice (this report) were performed in the same facility under identical

conditions with respect to air conditioning, temperature, luminosity,

light–dark cycle, cage size and occupation, ad libitum access to food and

water, age of weaning, and animal care. Differences between studies

were use of conventional cages (129S2) vs. IVC (B6), 24% (129S2) vs.

22% (B6) protein in diet, and more uniform litter size in B6. In 129S2

mice, lifespan was measured under clean conventional conditions

(Holzenberger et al., 2003), while B6 lifespan was measured under

SPF barrier. With respect to reproducibility of lifespan measurements in

the facility, mean lifespan in control groups of long-lived strains (B6 and

B6/129S2 F1 hybrids) has been stable over the last 10 years in male

(831 � 22 day, 853 � 43 day, 851 � 27 day) and female populations

(805 � 26 day, 821 � 36 day, 789 � 27 day) (see also Supporting

Information).

Postnatal growth

To measure growth, mice were weighed daily until postnatal day 42 and

sliding means from current weight and weight on preceding and

subsequent day computed. Mice were anesthetized by 40 mg/kg

pentobarbital i.p., to measure nose-rump length at 11–13 weeks.

Blood sampling and hormone determinations

Blood was collected from ocular sinus in conscious 11- to 13-week-old

mice using topical anesthetic and EDTA, cooled on ice, centrifuged

within 15 min, and plasma was frozen. For GH detection, we used the

protocol of Xu et al. (2011). Samples were drawn immediately after

moving the cage (within 20 sec) to minimize the effect of stress. Plasma

GH was measured using ELISA (DSL-10-72100, Beckman Coulter, Brea

CA, USA). Plasma IGF-I was measured by a single-plex immunoassay

(RMIGF187K, Millipore, Billerica MA, USA) and mouse IGF-I Quantikine

ELISA (MG100; R&D Systems, Minneapolis MN, USA). Plasma insulin was

measured by ELISA (EZRMI-13K, Millipore).

Glucose metabolism

Glycemia was measured in tail blood using OneTouch Ultra (Lifescan,

Issy-les-Moulineaux, France). For glucose tolerance test (GTT), animals

were 14 h fasted and i.p. injected with 20% D-glucose (2 g kg�1 body

weight). For insulin tolerance test (ITT), fed animals were i.p. injected

with 1 U insulin (I9278, Sigma) per kg body weight.

Tissue sampling

IGF-1R pathway activation was analyzed under physiological conditions

in ad libitum-fed, 11- to 13-week-old mice, when IGF-I levels are stable

(Kappeler et al., 2008). For protein extraction, tissue samples from

quadriceps muscle, cerebral cortex and lung from IGF-1R+/� mice and

WT littermate controls, on B6 and 129S2 genetic background, respec-

tively, were quickly dissected and immediately snap-frozen over liquid

nitrogen and stored at �80°C. To study IGF-1R pathway activation under

oxidative stress, 11- to 13-week-old mice received i.p. injection of 60 mg

paraquat (Sigma) per kg body mass. Mice were sacrificed 36 and 48 h

after injection and compared with noninjected controls. Tissues were

sampled as described.

Immunoblotting

Western blot (WB) and immunoprecipitation (IP) from tissue were

performed as described in Dupont et al. (2000). Activated forms of

IGF-1R, IR, IRS-1, and IRS-2 were detected after IP using anti-IGF-1R

b-subunit (C-20, Santa Cruz Biotechnology, Santa Cruz CA, USA),

anti-IR (Transduction Laboratories, BD Biosciences, Franklin Lakes NJ,

USA), anti-IRS-1, and anti-IRS-2 (Upstate Biotechnology Inc, Lake

Placid NY, USA) antibodies, followed by WB with anti-phosphotyrosine

antibodies (PY20, Transduction Laboratories). P-Akt, Akt, and P-Erk

(Cell Signaling Technology, Danvers MA, USA), Erk and p38 (Santa

Cruz Biotechnology), and P-p38 (Cell Signaling Technology) were

determined by WB. Equal loading was controlled by determining

vinculin using antivinculin antibody (Sigma). For all WB, bound

antibodies were revealed using peroxidase-conjugated secondary

antibodies and ECL (Amersham Pharmacia Biotech, Orsay, France).

Signals were quantified using MacBas 2.5 (Fujifilm, Bois d’Arcy,

France).

For WB of IGF-I (Fig. 5), 1.0 lL plasma samples diluted in reducing

Laemmli buffer was resolved by PAGE (4–20% Criterion TGX; Bio-Rad)

and transferred to PVDF membranes. Blocked membranes were

incubated with anti-IGF-I primary antibody (AF791, 1:1000; R&D

systems) for 3 h at room temperature (RT), washed in TBS, and

incubated for 60 min at RT with horseradish peroxidase-labeled

secondary rabbit anti-goat antibody (A5420, 1:5000; Sigma). Blots were

analyzed using ECL (RPN2232, GE Healthcare), ChemiDoc and Quantity

One 4.2.1 (Bio-Rad, Hercules CA, USA). Plasma ALS was assayed using

WB and anti-ALS antibody (AF1436, R&D Systems) as described by

Kappeler et al. (2008). Signals were revealed with ECL (Novex, Invitro-

gen, Cergy Pontoise, France).

Statistical analysis

Two-tailed Student’s t-test, Mann–Whitney U-test, and one-way ANOVA

with Bonferroni’s post hoc test were performed to determine statistical

significance of differences between groups. GH pattern was analyzed by

log-rank test. Survival curves were evaluated by Cox’s regression and

log-rank test. Tests were performed using SPSS (SPSS Institute Inc.,

Chicago, USA). Results are presented as means � SEM.
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